QUASI θ-SPACES AND PAIRWISE θ-PERFECT IRREDUCIBLE MAPPINGS

A. KANDIL, E. E. KERRE, M. E. EL-SHAFEI and A. A. NOUH

(Received 26 July 1990)

Communicated by J. H. Rubinstein

Abstract

In this paper we extend the notion of perfect, θ-continuous, irreducible and θ-perfect mappings to bitopological spaces. The main result is the following: the (small) image of an (i, j)-canonical open sets is an (i, j)-canonical open set under a pairwise θ-closed irreducible surjective mapping. Also we extend the notion of θ-proximity spaces to quasi θ-proximity spaces and point out the interrelation between it and separated quasi-proximity spaces by means of a pairwise θ-perfect irreducible mappings.

1991 Mathematics subject classification (Amer. Math. Soc.): 54 C 10, 54 E 05, 54 E 55.

1. Introduction

The notion of bitopological spaces was introduced by Kelly [10]. In this paper we investigate a less restrictive definition of pairwise perfect maps than that given by M. C. Datta [2] and study some of its properties. Then we introduce and study the concepts of pairwise θ-continuous, pairwise irreducible and pairwise θ-perfect mappings. Furthermore, we introduce the notion of a quasi θ-proximity space and prove the following.
(1) The (small) image of an (i,j)-canonical open set is an (i,j)-canonical open set under a pairwise θ-closed irreducible mapping.
(2) Every separated quasi-proximity space is a quasi θ-proximity space.
(3) A bitopological space admits a maximal quasi θ-proximity if the space is pairwise Hausdorff.
(4) If f is a pairwise θ-perfect irreducible mapping from a pairwise Ty chonoff space (X, τ_{1}, τ_{2}) onto a pairwise Hausdorff space (Y, Δ_{1}, Δ_{2}) and if δ is a compatible separated quasi-proximity on (X, τ_{1}, $\left.\tau_{2}\right)$, then there exists a quasi θ-proximity θ on ($Y, \Delta_{1}, \Delta_{2}$), associated with f and δ.
Finally, we like to remark in the context of the present paper that, by $i, j, i, \neq j$, we mean that i is either 1 or 2 for instance if $i=1$ then $j=2$. Also we will use P - to denote pairwise and "bts" to denote bitopological space.

2. Preliminaries

Let (X, τ_{1}, τ_{2}) be a bts and A a subset of X. The closure and interior of A with respect to τ_{i} are denoted by $\tau_{i}-\operatorname{cl}(A)$ and $\tau_{i}-\operatorname{int}(A)$, respectively. The family of all τ_{i}-closed sets will be denoted by τ_{i}^{\prime}. When the appropriate topology is clear from the context, O_{A} (respectively O_{x}) denotes an open set containing A (respectively an open neighbourhood of x).

Definition 2.1 [10, 14]. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is called
(1) $P T_{1} \Leftrightarrow(\forall x \in X)(\forall i \in\{1,2\})\left(\{x\}=\tau_{i}-\mathrm{cl}\{x\}\right)$
(2) $P T_{2}$ or P-Hausdorff $\Leftrightarrow(\forall x, y \in X, x \neq y)\left(\exists O_{x} \in \tau_{i}\right)\left(\exists O_{y} \in \tau_{j}\right)$ $\left(O_{x} \cap O_{y}=\varnothing\right)$
(3) $P T_{2 \frac{1}{2}}$ or P-Urysohn $\Leftrightarrow(\forall x, y \in X, x \neq y)\left(\exists O_{x} \in \tau_{i}\right)\left(\exists O_{y} \in \tau_{j}\right)$ $\left(\tau_{j}-\mathrm{cl}\left(O_{x}\right) \cap \tau_{i}-\mathrm{cl}\left(O_{y}\right)=\varnothing\right)$
(4) $P R_{2}$ or P-regular $\Leftrightarrow(\forall x \in X)\left(\forall O x \in \tau_{i}\right)\left(\exists O_{x}^{*} \in \tau_{i}\right)\left(\tau_{j}\right.$ - $\operatorname{cl}\left(O_{x}^{*}\right) \subseteq$ O_{x})
(5) $P R_{2 \frac{1}{2}}$ or P-completely regular $\Leftrightarrow(\forall x \in X)\left(\forall F \in \tau_{i}^{\prime}, x \notin F\right)$ (a mapping $f: X \rightarrow[0,1])\left(f\right.$ is τ_{i}-lower semicontinuous, and f is τ_{j}-upper semicontinuous and $f(x)=0$ and $f(F)=1$), where $[0,1]$ is the closed unit interval
(6) $P T_{3 \frac{1}{2}}$ or P-Tychonoff if and only if it is $P R_{2 \frac{1}{2}}$ and $P T_{1}$.

Definition 2.2 [10]. A mapping $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \Delta_{1}, \Delta_{2}\right)$ is called P-continuous (respectively P-open, P-closed) if the induced mappings f : $\left(X, \tau_{i}\right) \rightarrow\left(Y, \Delta_{i}\right), i=1,2$, are continuous (respectively open, closed).

Definition 2.3 [8]. A cover \mathscr{U} of a bts $\left(X, \tau_{1}, \tau_{2}\right)$ is called $a \tau_{1} \tau_{2}$-open cover if $\mathscr{U} \subseteq \tau_{1} \cup \tau_{2}$. If in addition \mathscr{U} contains at least one nonempty member of τ_{1} and at least one nonempty member of τ_{2}, then \mathscr{U} is called a P-open cover.

Although there are several different notions of P-compactness in the
literature [$1,8,11$], we use the definition given in [8]. An equivalent concept of P-compactness has been introduced by Y. M. Kim [11].

Definition 2.4 [8]. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is called P-compact if every P open cover of X has a finite subcover.

We make use of the following results from [8].
Results 2.5 [8]. (1) P-compactness is P-continuous invariant.
(2) In a P-Hausdorff space, a τ_{i}-compact subset is τ_{j}-closed.
(3) If $\left(X, \tau_{1}, \tau_{2}\right)$ is P-compact, then a proper τ_{i}-closed subset is τ_{j} compact.

