ON THE TOTAL DISTANCE AND DIAMETER OF GRAPHS
 HONGBO HUA

(Received 24 January 2018; accepted 29 January 2018; first published online 3 May 2018)

Abstract

The total distance (or Wiener index) of a connected graph G is the sum of all distances between unordered pairs of vertices of G. DeLaViña and Waller ['Spanning trees with many leaves and average distance', Electron. J. Combin. 15(1) (2008), R33, 14 pp.] conjectured in 2008 that if G has diameter $D>2$ and order $2 D+1$, then the total distance of G is at most the total distance of the cycle of the same order. In this note, we prove that this conjecture is true for 2-connected graphs.

2010 Mathematics subject classification: primary 05C12; secondary 05C35.
Keywords and phrases: total distance, diameter, 2-connected graphs.

1. Introduction

Let $G=(V, E)$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. Denote by $d_{G}(u, v)$ the distance between vertices u and v in G. The eccentricity of a vertex v in a connected graph G is defined to be $\varepsilon_{G}(v)=\max \left\{d_{G}(u, v) \mid u \in V(G)\right\}$. If $\varepsilon_{G}(v)=$ $d_{G}(u, v)$ for some vertex u in a connected graph G, then u is said to be an eccentric vertex of v. The diameter of a connected graph G is equal to $\max \left\{\varepsilon_{G}(v) \mid v \in V(G)\right\}$. Let u and v be two distinct nonadjacent vertices of a graph G and $S \subseteq V(G)-\{u, v\}$. If u and v belong to different components of $G-S$, then we say that S separates u and v or S is a vertex-cut of G. If, for any vertex-cut S in G, we always have $|S| \geq 2$, then G is said to be a 2-connected graph. Other notation and terminology not defined here will conform to [3].

For a connected graph G, the total distance or Wiener index of G, denoted by $W(G)$, is defined to be

$$
\begin{equation*}
W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)=\frac{1}{2} \sum_{v \in V(G)} D_{G}(v), \tag{1.1}
\end{equation*}
$$

where $D_{G}(v)=\sum_{u \in V(G)} d_{G}(u, v)$.
The Wiener index is one of the oldest and best-studied distance-based graph invariants associated with a connected (molecular) graph G and has applications in mathematical chemistry (see [2] and the references cited therein).

[^0]

Figure 1. Graphs C_{n}^{1}, C_{n}^{2} and C_{n}^{3} (n is odd).

The average distance of G, denoted by $\bar{D}(G)$, is defined to be

$$
\bar{D}(G)=\binom{n}{2}^{-1} \sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)=\frac{2}{n(n-1)} W(G) .
$$

The computer programs Graffiti [5] and AutoGraphiX [1] with the classical 1984 paper by Plesnik [8] are three of the best sources for problems and conjectures related to average distance and total distance (Wiener index). These sources contain some pretty and long-standing problems on this topic (see also [4] and the references cited therein).

One such problem of Plesnik [8] which remains unresolved can be stated as follows.
Problem 1.1. What is the maximum total distance (Wiener index) or average distance among all graphs of order n with diameter D ?

To see how hard it is to solve Problem 1.1, consider the following Graffiti conjecture from DeLaViña and Waller [4], which is a special case of Problem 1.1.

Conjecture 1.2. Let G be a connected graph of diameter $D>2$ and order $2 D+1$. Then $W(G) \leq W\left(C_{2 D+1}\right)$, where $C_{2 D+1}$ is the cycle of length $2 D+1$.

As far as we know, Conjecture 1.2 remains open. In this paper, we give a partial solution to this conjecture. More specifically, we prove that this conjecture is true for 2 -connected graphs.

2. Proof of Conjecture $\mathbf{1 . 2}$ for 2-connected graphs

Recently, Hua et al. proved the following result.
Lemma 2.1 [6]. Let G be a 2-connected graph of order n with diameter D and radius r. If $n=2 D+1$ and $r=D$, then $G \cong C_{n}$ or C_{n}^{i} (see Figure 1) for some i with $1 \leq i \leq 3$.

Before we proceed any further, we introduce a well-known result on connectivity of a graph due to Menger [7] in 1927.

Theorem 2.2 (Menger [7]). Let G be a graph and u, v be two distinct nonadjacent vertices of G. Then the maximum number of pairwise internally vertex disjoint paths connecting u and v is equal to the minimum number of vertices in a vertex-cut set that separates u and v.

Now we are in a position to prove that Conjecture 1.2 holds for 2-connected graphs.
Theorem 2.3. Let G be a 2 -connected graph of diameter $D>2$ and order $2 D+1$. Then

$$
W(G) \leq \frac{2 D^{3}+3 D^{2}+D}{2}
$$

with equality if and only if $G \cong C_{2 D+1}$.
Proof. For any vertex $v \in V(G)$, let u be one of its eccentric vertices, that is, $\varepsilon_{G}(v)=$ $d_{G}(v, u)$. Since G is a 2 -connected graph, by Theorem $2.2, G$ has two internally vertex disjoint paths connecting v and u. Write $X_{v}(i)=\left\{w \in V(G) \mid d_{G}(v, w)=i\right\}$ for $i=1, \ldots, \varepsilon_{G}(v)$.

