QUASI θ -SPACES AND PAIRWISE θ -PERFECT IRREDUCIBLE MAPPINGS

A. KANDIL, E. E. KERRE, M. E. EL-SHAFEI and A. A. NOUH

(Received 26 July 1990)

Communicated by J. H. Rubinstein

Abstract

In this paper we extend the notion of perfect, θ -continuous, irreducible and θ -perfect mappings to bitopological spaces. The main result is the following: the (small) image of an (i, j)-canonical open sets is an (i, j)-canonical open set under a pairwise θ -closed irreducible surjective mapping. Also we extend the notion of θ -proximity spaces to quasi θ -proximity spaces and point out the interrelation between it and separated quasi-proximity spaces by means of a pairwise θ -perfect irreducible mappings.

1991 Mathematics subject classification (Amer. Math. Soc.): 54 C 10, 54 E 05, 54 E 55.

1. Introduction

The notion of bitopological spaces was introduced by Kelly [10]. In this paper we investigate a less restrictive definition of pairwise perfect maps than that given by M. C. Datta [2] and study some of its properties. Then we introduce and study the concepts of pairwise θ -continuous, pairwise irreducible and pairwise θ -perfect mappings. Furthermore, we introduce the notion of a quasi θ -proximity space and prove the following.

- (1) The (small) image of an (i, j)-canonical open set is an (i, j)-canonical open set under a pairwise θ -closed irreducible mapping.
- (2) Every separated quasi-proximity space is a quasi θ -proximity space.
- (3) A bitopological space admits a maximal quasi θ -proximity if the space is pairwise Hausdorff.

^{© 1992} Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

(4) If f is a pairwise θ-perfect irreducible mapping from a pairwise Tychonoff space (X, τ₁, τ₂) onto a pairwise Hausdorff space (Y, Δ₁, Δ₂) and if δ is a compatible separated quasi-proximity on (X, τ₁, τ₂), then there exists a quasi θ-proximity θ on (Y, Δ₁, Δ₂), associated with f and δ.

Finally, we like to remark in the context of the present paper that, by $i, j, i, \neq j$, we mean that i is either 1 or 2 for instance if i = 1 then j = 2. Also we will use P- to denote pairwise and "bts" to denote bitopological space.

2. Preliminaries

Let (X, τ_1, τ_2) be a bts and A a subset of X. The closure and interior of A with respect to τ_i are denoted by τ_i -cl(A) and τ_i -int(A), respectively. The family of all τ_i -closed sets will be denoted by τ'_i . When the appropriate topology is clear from the context, O_A (respectively O_x) denotes an open set containing A (respectively an open neighbourhood of x).

DEFINITION 2.1 [10, 14]. A bts (X, τ_1, τ_2) is called

- (1) $PT_1 \Leftrightarrow (\forall x \in X)(\forall i \in \{1, 2\})(\{x\} = \tau_i \text{-} \operatorname{cl}\{x\})$
- (2) PT_2 or P-Hausdorff $\Leftrightarrow (\forall x, y \in X, x \neq y)(\exists O_x \in \tau_i)(\exists O_y \in \tau_j)$ $(O_x \cap O_y = \emptyset)$
- (3) $P\hat{T}_{2\frac{1}{2}}$ or P-Urysohn $\Leftrightarrow (\forall x, y \in X, x \neq y)(\exists O_x \in \tau_i)(\exists O_y \in \tau_j)$ $(\tau_i \text{-cl}(O_x) \cap \tau_i \text{-cl}(O_y) = \emptyset)$
- (4) PR_2 or *P*-regular $\Leftrightarrow (\forall x \in X)(\forall Ox \in \tau_i)(\exists O_x^* \in \tau_i)(\tau_j \operatorname{cl}(O_x^*) \subseteq O_x)$
- (5) $PR_{2\frac{1}{2}}$ or *P*-completely regular $\Leftrightarrow (\forall x \in X)(\forall F \in \tau'_i, x \notin F)$ (\exists a mapping $f: X \to [0, 1]$)(*f* is τ_i -lower semicontinuous, and *f* is τ_j -upper semicontinuous and f(x) = 0 and f(F) = 1), where [0, 1] is the closed unit interval
- (6) $PT_{3\frac{1}{2}}$ or *P*-Tychonoff if and only if it is $PR_{2\frac{1}{2}}$ and PT_1 .

DEFINITION 2.2 [10]. A mapping $f: (X, \tau_1, \tau_2) \to (Y, \Delta_1, \Delta_2)$ is called *P-continuous* (respectively *P-open*, *P-closed*) if the induced mappings $f: (X, \tau_i) \to (Y, \Delta_i), i = 1, 2$, are continuous (respectively open, closed).

DEFINITION 2.3 [8]. A cover \mathscr{U} of a bts (X, τ_1, τ_2) is called a $\tau_1 \tau_2$ -open cover if $\mathscr{U} \subseteq \tau_1 \cup \tau_2$. If in addition \mathscr{U} contains at least one nonempty member of τ_1 and at least one nonempty member of τ_2 , then \mathscr{U} is called a *P*-open cover.

Although there are several different notions of P-compactness in the

literature [1, 8, 11], we use the definition given in [8]. An equivalent concept of *P*-compactness has been introduced by Y. M. Kim [11].

DEFINITION 2.4 [8]. A bts (X, τ_1, τ_2) is called *P*-compact if every *P*open cover of X has a finite subcover.

We make use of the following results from [8].

RESULTS 2.5 [8]. (1) P-compactness is P-continuous invariant.

(2) In a P-Hausdorff space, a τ_i -compact subset is τ_i -closed.