Definition 2.6. A subset A of a bts $\left(X, \tau_{1}, \tau_{2}\right)$ is called (i, j)-canonical open (or (i, j)-regular open) if $A=\tau_{i}-\operatorname{int}\left(\tau_{j}-\operatorname{cl}(A)\right)$. Specifically, $(\forall A \subseteq$ $X)\left(\tau_{i}-\operatorname{int}\left(\tau_{j}-\operatorname{cl}(A)\right)\right.$ is always (i, j)-canonical open).

Definition 2.7 [5]. If $f: X \rightarrow Y$ is a mapping from X into Y and $A \subseteq X$, then we define a mapping $f^{\#}: 2^{X} \rightarrow 2^{Y}$ by

$$
f^{\prime \prime}(A)=\left\{y \mid y \in Y \text { and } f^{-1}(\{y\}) \subseteq A\right\}
$$

and $f^{\#}(A)$ is called the small image of A under the mapping f.
Theorem 2.8 [5]. The mapping f^{*} has the following properties:
(1) $f^{\#}(A) \subseteq f(A)$;
(2) $f^{\#}(A)=\operatorname{co}(f(\operatorname{co} A))$, where co denotes complementation;
(3) $f^{*}(A \cap B)=f^{*}(A) \cap f^{*}(B)$;
(4) $f^{-1} f^{\#}(A) \subseteq A$.

Definition 2.9 [13]. A mapping $\delta: 2^{X} \times 2^{X} \rightarrow\{0,1\}$ is called a quasiproximity on X if it satisfies the following axioms:

$$
\begin{array}{ll}
\left(P_{1}\right) & \delta(A, B)=0 \Rightarrow A \neq \varnothing \text { and } B \neq \varnothing ; \\
\left(P_{2}\right) & \delta(A, B \cup C)=\delta(A, B) \cdot \delta(A, C) \text { and, } \\
& \delta(A \cup B, C)=\delta(A, C) \cdot \delta(B, C) ; \\
\left(P_{3}\right) & A \cap B \neq \varnothing \Rightarrow \delta(A, B)=0 ; \\
\left(P_{4}\right) & \delta(A, B)=1 \Rightarrow(\exists U \subseteq X)(\delta(A, U)=\delta(\operatorname{co} U, B)=1) .
\end{array}
$$

The pair (X, δ) is called a quasi-proximity space. A quasi-proximity δ is said to be separated if it satisfies the following axiom:

$$
\left(P_{5}\right) \delta(\{x\},\{y\})=0 \Leftrightarrow x=y .
$$

If δ is a quasi-proximity, then δ^{-1}, defined by $\delta^{-1}(A, B)=\delta(B, A)$, is also a quasi-proximity and it is called the conjugate of δ.

Definition 2.10 [12]. If (X, δ) is a quasi-proximity space, then two topologies $\tau(\delta)$ and $\tau\left(\delta^{-1}\right)$ are defined on X if for arbitrary $A \subseteq X$ we let

$$
\tau(\delta)-\operatorname{cl}(A)=\{x \in X: \delta(\{x\}, A)=0\},
$$

and

$$
\tau\left(\delta^{-1}\right)-\mathrm{cl}(A)=\{x \in X: \delta(A,\{x\})=0\} .
$$

Definition 2.11. A quasi-proximity space (X, δ) is called compatible with a bts $\left(X, \tau_{1}, \tau_{2}\right)$ if $\tau(\delta)=\tau_{1}$ and $\tau\left(\delta^{-1}\right)=\tau_{2}$.

Lemma 2.12. The axiom $\left(P_{4}\right)$ implies the following axiom:
$\left(P_{4}^{*}\right) \delta(A, B)=1 \Rightarrow\left(\exists U=\tau\left(\delta^{-1}\right)-\operatorname{int}(\tau(\delta) \cdot \mathrm{cl}(U))\right)(\delta(A, U)=$ $\delta(\operatorname{co}(\tau(\delta))-\mathrm{cl}(U)), B)=1)$.

Definition 2.13. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be P-extremally disconnected if the τ_{i}-closure of each τ_{j}-open sets is τ_{j}-open.

3. Pairwise perfect mappings

Definition 3.1. A P-continuous, P-closed mapping f from a bts $\left(X, \tau_{1}\right.$, τ_{2}) into a bts ($Y, \Delta_{1}, \Delta_{2}$) is called P-perfect if it satisfies

$$
(\forall y \in Y)(\forall i \in\{1,2\})\left(f^{-1}(\{y\}) \text { is } \tau_{i} \text {-compact subset in } X\right) .
$$

Our definition of P-perfect mappings differs from the definition given by Datta [2] in that we do not insist that point inverses by P-compact.

Lemma 3.2. Every P-continuous mapping from a P-compact-bts (X, τ_{1}, $\left.\tau_{2}\right)$ into a $P T_{2}$-bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$ is P-perfect.

Proof. Let $A \in \tau_{i}^{\prime} \backslash\{X, \varnothing\}$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is P-compact, by 2.5(3), A is a τ_{j}-compact subset of X. Hence by $2.5(1), f(A)$ is a τ_{j}-compact subset of Y. So by $2.5(2), f(A) \in \Delta_{i}^{\prime}$ and hence f is P-closed.

To prove (iii), consider $y \in Y$. Since $\left(Y, \Delta_{1}, \Delta_{2}\right)$ is $P T_{2}$, then it is $P T_{1}$ and hence $\{y\} \in \Delta_{j}^{\prime}$. By P-continuity of f it follows that $f^{-1}(\{y\}) \in \tau_{j}^{\prime}$ and hence by $2.5(3), f^{-1}(\{y\})$ is a τ_{i}-compact subset of X.

Theorem 3.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a $P R_{2}$-bts and let A be τ_{i}-compact. Then $\left(\forall B \in \tau_{i}^{\prime}\right)\left(A \cap B=\varnothing \Rightarrow\left(\exists O_{A} \in \tau_{i}\right)\left(\exists O_{B} \in \tau_{j}\right)\left(O_{A} \cap O_{B}=\varnothing\right)\right)$.