Since G has two internally vertex disjoint paths connecting v and u, we have $\left|X_{v}(i)\right| \geq 2$ for each $i=1, \ldots,\left(\varepsilon_{G}(v)-1\right)$ and $\left|X_{v}\left(\varepsilon_{G}(v)\right)\right| \geq 1$. Therefore,

$$
\begin{align*}
D_{G}(v) & \leq 2\left[1+\cdots+\left(\varepsilon_{G}(v)-1\right)\right]+\left[(2 D+1)-1-2\left(\varepsilon_{G}(v)-1\right)\right] \varepsilon_{G}(v) \\
& =-\left(\varepsilon_{G}(v)\right)^{2}+(2 D+1) \varepsilon_{G}(v) \tag{2.1}
\end{align*}
$$

and the equality holds only if $\left|X_{v}(i)\right|=2$ for each i with $i=1, \ldots, \varepsilon_{G}(v)-1$ and $\left|X_{v}\left(\varepsilon_{G}(v)\right)\right|=2 D+2-2 \varepsilon_{G}(v)$.

Let $f(x)=-x^{2}+(2 D+1) x$. Observe that $f(x)$ is increasing on the interval $\left(-\infty, \frac{1}{2}(2 D+1)\right]$. Note that $\varepsilon_{G}(v) \leq D<\frac{1}{2}(2 D+1)$. Thus,

$$
\begin{equation*}
-\left(\varepsilon_{G}(v)\right)^{2}+(2 D+1) \varepsilon_{G}(v)=f\left(\varepsilon_{G}(v)\right) \leq f(D)=D^{2}+D \tag{2.2}
\end{equation*}
$$

with equality only if $\varepsilon_{G}(v)=D$.
By (1.1), (2.1) and (2.2),

$$
\begin{equation*}
W(G)=\frac{1}{2} \sum_{v \in V(G)} D_{G}(v) \leq \frac{1}{2} \cdot(2 D+1) \cdot\left(D^{2}+D\right)=\frac{2 D^{3}+3 D^{2}+D}{2} \tag{2.3}
\end{equation*}
$$

with equality only if $D_{G}(v)=D^{2}+D$ for each v in G, that is, $D_{G}(v)$ is a constant.
Now we check the equality case. If $W(G)=\frac{1}{2}\left(2 D^{3}+3 D^{2}+D\right)$, then all equalities in (2.1)-(2.3) hold together. From this, we conclude that for each v in G, we have $\varepsilon_{G}(v)=D$, that is, $r=D$, where r is the radius of G. Moreover, $D_{G}(v)$ is a constant. Now G is a 2-connected graph of order $2 D+1$ satisfying $r=D$. By Lemma 2.1, we must have $G \cong C_{2 D+1}$ or $C_{2 D+1}^{i}$ (see Figure 1) for some i with $1 \leq i \leq 3$. But, if $G \cong C_{2 D+1}^{i}$ for some i with $1 \leq i \leq 3$, then $D_{G}(v)$ cannot be a constant in G, which is a contradiction. Thus, $G \cong C_{2 D+1}$. Conversely, if $G \cong C_{2 D+1}$, then we clearly have $W(G)=\frac{1}{2}\left(2 D^{3}+3 D^{2}+D\right)$.

This completes the proof.

References

[1] M. Aouchiche, J. M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lachere and A. Monhait, 'Variable neighborhood search for extremal graphs. 14. The AutoGraphiX 2 system', in: Global Optimization: From Theory to Implementation (eds. L. Liberti and N. Maculan) (Springer, New York, 2006), 281-310.
[2] D. Bonchev, 'The Wiener number - some applications and new developments', in: Topology in Chemistry: Discrete Mathematics of Molecules (eds. D. H. Rouvray and R. B. King) (Horwood, Chichester, 2002), 58-88.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (Macmillan, London; Elsevier, New York, 1976).
[4] E. DeLaViña and B. Waller, 'Spanning trees with many leaves and average distance', Electron. J. Combin. 15(1) (2008), R33, 14 pp.
[5] S. Fajtlowicz and W. A. Waller, 'On two conjectures of GRAFFITI II', Congr. Numer. 60 (1987), 187-197.
[6] H. Hua, Y. Chen and K. Ch. Das, 'The difference between remoteness and radius of a graph', Discrete Appl. Math. 187 (2015), 103-110.
[7] K. Menger, 'Zur allgemeinen Kurventheorie’, Fund. Math. 10 (1927), 96-115.
[8] J. Plesnik, 'On the sum of all distances in a graph or digraph', J. Graph Theory 8 (1984), 1-24.

HONGBO HUA, Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, PR China e-mail: hongbo_hua@163.com, hongbo.hua@gmail.com

[^0]: The research was supported by the National Natural Science Foundation of China under Grant No. 11571135.
 (C) 2018 Australian Mathematical Publishing Association Inc.