(3) If (X, τ_1, τ_2) is P-compact, then a proper τ_i -closed subset is τ_i compact.

DEFINITION 2.6. A subset A of a bts (X, τ_1, τ_2) is called (i, j)-canonical open (or (i, j)-regular open) if $A = \tau_i - int(\tau_j - cl(A))$. Specifically, $(\forall A \subseteq$ X)(τ_i -int(τ_i -cl(A)) is always (i, j)-canonical open).

DEFINITION 2.7 [5]. If $f: X \to Y$ is a mapping from X into Y and $A \subseteq X$, then we define a mapping $f^{\#}: 2^X \to 2^Y$ by

$$f^{\#}(A) = \{y | y \in Y \text{ and } f^{-1}(\{y\}) \subseteq A\},\$$

and $f^{\#}(A)$ is called the small image of A under the mapping f.

THEOREM 2.8 [5]. The mapping f^{*} has the following properties:

- (1) $f^{\#}(A) \subseteq f(A)$; (2) $f^{\#}(A) = co(f(co A))$, where co denotes complementation;
- (3) $f^{\#}(A \cap B) = f^{\#}(A) \cap f^{\#}(B)$; (4) $f^{-1}f^{\#}(A) \subseteq A$.

DEFINITION 2.9 [13]. A mapping $\delta: 2^X \times 2^X \to \{0, 1\}$ is called a *quasi*proximity on X if it satisfies the following axioms:

 (P_1) $\delta(A, B) = 0 \Rightarrow A \neq \emptyset$ and $B \neq \emptyset$;

 $(\dot{P_2}) \quad \delta(A, B \cup C) = \delta(A, B) \cdot \delta(A, C)$ and,

$$\delta(A \cup B, C) = \delta(A, C) \cdot \delta(B, C);$$

 $(P_{2}) \quad A \cap B \neq \emptyset \Rightarrow \delta(A, B) = 0;$

 (P_A) $\delta(A, B) = 1 \Rightarrow (\exists U \subseteq X)(\delta(A, U) = \delta(\operatorname{co} U, B) = 1).$

The pair (X, δ) is called a *quasi-proximity space*. A quasi-proximity δ is said to be *separated* if it satisfies the following axiom:

 $(P_5) \ \delta(\{x\}, \{y\}) = 0 \Leftrightarrow x = y.$

If δ is a quasi-proximity, then δ^{-1} , defined by $\delta^{-1}(A, B) = \delta(B, A)$, is also a quasi-proximity and it is called the *conjugate of* δ .

Quasi θ -spaces

[4]

DEFINITION 2.10 [12]. If (X, δ) is a quasi-proximity space, then two topologies $\tau(\delta)$ and $\tau(\delta^{-1})$ are defined on X if for arbitrary $A \subseteq X$ we let

$$\tau(\delta) - cl(A) = \{ x \in X : \delta(\{x\}, A) = 0 \},\$$

and

$$\tau(\delta^{-1}) - \operatorname{cl}(A) = \{ x \in X : \delta(A, \{x\}) = 0 \}.$$

DEFINITION 2.11. A quasi-proximity space (X, δ) is called *compatible* with a bts (X, τ_1, τ_2) if $\tau(\delta) = \tau_1$ and $\tau(\delta^{-1}) = \tau_2$.

LEMMA 2.12. The axiom (P_4) implies the following axiom:

 $\begin{array}{lll} (P_4^*) & \delta(A, B) = 1 \Rightarrow (\exists U = \tau(\delta^{-1}) \cdot \operatorname{int}(\tau(\delta) \cdot \operatorname{cl}(U)))(\delta(A, U) = \\ \delta(\operatorname{co}(\tau(\delta)) \cdot \operatorname{cl}(U)), B) = 1). \end{array}$

DEFINITION 2.13. A bts (X, τ_1, τ_2) is said to be *P*-extremally disconnected if the τ_i -closure of each τ_i -open sets is τ_i -open.

3. Pairwise perfect mappings

DEFINITION 3.1. A *P*-continuous, *P*-closed mapping f from a bts (X, τ_1, τ_2) into a bts (Y, Δ_1, Δ_2) is called *P*-perfect if it satisfies

 $(\forall y \in Y)(\forall i \in \{1, 2\})(f^{-1}(\{y\}) \text{ is } \tau_i \text{-compact subset in } X).$

Our definition of P-perfect mappings differs from the definition given by Datta [2] in that we do not insist that point inverses by P-compact.

LEMMA 3.2. Every P-continuous mapping from a P-compact-bts (X, τ_1, τ_2) into a PT_2 -bts (Y, Δ_1, Δ_2) is P-perfect.

PROOF. Let $A \in \tau'_i \setminus \{X, \emptyset\}$. Since (X, τ_1, τ_2) is *P*-compact, by 2.5(3), *A* is a τ_j -compact subset of *X*. Hence by 2.5(1), f(A) is a τ_j -compact subset of *Y*. So by 2.5(2), $f(A) \in \Delta'_i$ and hence *f* is *P*-closed.

To prove (iii), consider $y \in Y$. Since (Y, Δ_1, Δ_2) is PT_2 , then it is PT_1 and hence $\{y\} \in \Delta'_j$. By *P*-continuity of f it follows that $f^{-1}(\{y\}) \in \tau'_j$ and hence by 2.5(3), $f^{-1}(\{y\})$ is a τ_i -compact subset of X.