Proof. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is a $P R_{2}$-bts, it follows that $(\forall x \in A)\left(\exists O_{x} \in\right.$ $\left.\tau_{i}\right)\left(\exists O_{B}^{(x)} \in \tau_{j}\right)\left(O_{x} \cap O_{B}^{(x)}=\varnothing\right)$. Clearly $\left(O_{x}\right)_{x \in A}$ is an τ_{i}-open cover of
A, so there exists a finite subcover $\left(O_{x_{s}}\right)_{s=1}^{n}$ of A. One readily verifies that $O_{A}=\bigcup_{s=1}^{n} O_{x_{s}}$ and $O_{B}=\bigcup_{s=1}^{n} O_{B}^{\left(x_{s}\right)}$ have the required property.

Theorem 3.4. If $\left(X, \tau_{1}, \tau_{2}\right)$ is a $P T_{2}$-bts, $x \in X$ and B is τ_{i}-compact such that $x \notin B$, then $\left(\exists O_{x} \in \tau_{j}\right)\left(\exists O_{B} \in \tau_{i}\right)\left(O_{x} \cap O_{B}=\varnothing\right)$. Moreover, if A is τ_{j}-compact and B is τ_{i}-compact such that $A \cap B=\varnothing$, then $\left(\exists O_{A} \in\right.$ $\left.\tau_{j}\right)\left(\exists O_{B} \in \tau_{i}\right)\left(O_{A} \cap O_{B}=\varnothing\right)$.

Proof. Theorem 3.4 can be proved similarly to Theorem 3.3.
Theorem 3.5. The axioms $P T_{2}, P R_{2}$ and $P R_{3}$ are invariant under a P-perfect surjective mapping.

Proof. Let f be an P-perfect mapping from a $P T_{2}$-bts $\left(X, \tau_{1}, \tau_{2}\right)$ onto an arbitrary bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$. Let $y_{1}, y_{2} \in Y$ such that $y_{1} \neq y_{2}$. Then we have $f^{-1}\left(\left\{y_{1}\right\}\right) \cap f^{-1}\left(\left\{y_{2}\right\}\right)=\varnothing$. Moreover, since f is P-perfect, $f^{-1}\left(\left\{y_{1}\right\}\right)$ and $f^{-1}\left(\left\{y_{2}\right\}\right)$ are τ_{i}-compact. Hence by Theorem 3.4, we have $\left(\exists O_{f^{-1}\left(\left\{y_{1}\right\}\right)} \in \tau_{i}\right)\left(\exists O_{f^{-1}\left(\left\{y_{2}\right\}\right)} \in \tau_{j}\right)\left(O_{f^{-1}\left(\left\{y_{1}\right\}\right)} \cap O_{f^{-1}\left(\left\{y_{2}\right\}\right)}=\varnothing\right)$. Putting $U=\operatorname{co}\left(f\left(\operatorname{co}\left(O_{f^{-1}\left(\left\{y_{1}\right\}\right)}\right)\right)\right)$ and $V=\operatorname{co}\left(f\left(\operatorname{co}\left(O_{f^{-1}\left(\left\{y_{2}\right\}\right)}\right)\right)\right.$, we obtain the following.
(i) $y_{1} \in U$ and $y_{2} \in V$. Indeed, from $f^{-1}\left(\left\{y_{1}\right\}\right) \subseteq O_{f^{-1}\left(\left\{y_{1}\right\}\right)}$ we obtain $f^{-1}\left(\left\{y_{1}\right\}\right) \cap \operatorname{co}\left(O_{f^{-1}}\left(\left\{y_{1}\right\}\right)\right)=\varnothing$. Then $f f^{-1}\left(\left\{y_{1}\right\}\right) \cap f\left(\operatorname{co}\left(O_{f^{-1}\left(\left\{y_{1}\right\}\right)}\right)\right)=\varnothing$ and hence, since f is surjective, $y_{1} \notin f\left(\operatorname{co}\left(O_{f^{-1}\left(\left\{y_{1}\right\}\right)}\right)\right)$ or equivalently, $y_{1} \in U$.
(ii) $U \in \Delta_{i}$ and $V \in \Delta_{j}$, since f is P-closed.
(iii) $U \cap V=\varnothing$.

Thus $\left(Y, \Delta_{1}, \Delta_{2}\right)$ is a $P T_{2}$-bts.
The invariance of the axioms $P R_{2}$ and $P R_{3}$ is proved in a similar way.
Theorem 3.6. P-compactness is inverse invariant under P-perfect mapping.

Proof. Theorem 3.6 can be proved similarly to [2, Lemma 5.2].

4. Pairwise θ-continuous mappings

Definition 4.1. A mapping f from a bts $\left(X, \tau_{1}, \tau_{2}\right)$ into a bts $\left(Y, \Delta_{1}\right.$, Δ_{2}) is said to be $P \cdot \theta$-continuous if

$$
(\forall x \in X)\left(\forall O_{f(x)} \in \Delta_{i}\right)\left(\exists O_{x} \in \tau_{i}\right)\left(f\left(\tau_{j}-\operatorname{cl}\left(O_{x}\right)\right) \subseteq \Delta_{j}-\operatorname{cl}\left(O_{f(x)}\right)\right)
$$

It is obvious that a P-continuity is a $P \cdot \theta$-continuity. The converse is not true in general as the following example shows.

Example 4.2. Let $X=\{a, b\}$ and $\tau_{1}=\{X, \varnothing,\{a\}\}, \tau_{2}=\{X, \varnothing,\{b\}\}$, $\Delta_{1}=\{X, \varnothing,\{a\},\{b\}\}, \Delta_{2}=\{X, \varnothing\}$. Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(X, \Delta_{1}, \Delta_{2}\right)$ be the identity mapping. Then f is $P \cdot \theta$-continuous but not P-continuous, since for $b \in X$ and for each $O_{f(b)} \in \Delta_{1}$, there does not exist any $O_{b} \in \tau_{1}$ such that $f\left(O_{b}\right) \subseteq O_{f(b)}$.

Theorem 4.3. If f is a $P \cdot \theta$-continuous mapping from an arbitrary bts (X, τ_{1}, τ_{2}) into a $P R_{2}$-bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$, then f is P-continuous.

Proof. Since $\left(Y, \Delta_{1}, \Delta_{2}\right)$ is $P R_{2}$, we find that $(\forall x \in X)\left(\forall O_{f(x)} \in \Delta_{i}\right)$. $\left(\exists O_{f(x)}^{*} \in \Delta_{i}\right)\left(O_{f(x)}^{*} \subseteq \Delta_{j}-\operatorname{cl}\left(O_{f(x)}^{*} \subseteq O_{f(x)}\right)\right.$. By $P \cdot \theta$-continuity of f, $\left(\exists O_{x} \in \tau_{i}\right)\left(f\left(\tau_{j}-\operatorname{cl}\left(O_{x}\right)\right) \subseteq \Delta_{j}-\operatorname{cl}\left(O_{f(x)}^{*}\right)\right)$. Hence we have

$$
f\left(O_{x}\right) \subseteq f\left(\tau_{j}-\operatorname{cl}\left(O_{x}\right)\right) \subseteq \Delta_{j}-\operatorname{cl}\left(O_{f(x)}^{*}\right) \subseteq O_{f(x)}
$$

Theorem 4.4. The composition of two $P \cdot \theta$-continuous mappings is $P \cdot \theta$ continuous.

Proof. This is straightforward.
Theorem 4.5. The P-Urysohn axiom is inverse invariant under a $P \cdot \theta$ continuous injective mapping.

Proof. Let f be a $P \cdot \theta$-continuous injective mapping from a bts $\left(X, \tau_{1}\right.$, τ_{2}) into a $P T_{2 \frac{1}{2}}$-bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$. Let $x_{1}, x_{2} \in X$ such that $x_{1} \neq x_{2}$. Hence $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Since $\left(Y, \Delta_{1}, \Delta_{2}\right)$ is $P T_{2 \frac{1}{2}}$-bts, we obtain $\left(\exists O_{f\left(x_{1}\right)} \in \Delta_{i}\right)$ $\cdot\left(\exists O_{f\left(x_{2}\right)} \in \Delta_{j}\right)\left(\Delta_{j}-\operatorname{cl}\left(O_{f\left(x_{1}\right)}\right) \cap \Delta_{i}-\operatorname{cl}\left(O_{f\left(x_{2}\right)}\right)=\varnothing\right)$. By $P \cdot \theta$-continuity of f, we obtain $\left(\exists O_{x_{1}} \in \tau_{i}\right)\left(\exists O_{x_{2}} \in \tau_{j}\right)\left(f\left(\tau_{j}-\mathrm{cl}\left(O_{x_{1}}\right)\right) \subseteq \Delta_{j}-\mathrm{cl}\left(O_{f\left(x_{1}\right)}\right)\right.$ and $\left.f\left(\tau_{i}-\operatorname{cl}\left(O_{x_{2}}\right)\right) \subseteq \Delta_{i}-\operatorname{cl}\left(O_{f\left(x_{2}\right)}\right)\right)$. Hence $f\left(\tau_{j}-\mathrm{cl}\left(O_{x_{1}}\right)\right) \cap f\left(\tau_{i}-\mathrm{cl}\left(O_{x_{2}}\right)\right)=\varnothing$ and so $\tau_{j}-\operatorname{cl}\left(O_{x_{1}}\right) \cap \tau_{i}-\mathrm{cl}\left(O_{x_{2}}\right)=\varnothing$. Thus $\left(X, \tau_{1}, \tau_{2}\right)$ is $P T_{2 \frac{1}{2}}$-bts.

Theorem 4.6. Let f be a $P \cdot \theta$-continuous and P-closed mapping from a bts $\left(X, \tau_{1}, \tau_{2}\right)$ onto a bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$. Then $\left(\forall U \in \Delta_{i}\right)$ we have

$$
f^{-1}\left(\Delta_{j}-\operatorname{cl}(U)\right)=\tau_{j}-\operatorname{cl}\left(f^{-1}(U)\right)
$$

Proof. Let $x \notin \tau_{j}-\operatorname{cl}\left(f^{-1}(U)\right)$. Then $f(x) \notin f\left(\tau_{j}-\mathrm{cl}\left(f^{-1}(U)\right)\right.$ and hence $f(x) \notin \Delta_{j}-\mathrm{cl}(U)$ since f is P-closed and onto. So $x \notin$ $f^{-1}\left(\Delta_{j}-\operatorname{cl}(U)\right)$. Thus $f^{-1}\left(\Delta_{j}-\operatorname{cl}(U)\right) \subseteq \tau_{j}-\operatorname{cl}\left(f^{-1}(U)\right)$.

To prove the converse inclusion, let $x \notin f^{-1}\left(\Delta_{j}-\operatorname{cl}(U)\right)$. Then $f(x) \notin$ $\Delta_{j}-\operatorname{cl}(U)$. From f being onto we obtain that $f f^{-1}\left(\Delta_{j}-\operatorname{cl}(U)\right)=\Delta_{j}-\operatorname{cl}(U)$ and hence $\left(\exists O_{f(x)} \in \Delta_{j}\right)\left(O_{f(x)} \cap U=\varnothing\right)$. From $U \in \Delta_{i}$, we find that $\Delta_{i}-\operatorname{cl}\left(O_{f(x)}\right) \cap U=\varnothing$. By $P \cdot \theta$-continuity of $f,\left(\exists O_{x} \in \tau_{j}\right)$. $\left(f\left(\tau_{i}-\operatorname{cl}\left(O_{x}\right)\right) \subseteq \Delta_{i}-\operatorname{cl}\left(O_{f(x)}\right)\right)$ and hence $f\left(\tau_{i}-\operatorname{cl}\left(O_{x}\right)\right) \cap U=\varnothing$ which implies that $\tau_{i}-\operatorname{cl}\left(O_{x}\right) \cap f^{-1}(U)=\varnothing$ and so $x \notin \tau_{j}-\operatorname{cl}\left(f^{-1}(U)\right)$. Thus, $\tau_{j}-\operatorname{cl}\left(f^{-1}(U)\right) \subseteq f^{-1}\left(\Delta_{j}-\operatorname{cl}(U)\right)$.

5. Pairwise θ-perfect irreducible mappings

Definition 5.1. A mapping f from a bts $\left(X, \tau_{1}, \tau_{2}\right)$ onto a bts $\left(Y, \Delta_{1}\right.$, Δ_{2}) is called P-irreducible if $\left(\forall F=F_{1} \cup F_{2}, F_{1} \in \tau_{1}^{\prime} \backslash\{X\}\right.$ and $F_{2} \in \tau_{2}^{\prime} \backslash\{X\}$) $\cdot(f(F) \neq Y)$.