THEOREM 3.3. Let (X, τ_1, τ_2) be a PR_2 -bts and let A be τ_i -compact. Then $(\forall B \in \tau'_i)(A \cap B = \emptyset \Rightarrow (\exists O_A \in \tau_i)(\exists O_B \in \tau_i)(O_A \cap O_B = \emptyset))$.

PROOF. Since (X, τ_1, τ_2) is a PR_2 -bts, it follows that $(\forall x \in A)(\exists O_x \in \tau_i)(\exists O_B^{(x)} \in \tau_j)(O_x \cap O_B^{(x)} = \varnothing)$. Clearly $(O_x)_{x \in A}$ is an τ_i -open cover of

A, so there exists a finite subcover $(O_{x_s})_{s=1}^n$ of A. One readily verifies that $O_A = \bigcup_{s=1}^n O_{x_s}$ and $O_B = \bigcup_{s=1}^n O_B^{(x_s)}$ have the required property.

THEOREM 3.4. If (X, τ_1, τ_2) is a PT_2 -bts, $x \in X$ and B is τ_i -compact such that $x \notin B$, then $(\exists O_x \in \tau_j)(\exists O_B \in \tau_i)(O_x \cap O_B = \varnothing)$. Moreover, if A is τ_j -compact and B is τ_i -compact such that $A \cap B = \varnothing$, then $(\exists O_A \in \tau_j)(\exists O_B \in \tau_i)(O_A \cap O_B = \varnothing)$.

PROOF. Theorem 3.4 can be proved similarly to Theorem 3.3.

THEOREM 3.5. The axioms PT_2 , PR_2 and PR_3 are invariant under a *P*-perfect surjective mapping.

PROOF. Let f be an P-perfect mapping from a PT_2 -bts (X, τ_1, τ_2) onto an arbitrary bts (Y, Δ_1, Δ_2) . Let $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Then we have $f^{-1}(\{y_1\}) \cap f^{-1}(\{y_2\}) = \emptyset$. Moreover, since f is P-perfect, $f^{-1}(\{y_1\})$ and $f^{-1}(\{y_2\})$ are τ_i -compact. Hence by Theorem 3.4, we have $(\exists O_{f^{-1}(\{y_1\})} \in \tau_i)(\exists O_{f^{-1}(\{y_2\})} \in \tau_j)(O_{f^{-1}(\{y_1\})} \cap O_{f^{-1}(\{y_2\})} = \emptyset)$. Putting $U = \operatorname{co}(f(\operatorname{co}(O_{f^{-1}(\{y_1\})})))$ and $V = \operatorname{co}(f(\operatorname{co}(O_{f^{-1}(\{y_2\})})))$, we obtain the following.

(i) $y_1 \in U$ and $y_2 \in V$. Indeed, from $f^{-1}(\{y_1\}) \subseteq O_{f^{-1}(\{y_1\})}$ we obtain $f^{-1}(\{y_1\}) \cap \operatorname{co}(O_{f^{-1}(\{y_1\})}) = \emptyset$. Then $ff^{-1}(\{y_1\}) \cap f(\operatorname{co}(O_{f^{-1}(\{y_1\})})) = \emptyset$ and hence, since f is surjective, $y_1 \notin f(\operatorname{co}(O_{f^{-1}(\{y_1\})}))$ or equivalently, $y_1 \in U$.

- (ii) $U \in \Delta_i$ and $V \in \Delta_j$, since f is P-closed.
- (iii) $U \cap V = \emptyset$.
- Thus (Y, Δ_1, Δ_2) is a PT_2 -bts.

The invariance of the axioms PR_2 and PR_3 is proved in a similar way.

THEOREM 3.6. P-compactness is inverse invariant under P-perfect mapping.

PROOF. Theorem 3.6 can be proved similarly to [2, Lemma 5.2].

4. Pairwise θ -continuous mappings

DEFINITION 4.1. A mapping f from a bts (X, τ_1, τ_2) into a bts (Y, Δ_1, Δ_2) is said to be $P \cdot \theta$ -continuous if

$$(\forall x \in X)(\forall O_{f(x)} \in \Delta_i)(\exists O_x \in \tau_i)(f(\tau_j - \operatorname{cl}(O_x)) \subseteq \Delta_j - \operatorname{cl}(O_{f(x)})).$$

It is obvious that a *P*-continuity is a $P \cdot \theta$ -continuity. The converse is not true in general as the following example shows.

EXAMPLE 4.2. Let $X = \{a, b\}$ and $\tau_1 = \{X, \emptyset, \{a\}\}, \tau_2 = \{X, \emptyset, \{b\}\}, \Delta_1 = \{X, \emptyset, \{a\}, \{b\}\}, \Delta_2 = \{X, \emptyset\}$. Let $f: (X, \tau_1, \tau_2) \to (X, \Delta_1, \Delta_2)$ be the identity mapping. Then f is $P \cdot \theta$ -continuous but not P-continuous, since for $b \in X$ and for each $O_{f(b)} \in \Delta_1$, there does not exist any $O_b \in \tau_1$ such that $f(O_b) \subseteq O_{f(b)}$.

THEOREM 4.3. If f is a $P \cdot \theta$ -continuous mapping from an arbitrary bts (X, τ_1, τ_2) into a PR_2 -bts (Y, Δ_1, Δ_2) , then f is P-continuous.

PROOF. Since (Y, Δ_1, Δ_2) is PR_2 , we find that $(\forall x \in X)(\forall O_{f(x)} \in \Delta_i) \cdot (\exists O_{f(x)}^* \in \Delta_i)(O_{f(x)}^* \subseteq \Delta_j \text{-} \operatorname{cl}(O_{f(x)}^* \subseteq O_{f(x)}))$. By $P \cdot \theta$ -continuity of f, $(\exists O_x \in \tau_i)(f(\tau_i \text{-} \operatorname{cl}(O_x)) \subseteq \Delta_j \text{-} \operatorname{cl}(O_{f(x)}^*))$. Hence we have

$$f(O_x) \subseteq f(\tau_j \operatorname{-cl}(O_x)) \subseteq \Delta_j \operatorname{-cl}(O_{f(x)}^*) \subseteq O_{f(x)}.$$

THEOREM 4.4. The composition of two $P \cdot \theta$ -continuous mappings is $P \cdot \theta$ -continuous.

PROOF. This is straightforward.

THEOREM 4.5. The P-Urysohn axiom is inverse invariant under a $P \cdot \theta$ -continuous injective mapping.

PROOF. Let f be a $P \cdot \theta$ -continuous injective mapping from a bts (X, τ_1, τ_2) into a $PT_{2\frac{1}{2}}$ -bts (Y, Δ_1, Δ_2) . Let $x_1, x_2 \in X$ such that $x_1 \neq x_2$. Hence $f(x_1) \neq f(x_2)$. Since (Y, Δ_1, Δ_2) is $PT_{2\frac{1}{2}}$ -bts, we obtain $(\exists O_{f(x_1)} \in \Delta_i) \cdot (\exists O_{f(x_2)} \in \Delta_j)(\Delta_j - \operatorname{cl}(O_{f(x_1)}) \cap \Delta_i - \operatorname{cl}(O_{f(x_2)}) = \varnothing)$. By $P \cdot \theta$ -continuity of f, we obtain $(\exists O_{x_1} \in \tau_i)(\exists O_{x_2} \in \tau_j)(f(\tau_j - \operatorname{cl}(O_{x_1})) \subseteq \Delta_j - \operatorname{cl}(O_{f(x_1)})$ and $f(\tau_i - \operatorname{cl}(O_{x_2})) \subseteq \Delta_i - \operatorname{cl}(O_{f(x_2)}))$. Hence $f(\tau_j - \operatorname{cl}(O_{x_1})) \cap f(\tau_i - \operatorname{cl}(O_{x_2})) = \varnothing$ and so $\tau_j - \operatorname{cl}(O_{x_1}) \cap \tau_i - \operatorname{cl}(O_{x_2}) = \varnothing$. Thus (X, τ_1, τ_2) is $PT_{2\frac{1}{2}}$ -bts.

THEOREM 4.6. Let f be a $P \cdot \theta$ -continuous and P-closed mapping from a bts (X, τ_1, τ_2) onto a bts (Y, Δ_1, Δ_2) . Then $(\forall U \in \Delta_i)$ we have

$$f^{-1}(\Delta_j\operatorname{-cl}(U)) = \tau_j\operatorname{-cl}(f^{-1}(U)).$$

PROOF. Let $x \notin \tau_j \operatorname{cl}(f^{-1}(U))$. Then $f(x) \notin f(\tau_j \operatorname{cl}(f^{-1}(U)))$ and hence $f(x) \notin \Delta_j \operatorname{cl}(U)$ since f is *P*-closed and onto. So $x \notin f^{-1}(\Delta_j \operatorname{cl}(U))$. Thus $f^{-1}(\Delta_j \operatorname{cl}(U)) \subseteq \tau_j \operatorname{cl}(f^{-1}(U))$.

To prove the converse inclusion, let $x \notin f^{-1}(\Delta_j - \operatorname{cl}(U))$. Then $f(x) \notin \Delta_j - \operatorname{cl}(U)$. From f being onto we obtain that $ff^{-1}(\Delta_j - \operatorname{cl}(U)) = \Delta_j - \operatorname{cl}(U)$ and hence $(\exists O_{f(x)} \in \Delta_j)(O_{f(x)} \cap U = \varnothing)$. From $U \in \Delta_i$, we find that $\Delta_i - \operatorname{cl}(O_{f(x)}) \cap U = \varnothing$. By $P \cdot \theta$ -continuity of f, $(\exists O_x \in \tau_j) \cdot (f(\tau_i - \operatorname{cl}(O_x)) \subseteq \Delta_i - \operatorname{cl}(O_{f(x)}))$ and hence $f(\tau_i - \operatorname{cl}(O_x)) \cap U = \varnothing$ which implies that $\tau_i - \operatorname{cl}(O_x) \cap f^{-1}(U) = \varnothing$ and so $x \notin \tau_j - \operatorname{cl}(f^{-1}(U))$. Thus, $\tau_j - \operatorname{cl}(f^{-1}(U)) \subseteq f^{-1}(\Delta_j - \operatorname{cl}(U))$.

5. Pairwise θ -perfect irreducible mappings

DEFINITION 5.1. A mapping f from a bts (X, τ_1, τ_2) onto a bts (Y, Δ_1, Δ_2) is called *P-irreducible* if $(\forall F = F_1 \cup F_2, F_1 \in \tau'_1 \setminus \{X\} \text{ and } F_2 \in \tau'_2 \setminus \{X\}) \cdot (f(F) \neq Y)$.

We omit the proofs of Lemma 5.2 and Theorem 5.3, which are straightforward.

LEMMA 5.2. A mapping f from a bts (X, τ_1, τ_2) onto a bts (Y, Δ_1, Δ_2) satisfies: f is P-irreducible if and only if $(\forall U = U_1 \cap U_2, U_1 \in \tau_1 \setminus \{\varnothing\})$ and $U_2 \in \tau_2 \setminus \{\varnothing\})(f^{\#}(U) \neq \emptyset)$.