We omit the proofs of Lemma 5.2 and Theorem 5.3, which are straightforward.

Lemma 5.2. A mapping f from a bts $\left(X, \tau_{1}, \tau_{2}\right)$ onto a bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$ satisfies: f is P-irreducible if and only if $\left(\forall U=U_{1} \cap U_{2}, U_{1} \in \tau_{1} \backslash\{\varnothing\}\right.$ and $\left.U_{2} \in \tau_{2} \backslash\{\varnothing\}\right)\left(f^{\#}(U) \neq \varnothing\right)$.

Theorem 5.3. Let f be a P-closed mapping from a bts $\left(X, \tau_{1}, \tau_{2}\right)$ into abts $\left(Y, \Delta_{1}, \Delta_{2}\right)$ and $U \in \tau_{i}, i=1,2$. Then
(1) $f^{\#}(U) \in \Delta_{i}$
(2) $f^{\#}(U) \subseteq \Delta_{i}-\operatorname{int}(f(U))$.

Definition 5.4. A $P \cdot \theta$-continuous map is called $P \cdot \theta$-closed irreducible if it is both P-closed and P-irreducible.

Lemma 5.5. If f is a $P \cdot \theta$-closed irreducible mapping from a bts $\left(X, \tau_{1}, \tau_{2}\right)$ onto a bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$, then $\left(\forall U \in \tau_{i} \backslash\{\varnothing\}\right)$ we have

$$
\tau_{i}-\operatorname{int}\left(f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)\right) \subseteq \tau_{j}-\operatorname{cl}(U) \subseteq f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)
$$

Proof. Let $x \notin \tau_{j}-\operatorname{cl}(U)$. Then we obtain successively
$f(x) \notin f\left(\tau_{j}-\operatorname{cl}(U)\right)$ (monotonicity of direct image)
$f(x) \notin \Delta_{j}-\mathrm{cl}(f(U)) \quad(f$ is P-closed $)$
$f(x) \notin \Delta_{j}-\operatorname{cl}\left(f^{*}(U)\right)$ (property (1) of Theorem 2.8)
$x \notin f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)$ (monotonicity of inverse image)
$x \notin \tau_{i}-\operatorname{int}\left(f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)\right)$.
Thus, $\tau_{i}-\operatorname{int}\left(f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)\right) \subseteq \tau_{j}-\operatorname{cl}(U)$.
Now, it is required to prove that $\tau_{j}-\operatorname{cl}(U) \subseteq f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)$. Let $x \in \tau_{j}-\operatorname{cl}(U)$. Then we obtain successively:
$\left(\forall O_{x} \in \tau_{j}\right)\left(O_{x} \cap U \neq \varnothing\right)$
$\left(\forall O_{x} \in \tau_{j}\right)\left(f^{\#}\left(O_{x} \cap U\right) \neq \varnothing\right)$ (Lemma 5.2)
$\left(\forall O_{x} \in \tau_{j}\right)\left(f^{\#}\left(O_{x}\right) \cap f^{\#}(U) \neq \varnothing\right)$ (property (3) of Theorem 2.8)
$\left.\left(\forall O_{x} \in \tau_{j}\right)\left(f\left(O_{x}\right) \cap f^{\#}(U)\right) \neq \varnothing\right)$ (property (1) of Theorem 2.8)
Now, since f is $P \cdot \theta$-continuous,

$$
\left(\forall O_{f(x)} \in \Delta_{j}\right)\left(f\left(O_{x}\right) \subseteq f\left(\tau_{i}-\operatorname{cl}\left(O_{x}\right)\right) \subseteq \Delta_{i}-\operatorname{cl}\left(O_{f(x)}\right)\right)
$$

Hence, $\Delta_{i}-\mathrm{cl}\left(O_{f(x)}\right) \cap f^{\#}(U) \neq \varnothing$ and since $f^{\#}(U) \in \Delta_{i}$, we have $O_{f(x)} \cap$ $f^{\#}(U) \neq \varnothing$ and so $f(x) \in \Delta_{j}-\operatorname{cl}\left(f^{\prime}(U)\right)$ which implies that $x \in$ $f^{-1}\left(\Delta_{j}-\mathrm{cl}\left(f^{\#}(U)\right)\right)$. Thus, $\tau_{j}-\mathrm{cl}(U) \subseteq f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)$.

Now we are ready to prove the main theorem in this section.
Theorem 5.6. The (small) image of an (i,j)-canonical open set is an (i, j)-canonical open set under a $P \cdot \theta$-closed irreducible surjective mapping.

Proof. Let f be a $P \cdot \theta$-closed irreducible mapping from a bts (X, τ_{1}, τ_{2}) onto a bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$ and $U \subseteq X$ be a (i, j)-canonical open set $(U=$ $\left.\tau_{i}-\operatorname{int}\left(\tau_{j}-\operatorname{cl}(U)\right)\right)$. We have to prove that $\Delta_{i}-\operatorname{int}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)=f^{\#}(U)$. Let $y \in \Delta_{i}-\operatorname{int}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)$. Then $\left(\exists O_{y} \in \Delta_{i}\right)\left(O_{y} \subseteq \Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)$ and hence $\left(\Delta_{j}-\operatorname{cl}\left(O_{y}\right) \subseteq \Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)$. Since f is $P \cdot \theta$-continuous, we ob$\operatorname{tain}\left(\exists O_{f^{-1}(\{y\})} \in \tau_{i}\right)\left(f\left(O_{f^{-1}(\{y\})}\right) \subseteq f\left(\tau_{j}-\operatorname{cl}\left(O_{f^{-1}(\{y\})}\right)\right) \subseteq \Delta_{j}-\operatorname{cl}\left(O_{y}\right)\right)$, where $O_{f^{-1}(\{y\})}=\bigcup_{x \in f^{-1}(\{y\})} O_{x}$. Hence $f\left(O_{f^{-1}(\{y\})}\right) \subseteq \Delta_{j}-\mathrm{cl}\left(f^{\#}(U)\right)$ and so $O_{f^{-1}(\{y\})} \subseteq f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)$. Then $O_{f^{-1}(\{y\})} \subseteq \tau_{i}-\operatorname{int}\left(f^{-1}\left(\Delta_{j}-\operatorname{cl}\left(f^{\#}(U)\right)\right)\right)$. From Lemma 5.5, we have $O_{f^{-1}(\{y\})} \subseteq \tau_{j}-\mathrm{cl}(U)$ and so $O_{f^{-1}(\{y\})} \subseteq$ $\tau_{i}-\operatorname{int}\left(\tau_{j}-\operatorname{cl}(U)\right)=U$. Hence $f^{-1}(\{y\}) \subseteq U$ which implies that $y \in f^{*}(U)$. Thus, $\Delta_{i}-\operatorname{int}\left(\Delta_{j}-\mathrm{cl} \times\left(f^{\#}(U)\right)\right) \subseteq f^{\#}(U)$. The converse inclusion $f^{\#}(U) \subseteq$ $\Delta_{i}-\operatorname{int}\left(\Delta_{j}-\operatorname{cl}\left(f^{*}(U)\right)\right)$ follows directly from Theorem 5.3(1).