THEOREM 5.3. Let f be a P-closed mapping from a bts (X, τ_1, τ_2) into a bts (Y, Δ_1, Δ_2) and $U \in \tau_i$, i = 1, 2. Then

(1) $f^{\#}(U) \in \Delta_i$

328

(2) $f^{\#}(U) \subseteq \Delta_i \operatorname{-int}(f(U))$.

DEFINITION 5.4. A $P \cdot \theta$ -continuous map is called $P \cdot \theta$ -closed irreducible if it is both P-closed and P-irreducible.

LEMMA 5.5. If f is a P· θ -closed irreducible mapping from a bts (X, τ_1, τ_2) onto a bts (Y, Δ_1, Δ_2) , then $(\forall U \in \tau_i \setminus \{\varnothing\})$ we have

$$\tau_i \operatorname{-int}(f^{-1}(\Delta_j \operatorname{-cl}(f^{\#}(U)))) \subseteq \tau_j \operatorname{-cl}(U) \subseteq f^{-1}(\Delta_j \operatorname{-cl}(f^{\#}(U))).$$

PROOF. Let $x \notin \tau_j$ -cl(U). Then we obtain successively $f(x) \notin f(\tau_j$ -cl(U)) (monotonicity of direct image) $f(x) \notin \Delta_j$ -cl(f(U)) (f is P-closed) $f(x) \notin \Delta_j$ -cl($f^{\#}(U)$) (property (1) of Theorem 2.8) $x \notin f^{-1}(\Delta_j$ -cl($f^{\#}(U)$)) (monotonicity of inverse image) $x \notin \tau_i \operatorname{-int}(f^{-1}(\Delta_j \operatorname{-cl}(f^{\#}(U)))) .$ Thus, $\tau_i \operatorname{-int}(f^{-1}(\Delta_j \operatorname{-cl}(f^{\#}(U)))) \subseteq \tau_j \operatorname{-cl}(U) .$

Now, it is required to prove that $\tau_j \operatorname{cl}(U) \subseteq f^{-1}(\Delta_j \operatorname{cl}(f^{\#}(U)))$. Let $x \in \tau_j \operatorname{cl}(U)$. Then we obtain successively:

 $\begin{array}{l} (\forall O_x \in \tau_j)(O_x \cap U \neq \varnothing) \\ (\forall O_x \in \tau_j)(f^{\#}(O_x \cap U) \neq \varnothing) \quad (\text{Lemma 5.2}) \\ (\forall O_x \in \tau_j)(f^{\#}(O_x) \cap f^{\#}(U) \neq \varnothing) \quad (\text{property (3) of Theorem 2.8}) \\ (\forall O_x \in \tau_j)(f(O_x) \cap f^{\#}(U)) \neq \varnothing) \quad (\text{property (1) of Theorem 2.8}) \\ \text{Now, since } f \text{ is } P \cdot \theta \text{-continuous,} \end{array}$

$$\forall O_{f(x)} \in \Delta_j) (f(O_x) \subseteq f(\tau_i \operatorname{-cl}(O_x)) \subseteq \Delta_i \operatorname{-cl}(O_{f(x)})) .$$

Hence, $\Delta_i \operatorname{-cl}(O_{f(x)}) \cap f^{\#}(U) \neq \emptyset$ and since $f^{\#}(U) \in \Delta_i$, we have $O_{f(x)} \cap f^{\#}(U) \neq \emptyset$ and so $f(x) \in \Delta_j \operatorname{-cl}(f^{\#}(U))$ which implies that $x \in f^{-1}(\Delta_j \operatorname{-cl}(f^{\#}(U)))$. Thus, $\tau_j \operatorname{-cl}(U) \subseteq f^{-1}(\Delta_j \operatorname{-cl}(f^{\#}(U)))$.

Now we are ready to prove the main theorem in this section.

THEOREM 5.6. The (small) image of an (i, j)-canonical open set is an (i, j)-canonical open set under a $P \cdot \theta$ -closed irreducible surjective mapping.

PROOF. Let f be a $P \cdot \theta$ -closed irreducible mapping from a bts (X, τ_1, τ_2) onto a bts (Y, Δ_1, Δ_2) and $U \subseteq X$ be a (i, j)-canonical open set $(U = \tau_i \operatorname{-int}(\tau_j \operatorname{-cl}(U)))$. We have to prove that $\Delta_i \operatorname{-int}(\Delta_j \operatorname{-cl}(f^{\#}(U))) = f^{\#}(U)$. Let $y \in \Delta_i \operatorname{-int}(\Delta_j \operatorname{-cl}(f^{\#}(U)))$. Then $(\exists O_y \in \Delta_i)(O_y \subseteq \Delta_j \operatorname{-cl}(f^{\#}(U)))$ and hence $(\Delta_j \operatorname{-cl}(O_y) \subseteq \Delta_j \operatorname{-cl}(f^{\#}(U)))$. Since f is $P \cdot \theta$ -continuous, we obtain $(\exists O_{f^{-1}(\{y\})} \in \tau_i)(f(O_{f^{-1}(\{y\})}) \subseteq f(\tau_j \operatorname{-cl}(O_{f^{-1}(\{y\})})) \subseteq \Delta_j \operatorname{-cl}(O_y))$, where $O_{f^{-1}(\{y\})} = \bigcup_{x \in f^{-1}(\{y\})} O_x$. Hence $f(O_{f^{-1}(\{y\})}) \subseteq \Delta_j \operatorname{-cl}(f^{\#}(U))$ and so $O_{f^{-1}(\{y\})} \subseteq f^{-1}(\Delta_j \operatorname{-cl}(f^{\#}(U)))$. Then $O_{f^{-1}(\{y\})} \subseteq \tau_i \operatorname{-int}(f^{-1}(\Delta_j \operatorname{-cl}(f^{\#}(U))))$. From Lemma 5.5, we have $O_{f^{-1}(\{y\})} \subseteq \tau_j \operatorname{-cl}(U)$ and so $O_{f^{-1}(\{y\})} \subseteq$ $\tau_i \operatorname{-int}(\tau_j \operatorname{-cl}(U)) = U$. Hence $f^{-1}(\{y\}) \subseteq U$ which implies that $y \in f^{\#}(U)$. Thus, $\Delta_i \operatorname{-int}(\Delta_j \operatorname{-cl}(f^{\#}(U))) \subseteq f^{\#}(U)$. The converse inclusion $f^{\#}(U) \subseteq$ $\Delta_i \operatorname{-int}(\Delta_j \operatorname{-cl}(f^{\#}(U)))$ follows directly from Theorem 5.3(1).