Definition 5.7. A $P \cdot \theta$-continuous, p-closed mapping f from a bts $\left(X, \tau_{1}, \tau_{2}\right)$ onto a bts ($\left.Y, \Delta_{1}, \Delta_{2}\right)$ is called $P \cdot \theta$-perfect if it satisfies the following condition: $(\forall y \in Y)(\forall i \in\{1,2\})\left(f^{-1}(\{y\})\right.$ is τ_{i}-compact subset in X). If f is also P-irreducible then it is called $P \cdot \theta$-perfect irreducible.

It is direct consequence of Definitions 4.1 and 5.7 and Theorem 4.3 that every P-perfect map is $P \cdot \theta$-perfect and every $P \cdot \theta$-perfect mapping from an arbitrary bts into a $P R_{2}$-bts is P-perfect.

6. Quasi θ-proximity spaces

In this section the concept of θ-proximity spaces [4] is extended to bitopological spaces.

Definition 6.1. A quasi θ-proximity space is a pair (X, θ), where X denotes a $P T_{2}$-bts and θ a mapping from $2^{X} \times 2^{X}$ onto $\{0,1\}$ satisfying the following axioms:

$$
\begin{array}{ll}
\left(\theta_{1}\right) & \theta(A, B)=0 \Rightarrow A \neq \varnothing \text { and } B \neq \varnothing ; \\
\left(\theta_{2}\right) & \theta(A, B \cup C)=\theta(A, B) \cdot \theta(A, C) \text { and, } \\
& \theta(A \cup B, C)=\theta(A, C) \cdot \theta(B, C) ; \\
\left(\theta_{3}\right) \quad & \theta(\{x\}, A)=0 \Rightarrow\left(\forall O_{x} \in \tau_{1}\right)\left(\forall O_{A} \in \tau_{2}\right)\left(O_{x} \cap O_{A} \neq \varnothing\right), \text { and } \\
& \theta(A,\{x\})=0 \Rightarrow\left(\forall O_{x} \in \tau_{2}\right)\left(\forall O_{A} \in \tau_{1}\right)\left(O_{x} \cap O_{A} \neq \varnothing\right) ; \\
\left(\theta_{4}\right) \quad & \theta(A, B)=1 \Rightarrow(\exists E \subseteq X)(E \text { is }(2,1) \text {-canonical open and } \theta(A, E) \\
& \left.=\theta\left(\operatorname{co}\left(\tau_{1}-\operatorname{cl}(E)\right), B\right)=1\right) ; \\
\left(\theta_{5}\right) & \theta(\{x\},\{y\})=0 \Leftrightarrow x=y .
\end{array}
$$

Lemma 6.2. The quasi θ-proximity space $(X \theta)$ has the following properties.
(1) If $\theta(A, B)=0$ and $A \subseteq A_{1}, B \subseteq B_{1}$, then $\theta\left(A_{1}, B_{1}\right)=0$.
(2) $A \cap B \neq \varnothing \Rightarrow \theta(A, B)=0$.
(3) $\theta(A, B)=1 \Rightarrow\left(\exists O_{A} \in \tau_{1}\right)\left(\exists O_{B} \in \tau_{2}\right)\left(O_{A} \cap O_{B}=\varnothing\right)$.
(4) $\theta(A, B)=1 \Rightarrow \theta(\operatorname{int}(\operatorname{cl}(A)), \operatorname{int}(\operatorname{cl}(B)))=1$.

Proof. Statement (1) follows from $\left(\theta_{2}\right)$, statement (2) follows from $\left(\theta_{2}\right)$ and $\left(\theta_{5}\right)$, statement (3) follows directly from (2), $\left(\theta_{3}\right)$ and $\left(\theta_{4}\right)$ and statement (4) follows directly from (2) and (θ_{4}).

Theorem 6.3. Every separated quasi-proximity space is quasi θ-proximity space.

Proof. Since the axioms $\left(P_{1}\right),\left(P_{2}\right),\left(P_{4}^{*}\right)$ and $\left(P_{5}\right)$ are $\left(\theta_{1}\right),\left(\theta_{2}\right)$, $\left(\theta_{4}\right)$ and $\left(\theta_{5}\right)$ respectively, then it suffices to verify the axiom $\left(\theta_{3}\right)$. Let $\theta(\{x\}, A)=0$. Then by Definition 2.10, we have $x \in \tau(\delta)-\operatorname{cl}(A)$ and hence
$\left(\forall O_{x} \in \tau(\delta)\right)\left(O_{x} \cap A \neq \varnothing\right)$ which implies that $\left(\forall O_{A} \in \tau\left(\delta^{-1}\right)\right)\left(O_{x} \cap O_{A} \neq \varnothing\right)$. The proof of the second part of the axiom $\left(\theta_{3}\right)$ is proved in a similar way.

Theorem 6.4. On a P-extremally disconnected space, every quasi θ-proximity space is a separated quasi-proximity space.