DEFINITION 5.7. A $P \cdot \theta$ -continuous, *p*-closed mapping *f* from a bts (X, τ_1, τ_2) onto a bts (Y, Δ_1, Δ_2) is called $P \cdot \theta$ -perfect if it satisfies the following condition: $(\forall y \in Y)(\forall i \in \{1, 2\})(f^{-1}(\{y\}) \text{ is } \tau_i\text{-compact subset} \text{ in } X)$. If *f* is also *P*-irreducible then it is called $P \cdot \theta$ -perfect irreducible.

It is direct consequence of Definitions 4.1 and 5.7 and Theorem 4.3 that every *P*-perfect map is $P \cdot \theta$ -perfect and every $P \cdot \theta$ -perfect mapping from an arbitrary bts into a PR_2 -bts is *P*-perfect.

6. Quasi θ -proximity spaces

In this section the concept of θ -proximity spaces [4] is extended to bitopological spaces.

DEFINITION 6.1. A quasi θ -proximity space is a pair (X, θ) , where X denotes a PT_2 -bts and θ a mapping from $2^X \times 2^X$ onto $\{0, 1\}$ satisfying the following axioms:

 $(\theta_1) \quad \theta(A, B) = 0 \Rightarrow A \neq \emptyset \text{ and } B \neq \emptyset;$

$$\begin{aligned} (\theta_2) \quad \theta(A, B \cup C) &= \theta(A, B) \cdot \theta(A, C) \text{ and}, \\ \theta(A \cup B, C) &= \theta(A, C) \cdot \theta(B, C); \end{aligned}$$

- $\begin{array}{ll} (\theta_3) & \theta(\{x\}\,,\,A)=0 \Rightarrow (\forall O_x\in\tau_1)(\forall O_A\in\tau_2)(O_x\cap O_A\neq\varnothing)\,, \mbox{ and } \\ \theta(A\,,\,\{x\})=0 \Rightarrow (\forall O_x\in\tau_2)(\forall O_A\in\tau_1)(O_x\cap O_A\neq\varnothing)\,; \end{array}$
- $\begin{aligned} (\theta_4) \quad \theta(A, B) &= 1 \Rightarrow (\exists E \subseteq X)(E \text{ is } (2, 1) \text{-canonical open and } \theta(A, E) \\ &= \theta(\operatorname{co}(\tau_1 \text{-} \operatorname{cl}(E)), B) = 1); \end{aligned}$

$$(\theta_5) \quad \theta(\{x\}, \{y\}) = 0 \Leftrightarrow x = y.$$

LEMMA 6.2. The quasi θ -proximity space $(X\theta)$ has the following properties.

- (1) If $\theta(A, B) = 0$ and $A \subseteq A_1$, $B \subseteq B_1$, then $\theta(A_1, B_1) = 0$.
- (2) $A \cap B \neq \emptyset \Rightarrow \theta(A, B) = 0$.
- $(3) \ \ \theta(A, B) = 1 \Rightarrow (\exists O_A \in \tau_1) (\exists O_B \in \tau_2) (O_A \cap O_B = \varnothing) \, .$
- (4) $\theta(A, B) = 1 \Rightarrow \theta(\operatorname{int}(\operatorname{cl}(A)), \operatorname{int}(\operatorname{cl}(B))) = 1$.

PROOF. Statement (1) follows from (θ_2) , statement (2) follows from (θ_2) and (θ_5) , statement (3) follows directly from (2), (θ_3) and (θ_4) and statement (4) follows directly from (2) and (θ_4) .

THEOREM 6.3. Every separated quasi-proximity space is quasi θ -proximity space.

PROOF. Since the axioms (P_1) , (P_2) , (P_4^*) and (P_5) are (θ_1) , (θ_2) , (θ_4) and (θ_5) respectively, then it suffices to verify the axiom (θ_3) . Let $\theta(\{x\}, A) = 0$. Then by Definition 2.10, we have $x \in \tau(\delta)$ -cl(A) and hence

 $(\forall O_x \in \tau(\delta))(O_x \cap A \neq \emptyset)$ which implies that $(\forall O_A \in \tau(\delta^{-1}))(O_x \cap O_A \neq \emptyset)$. The proof of the second part of the axiom (θ_3) is proved in a similar way.

THEOREM 6.4. On a P-extremally disconnected space, every quasi θ -proximity space is a separated quasi-proximity space.

PROOF. Theorem 6.4 follows directly from Definitions 2.9, 2.13 and 6.1.