Proof. Theorem 6.4 follows directly from Definitions 2.9, 2.13 and 6.1.
Theorem 6.5. If $\left(X, \tau_{1}, \tau_{2}\right)$ is a $P R_{2}$-bts, then the axiom $\left(\theta_{3}\right)$ is equivalent to the following axiom:
$\left(\theta_{3}^{*}\right) \quad \theta(\{x\}, A)=0 \Rightarrow x \in \tau_{1}-\mathrm{cl}(A)$ and

$$
\theta(A,\{x\})=0 \Rightarrow x \in \tau_{2}-\mathrm{cl}(A) .
$$

Proof. It is clear that $\left(\theta_{3}^{*}\right) \Rightarrow\left(\theta_{3}\right)$. To prove the converse, let $\theta(\{x\}, A$, $=0$ and suppose $x \notin \tau_{1}-\mathrm{cl}(A)$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{2}$, then $\left(\exists O_{x} \in\right.$ $\left.\tau_{1}\right)\left(\exists O_{A} \in \tau_{2}\right)\left(O_{x} \cap O_{A}=\varnothing\right)$, which contradicts the first part of the axiom $\left(\theta_{3}\right)$. The second part of the axiom $\left(\theta_{3}^{*}\right)$ is proved in a similar way.

Definition 6.6. Let θ_{1} and θ_{2} be two quasi θ-proximities on X. Then we say that

$$
\theta_{1} \leq \theta_{2} \Leftrightarrow(\forall A, B \subseteq X)\left(\theta_{1}(A, B) \leq \theta_{2}(A, B)\right) .
$$

Theorem 6.7. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a $P T_{2}$-bts. Then, the mapping $\theta: 2^{X} \times 2^{X} \rightarrow\{0,1\}$ defined by

$$
(\forall A, B \subseteq X)\left(\theta(A, B)=1 \Leftrightarrow\left(\exists O_{A} \in \tau_{1}\right)\left(\exists O_{B} \in \tau_{2}\right)\left(O_{A} \cap O_{B}=\varnothing\right)\right),
$$

is the maximal quasi θ-proximity on X.
Proof. The verification of the axioms $\left(\theta_{s}\right), s \in\{1,2,3,5\}$, being straightforward, we only need to prove $\left(\theta_{4}\right)$. Let A, B be two subsets of X such that $\theta(A, B)=1$. Then $\left(\exists O_{A} \in \tau_{1}\right)\left(\exists O_{B} \in \tau_{2}\right)\left(O_{A} \cap O_{B}=\varnothing\right)$. Putting $E=\tau_{2}-\operatorname{int}\left(\tau_{1}-\mathrm{cl}\left(O_{B}\right)\right)$, we have that E is a (2,1)-canonical open set satisfying $O_{A} \cap E=\varnothing$, which implies that $\theta(A, E)=1$. On the other hand $\operatorname{co}\left(\tau_{1}-\operatorname{cl}(E)\right) \cap O_{B}=\varnothing$ holds and hence $\theta\left(\operatorname{co}\left(\tau_{1}-\mathrm{cl}(E)\right), B\right)=1$.

Now, we shall that, θ is the maximal quasi θ-proximity on X. Let θ_{1} be another quasi θ-proximity on X and $\theta<\theta_{1}$. Let $\theta(A, B)=0$ and suppose $\theta_{1}(A, B)=1$. Then, $\theta(A, B)=0 \Rightarrow\left(\forall O_{A} \in \tau_{1}\right)\left(\forall O_{B} \in \tau_{2}\right)\left(O_{A} \cap O_{B} \neq \varnothing\right)$. But, by Lemma 6.2(3), $\theta_{1}(A, B)=1 \Rightarrow\left(\exists O_{A} \in \tau_{1}\right)\left(\exists O_{B} \in \tau_{2}\right)\left(O_{A} \cap O_{B}=\varnothing\right)$, which gives a contradiction.

Theorem 6.8. Let δ be a compatible quasi-proximity on a $P T_{3 \frac{1}{2}}$-bts $(X$, τ_{1}, τ_{2}). If A is a τ_{1}-compact and B is τ_{1}-closed, then $A \cap B=\varnothing \Rightarrow$ $\delta(A, B)=1$.

Proof. For each $x \in A, x \notin B=\tau(\delta)-\mathrm{cl}(B)$ which implies that $\delta(\{x\}$, $B)=1$. By axiom $\left(P_{4}\right)$ we find $(\exists U \subseteq X)(\delta(\{x\}, U)=\delta(\operatorname{co} U, B)=$ 1). Then $x \notin \tau_{1}-\operatorname{cl}(U)$ and hence $x \in \operatorname{co}\left(\tau_{1}-\operatorname{cl}(U)\right)=O_{x}$ (say). Hence, we have $\delta\left(O_{x}, B\right)=1$. Clearly $\left\{O_{x}: x \in A\right\}$ is an τ_{1}-open cover of the τ_{1}-compact set A, and so $A \subseteq \bigcup_{i=1}^{n} O_{x_{i}}$. Now by axiom $\left(P_{2}\right)$, we have $\delta\left(\bigcup_{i=1}^{n} O_{x_{i}}, B\right)=1$ and hence $\delta(A, B)=1$.

Theorem 6.9. Let f be a $P \cdot \theta$-perfect irreducible mapping from a $P T_{3 \frac{1}{2}^{-}}$ bts $\left(X, \tau_{1}, \tau_{2}\right)$ onto a $P T_{2}$-bts $\left(Y, \Delta_{1}, \Delta_{2}\right)$ and δ be a compatible separated quasi-proximity on X. A map $\theta: 2^{Y} \times 2^{Y} \rightarrow\{0,1\}$ defined by

$$
(\forall A, B \subseteq Y)\left(\theta(A, B)=0 \Leftrightarrow \delta\left(f^{-1}(A), f^{-1}(B)\right)=0\right)
$$