THEOREM 6.5. If (X, τ_1, τ_2) is a PR_2 -bts, then the axiom (θ_3) is equivalent to the following axiom:

 $\begin{aligned} (\theta_3^*) \quad \theta(\{x\}, A) &= 0 \Rightarrow x \in \tau_1\text{-}\mathrm{cl}(A) \text{ and} \\ \theta(A, \{x\}) &= 0 \Rightarrow x \in \tau_2\text{-}\mathrm{cl}(A) . \end{aligned}$

PROOF. It is clear that $(\theta_3^*) \Rightarrow (\theta_3)$. To prove the converse, let $\theta(\{x, \}, A) = 0$ and suppose $x \notin \tau_1 - cl(A)$. Since (X, τ_1, τ_2) is PR_2 , then $(\exists O_x \in \tau_1)(\exists O_A \in \tau_2)(O_x \cap O_A = \emptyset)$, which contradicts the first part of the axiom (θ_3) . The second part of the axiom (θ_3^*) is proved in a similar way.

DEFINITION 6.6. Let θ_1 and θ_2 be two quasi θ -proximities on X. Then we say that

$$\theta_1 \leq \theta_2 \Leftrightarrow (\forall A, B \subseteq X)(\theta_1(A, B) \leq \theta_2(A, B)).$$

THEOREM 6.7. Let (X, τ_1, τ_2) be a PT_2 -bts. Then, the mapping $\theta: 2^X \times 2^X \to \{0, 1\}$ defined by

$$(\forall A, B \subseteq X)(\theta(A, B) = 1 \Leftrightarrow (\exists O_A \in \tau_1)(\exists O_B \in \tau_2)(O_A \cap O_B = \emptyset)),$$

is the maximal quasi θ -proximity on X.

PROOF. The verification of the axioms (θ_s) , $s \in \{1, 2, 3, 5\}$, being straightforward, we only need to prove (θ_4) . Let A, B be two subsets of X such that $\theta(A, B) = 1$. Then $(\exists O_A \in \tau_1)(\exists O_B \in \tau_2)(O_A \cap O_B = \emptyset)$. Putting $E = \tau_2$ -int $(\tau_1$ -cl (O_B)), we have that E is a (2, 1)-canonical open set satisfying $O_A \cap E = \emptyset$, which implies that $\theta(A, E) = 1$. On the other hand $co(\tau_1$ -cl $(E)) \cap O_B = \emptyset$ holds and hence $\theta(co(\tau_1$ -cl(E)), B) = 1.

Now, we shall that, θ is the maximal quasi θ -proximity on X. Let θ_1 be another quasi θ -proximity on X and $\theta < \theta_1$. Let $\theta(A, B) = 0$ and suppose $\theta_1(A, B) = 1$. Then, $\theta(A, B) = 0 \Rightarrow (\forall O_A \in \tau_1)(\forall O_B \in \tau_2)(O_A \cap O_B \neq \emptyset)$. But, by Lemma 6.2(3), $\theta_1(A, B) = 1 \Rightarrow (\exists O_A \in \tau_1)(\exists O_B \in \tau_2)(O_A \cap O_B = \emptyset)$, which gives a contradiction.

THEOREM 6.8. Let δ be a compatible quasi-proximity on a $PT_{3\frac{1}{2}}$ -bts (X, τ_1, τ_2). If A is a τ_1 -compact and B is τ_1 -closed, then $A \cap \tilde{B} = \emptyset \Rightarrow$ $\delta(A, B) = 1.$

PROOF. For each $x \in A$, $x \notin B = \tau(\delta)$ -cl(B) which implies that $\delta(\{x\})$, B = 1. By axiom (P_A) we find $(\exists U \subseteq X)(\delta(\lbrace x \rbrace, U) = \delta(\operatorname{co} U, B) =$ 1). Then $x \notin \tau_1 - \operatorname{cl}(U)$ and hence $x \in \operatorname{co}(\tau_1 - \operatorname{cl}(U)) = O_x$ (say). Hence, we have $\delta(O_x, B) = 1$. Clearly $\{O_x : x \in A\}$ is an τ_1 -open cover of the τ_1 -compact set A, and so $A \subseteq \bigcup_{i=1}^n O_{x_i}$. Now by axiom (P_2) , we have $\delta(\bigcup_{i=1}^n O_{x_i}, B) = 1$ and hence $\delta(A, B) = 1$.

THEOREM 6.9. Let f be a $P \cdot \theta$ -perfect irreducible mapping from a $PT_{3\frac{1}{2}}$ bts (X, τ_1, τ_2) onto a PT_2 -bts (Y, Δ_1, Δ_2) and δ be a compatible separated quasi-proximity on X. A map $\theta: 2^Y \times 2^{Y} \to \{0, 1\}$ defined by

$$(\forall A, B \subseteq Y)(\theta(A, B) = 0 \Leftrightarrow \delta(f^{-1}(A), f^{-1}(B)) = 0)$$

is a quasi θ -proximity on Y.

332

PROOF. The verification of axioms (θ_1) and (θ_2) is straightforward.