is a quasi θ-proximity on Y.
Proof. The verification of axioms $\left(\theta_{1}\right)$ and $\left(\theta_{2}\right)$ is straightforward.
$\left(\theta_{3}\right)$. Let $y \in Y$ and $A \subseteq Y$. Consider $O_{y} \in \Delta_{1}$ and $O_{A} \in \Delta_{2}$ such that $O_{y} \cap O_{A}=\varnothing$ and so $\Delta_{2}-\operatorname{cl}\left(O_{y}\right) \cap A=\varnothing$. From f is $P \cdot \theta$-continuous, we obtain $\left(\exists O_{f^{-1}(\{y\})} \in \tau_{1}\right)\left(f\left(\tau_{2}-\operatorname{cl}\left(O_{f^{-1}(\{y\})}\right)\right) \subseteq \Delta_{j}-\operatorname{cl}\left(O_{y}\right)\right)$. Hence we have $f\left(\tau_{2}-\mathrm{cl}\left(O_{f^{-1}(\{y\})}\right) \cap A=\varnothing\right.$ and so $f^{-1}(\{y\}) \cap \tau_{1}-\mathrm{cl}\left(f^{-1}(A)\right)=\varnothing$. By Theorem 6.8, we have $\delta\left(f^{-1}(\{y\}), f^{-1}(A)\right)=1$ and hence $\theta(\{y\}, A)=1$. The proof of the second part is proved in a similar way.
$\left(\theta_{4}\right)$. Consider $A, B \subseteq Y$ and $\theta(A, B)=1$. Then $\delta\left(f^{-1}(A), f^{-1}(B)\right)=$ 1 , and so by Lemma $2.12,(\exists E \subseteq X, E$ is a (2,1)-canonical open and $\left.\delta\left(f^{-1}(A), E\right)=\delta\left(\operatorname{co}\left(\tau_{1}-\mathrm{cl}(E)\right), f^{-1}(B)\right)=1\right)$, where $\tau_{1}=\tau(\delta)$ and $\tau_{2}=$ $\tau\left(\delta^{-1}\right)$. Putting $V=f^{\#}(E)$, we find by Theorem 5.6 that V is a $(2,1)$ canonical open set in Y with $f^{-1}(V) \subseteq E$. It follows from Lemma 5.5 that $\tau_{1}-\operatorname{cl}(E) \subseteq f^{-1}\left(\Delta_{1}-\operatorname{cl}\left(f^{*}(E)\right)\right)$ and so by Theorem 4.6 we have $f^{-1}\left(\operatorname{co}\left(\Delta_{1}-\operatorname{cl}(V)\right)\right)=\operatorname{co}\left(f^{-1}\left(\Delta_{1}-\operatorname{cl}(V)\right)=\operatorname{co}\left(f^{-1}\left(\Delta_{1}-\operatorname{cl}\left(f^{\#}(E)\right)\right)\right) \subseteq\right.$ $\operatorname{co}\left(\tau_{1}-\operatorname{cl}(E)\right)$. Then $\delta\left(f^{-1}(A), f^{-1}(V)\right)=\delta\left(f^{-1}\left(\operatorname{co}\left(\Delta_{1}-\operatorname{cl}(V)\right)\right), f^{-1}(B)\right)$ $=1$ and hence $\theta(A, V)=\theta\left(\operatorname{co}\left(\Delta_{1}-\mathrm{cl}(V), B\right)=1\right.$.
$\left(\theta_{5}\right)$. Consider $y_{1}, y_{2} \in Y$ such that $\theta\left(\left\{y_{1}\right\},\left\{y_{2}\right\}\right)=1$. Then

$$
\delta\left(f^{-1}\left(\left\{y_{1}\right\}\right), f^{-1}\left(\left\{y_{2}\right\}\right)\right)=1
$$

and hence $f^{-1}\left(\left\{y_{1}\right\}\right) \cap f^{-1}\left(\left\{y_{2}\right\}\right)=\varnothing$ which implies that $y_{1} \neq y_{2}$. Conversely, let $y_{1} \neq y_{2}$. Then we have $f^{-1}\left(\left\{y_{1}\right\}\right) \cap f^{-1}\left(\left\{y_{2}\right\}\right)=\varnothing$. Since f
is $P \cdot \theta$-perfect, then both $f^{-1}\left(\left\{y_{1}\right\}\right)$ and $f^{-1}\left(\left\{y_{2}\right\}\right)$ are τ_{i}-compact subsets in X. By $2.5(2)$, we find that $\tau_{2}-\operatorname{cl}\left(f^{-1}\left(\left\{y_{1}\right\}\right)\right) \cap \tau_{1}-\operatorname{cl}\left(f^{-1}\left(\left\{y_{2}\right\}\right)\right)=\varnothing$ and hence by Theorem 6.8 we have $\delta\left(f^{-1}\left(\left\{y_{1}\right\}\right), f^{-1}\left(\left\{y_{2}\right\}\right)\right)=1$ which implies that $\theta\left(\left\{y_{1}\right\},\left\{y_{2}\right\}\right)=1$.

References

[1] I. E. Cooke and I. L. Reilly, 'On bitopological compactness', J. London Math. Soc. 2 (9) (1975), 518-522.
[2] M. C. Datta, 'Projective bitopological spaces II', J. Austral. Math. Soc. 14 (1972), 119128.
[3] R. Engelking, General Topology, Warszawa, 1977.
[4] V. V. Fedorcuk, ' θ-spaces and perfect irreducible mappings of topological spaces,' Soviet Math. Dokl. 8 (3) (1967), 684-686.
[5] V. V. Fedorcuk, 'Perfect irreducible mappings and generalized proximities’, Soviet Math. Dokl. 9 (3) (1968), 661-664.
[6] V. V. Fedorcuk, 'Uniform spaces and perfect irreducible mappings of topological spaces', DAN SSSR 192 (1970), 1228-1230.
[7] V. V. Fedorcuk, 'On H-closed extension of θ-proximity spaces', Math. Sbornik 89 (1972), 400-418.
[8] P. Fletcher, H. B. Hoyle and C. W. Patty, 'The comparison of topologies', Duke Math. J. 36 (1969), 325-331.
[9] A. Kandil, On dimension of θ-spaces, Ph.D. Thesis, Moscow University, 1977.
[10] J. C. Kelly, ‘Bitopological spaces’, Proc. London Math. Soc. 13 (1963), 71-89.
[11] Y. M. Kim, 'Pairwise compactness', Pub. Math. Debrecen 15 (1968), 87-90.
[12] E. P. Lane, 'Quasi-proximities and bitopological spaces', Portugal. Math. 28 (1969), 151-159.
[13] W. J. Pervin, 'Quasi-proximities for topological spaces', Math. Ann. 150 (1963) 325-326.
[14] K. Singal and A. R. Singal, 'Some separation axioms in bitopological spaces', Ann. Soc. Sci. Bruxelles 84 (1970), 207-230.
[15] J. Swart, 'Total disconnectedness in bitopological spaces and product bitopological spaces', Indag. Math. 33 (1971), 135-145.

Benha University, Egypt
Seminar for Mathematics Analysis

State University of Gent, Belgium
Mansoura University, Egypt