 (θ_3) . Let $y \in Y$ and $A \subseteq Y$. Consider $O_y \in \Delta_1$ and $O_A \in \Delta_2$ such that $O_y \cap O_A = \emptyset$ and so Δ_2 -cl $(O_y) \cap A = \emptyset$. From f is $P \cdot \theta$ -continuous, we obtain $(\exists O_{f^{-1}(\{y\})} \in \tau_1)(f(\tau_2 - \text{cl}(O_{f^{-1}(\{y\})})) \subseteq \Delta_j - \text{cl}(O_y))$. Hence we have $f(\tau_2 - cl(O_{f^{-1}(\{y\})})) \cap A = \emptyset$ and so $f^{-1}(\{y\}) \cap \tau_1 - cl(f^{-1}(A)) = \emptyset$. By Theorem 6.8, we have $\delta(f^{-1}(\{y\}), f^{-1}(A)) = 1$ and hence $\theta(\{y\}, A) = 1$. The proof of the second part is proved in a similar way.

 (θ_4) . Consider $A, B \subseteq Y$ and $\theta(A, B) = 1$. Then $\delta(f^{-1}(A), f^{-1}(B)) =$ 1, and so by Lemma 2.12, $(\exists E \subseteq X, E \text{ is a } (2, 1)\text{-canonical open and})$ $\delta(f^{-1}(A), E) = \delta(co(\tau_1 - cl(E)), f^{-1}(B)) = 1)$, where $\tau_1 = \tau(\delta)$ and $\tau_2 = \tau(\delta)$ $\tau(\delta^{-1})$. Putting $V = f^{\#}(E)$, we find by Theorem 5.6 that V is a (2, 1)-canonical open set in Y with $f^{-1}(V) \subseteq E$. It follows from Lemma 5.5 that τ_1 -cl $(E) \subseteq f^{-1}(\Delta_1$ -cl $(f^{\#}(E)))$ and so by Theorem 4.6 we have
$$\begin{split} f^{-1}(\operatorname{co}(\Delta_1 - \operatorname{cl}(V))) &= \operatorname{co}(f^{-1}(\Delta_1 - \operatorname{cl}(V))) = \operatorname{co}(f^{-1}(\Delta_1 - \operatorname{cl}(f^{\#}(E)))) \subseteq \\ \operatorname{co}(\tau_1 - \operatorname{cl}(E)). \quad \text{Then} \quad \delta(f^{-1}(A), f^{-1}(V)) = \delta(f^{-1}(\operatorname{co}(\Delta_1 - \operatorname{cl}(V))), f^{-1}(B)) \end{split}$$
= 1 and hence $\theta(A, V) = \theta(co(\Delta, -cl(V), B) = 1)$.

 (θ_5) . Consider $y_1, y_2 \in Y$ such that $\theta(\{y_1\}, \{y_2\}) = 1$. Then

$$\delta(f^{-1}(\{y_1\}), f^{-1}(\{y_2\})) = 1$$

and hence $f^{-1}(\{y_1\}) \cap f^{-1}(\{y_2\}) = \emptyset$ which implies that $y_1 \neq y_2$. Conversely, let $y_1 \neq y_2$. Then we have $f^{-1}(\{y_1\}) \cap f^{-1}(\{y_2\}) = \emptyset$. Since f is $P \cdot \theta$ -perfect, then both $f^{-1}(\{y_1\})$ and $f^{-1}(\{y_2\})$ are τ_i -compact subsets in X. By 2.5(2), we find that τ_2 -cl $(f^{-1}(\{y_1\})) \cap \tau_1$ -cl $(f^{-1}(\{y_2\})) = \emptyset$ and hence by Theorem 6.8 we have $\delta(f^{-1}(\{y_1\}), f^{-1}(\{y_2\})) = 1$ which implies that $\theta(\{y_1\}, \{y_2\}) = 1$.

References

- [1] I. E. Cooke and I. L. Reilly, 'On bitopological compactness', J. London Math. Soc. 2 (9) (1975), 518-522.
- [2] M. C. Datta, 'Projective bitopological spaces II', J. Austral. Math. Soc. 14 (1972), 119– 128.
- [3] R. Engelking, General Topology, Warszawa, 1977.
- [4] V. V. Fedorcuk, 'θ-spaces and perfect irreducible mappings of topological spaces,' Soviet Math. Dokl. 8 (3) (1967), 684-686.
- [5] V. V. Fedorcuk, 'Perfect irreducible mappings and generalized proximities', Soviet Math. Dokl. 9 (3) (1968), 661-664.
- [6] V. V. Fedorcuk, 'Uniform spaces and perfect irreducible mappings of topological spaces', DAN SSSR 192 (1970), 1228-1230.
- [7] V. V. Fedorcuk, 'On *H*-closed extension of θ -proximity spaces', Math. Sbornik 89 (1972), 400-418.
- [8] P. Fletcher, H. B. Hoyle and C. W. Patty, 'The comparison of topologies', Duke Math. J. 36 (1969), 325-331.
- [9] A. Kandil, On dimension of θ -spaces, Ph.D. Thesis, Moscow University, 1977.
- [10] J. C. Kelly, 'Bitopological spaces', Proc. London Math. Soc. 13 (1963), 71-89.
- [11] Y. M. Kim, 'Pairwise compactness', Pub. Math. Debrecen 15 (1968), 87-90.
- [12] E. P. Lane, 'Quasi-proximities and bitopological spaces', Portugal. Math. 28 (1969), 151-159.
- [13] W. J. Pervin, 'Quasi-proximities for topological spaces', Math. Ann. 150 (1963) 325-326.
- [14] K. Singal and A. R. Singal, 'Some separation axioms in bitopological spaces', Ann. Soc. Sci. Bruxelles 84 (1970), 207-230.
- [15] J. Swart, 'Total disconnectedness in bitopological spaces and product bitopological spaces', *Indag. Math.* 33 (1971), 135-145.

Benha University, Egypt

Seminar for Mathematics Analysis

State University of Gent, Belgium

Mansoura University, Egypt