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Abstract
This study examined the acquisition of numeral classifiers in 120 monolingual Japanese
children. Previous research has argued that the complex semantic system underlying classi-
fiers is late acquired. Thus, we set out to determine the age at which Japanese children are able
to extend the semantic properties of classifiers to novel items/situations. Participants com-
pleted a comprehension task with a mouse-tracking extension and a production task with
nonce and familiar items.While the comprehension results showed ceiling effects on familiar
and nonce items, age significantly modulated a difference in accuracy between familiar and
nonce items in the production task. The findings suggest that the acquisition of the underlying
semantic system is acquired much earlier than previously argued. Previously attested issues
with Japanese classifier production in young(er) children are more likely to reflect accessing
difficulties than indexing the underlying grammatical competence of the classifier system.
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1. Introduction

Children begin to use language to categorize and count items in their environment early in
their development. To do so,most languages only require combining nounswith numerals
to construct numeral noun phrases (e.g., ‘three lions’). However, some languages such as
Japanese, Chinese, and Korean have special expressions accompanying the numerals to
categorize items that they quantify (e.g., Japanese: san too no raion ‘three CL-GEN lion’).
These are called  . Numeral classifiers behave similarly to collective
nouns, which comprise an open class of words that quantifies mass unit (e.g., herd of
cattle, flock of birds). Although much work has examined children’s acquisition of
classifiers, there is little consensus as to  and  children acquire their syntactic
patterns and the corresponding semantic system. In order to ensure that children can
assign meanings to a classifier (e.g., too categorizes large animals) – rather than merely
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associating specific items to particular classifiers (e.g., too being lexically associated with
the noun lion) – it is crucial to test whether they can extend the use of classifiers to novice
items/contexts. The current study aims to examine this question by using familiar and
nonce items in both comprehension and production modalities to map the developmen-
tal trajectories of classifier acquisition in Japanese monolingual children.

Count syntax serves as a cue for individuation in English and other Indo-European
languages. It involves using words directly with numerals (e.g., one cat) or in singular or
plural forms (e.g., a cat, some cats), as well as quasi-cardinal determiners (e.g., these/those
cats). These forms indicate reference to sets of countable things. On the other hand,
languages like Chinese and Japanese do not employ count syntax. Instead, they utilize
classifiers to explicitly indicate reference to individual entities – (Li et al., 2008). In
Japanese, numeral classifiers must be attached to a noun whenever the quantity is
specified, but classifiers are not obligatory on every noun/adjective unlike grammatical
gender or number (Aikhenvald, 2000). Although there are approximately 150 Japanese
numeral classifiers, only about 30 are found in frequent, daily use (Downing, 1996). The
semantic properties of each classifier category and its organization is complex, opaque,
and differs across various classifier languages (although a certain universality has been
attested such as animacy and shape; Adams & Faires Conklin, 1973). In Japanese,
classifiers are strictly divided into two major categories: animate and inanimate. Japanese
classifiers (unlike Chinese) do not allow animate and inanimate items to belong to the
same classifier. They are further organized around semantic features, such as type of
animal, shape, and function as in Figure 1 below (Yamamoto & Keil, 2000, p.381). For
example, –hon is the Japanese classifier for long, thin items and –mai is used for flat, thin
items, while –ri is used to count humans and –hiki for small animals and insects. Numeral
classifiers tend to be associated with the qualities or properties of referents, or with the
ways in which we relate to those referents, rather than directly with the nouns that refer to
them (Jarkey & Komatsu, 2019). Some nouns, however, are strongly associated with a
particluar classifier, and so using a different classifier is typically judged as unacceptable.
In Japanese, ‘general classifiers’, such as –tsu or –ko, can be applied to a wide range of
inanimate nouns that vary across dimensions (however, there are several nouns in which
the use of general classifiers is not appropriate e.g., using -ko for trains).

Children can quickly map novel nouns to meaning/concepts long before they begin to
acquire the classifier system; albeit both involve classification of entities (Uchida & Imai,
1999). Although considerable work has refined our understanding regarding the age and
conditions under which acquisition of classifiers take place, not all evidence points in the
same direction – while some studies show that common classifiers are generally fully
mastered by the age of six (Sanches, 1977; Sumiya&Colunga, 2006; Uchida& Imai, 1999),
others claim that even older children well beyond schooling age do not show full
acquisition of basic classifiers (Matsumoto, 1987; Salehuddin & Winskel, 2009). Such
inconsistencies can be attributed to several factors, the most obvious one being the
differences in testing modality between comprehension and production abilities. To
begin with, there are very few studies that examine comprehension and production of
classifiers in child development. The most recent study (Hao et al., 2021) found a
significant gap between comprehension and production accuracy of classifiers in
Mandarin-speaking children, corroborating the findings of previous studies (Chien
et al., 2003; Uchida & Imai, 1999) that comprehension precedes production in classifier
acquisition. Among those studies that examine comprehension of classifiers, children
seem to reach ceiling (over 90% accuracy) on various types of sortal classifiers by age six,
with significant improvements between four to five years of age (Japanese: Uchida& Imai,
1996, 1999; Sumiya&Colunga, 2006; Yamamoto&Keil, 2000, Chinese: Chien at al., 2003;
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Li et al., 2010; Hao et al., 2021). On the other hand, those that test the production of
classifiers show strikingly low accuracy for six-year-old Chinese and Japanese children
(Hao et al., 2021; Matsumoto, 1987; Uchida & Imai, 1999) and a study with Malay
children (Salehuddin &Winskel, 2009) shows that even children as old as nine could only
produce the correct classifier around 50 percent of the time. Of course, it cannot be
assumed that all Asian numeral classifier systems should evidence the same acquisition
patterns, not least because specific languages are more and less transparent relative to one
another (e.g., as highlighted above, Chinese is less transparent than Japanese in that only
the former permits a single classifier to collocate with both animate and inanimate
nouns). Yet, it is worth pointing out the general trend nonetheless: studies that rely on
production data regardless of the specific language suggest more pronounced protracted
development.

Despite differences in the developmental trajectories between comprehension and
production of classifiers, the overall acquisition pattern suggests that children first recog-
nize the grammatical function of classifiers by learning the appropriate classifier for each
noun via rote association from input. They may, therefore, simply insert (in theory) any
classifier that they have come across in their input without extracting any semantic rules.
At some point in their development, they begin to extract semantic rules with enough
exposure to examples from each classifier category, and eventually learn to apply this rule
to entities that share similar semantic properties (Uchida & Imai, 1999). Thus, the
acquisition of classifiers involves the process of pairing classifiers to nouns as well as
coming to intuit and form rules based on the underlying semantics. Only after the latter,
can one expect children to apply classifier forms to novel contexts/entities in a target
manner. This has been argued to be a protracted learning process: “learning the full
semantic system still takes a long time” (Uchida& Imai, 1999, p.66).Most previous studies
(as cited above), however, use real items that are available in the child’s input to test their
use and knowledge of classifiers. Although some attempts have been made to uncover the
relationship between semantic categorization skills and classifier knowledge by running
correlational analyses (Hao et al., 2021; Sera et al., 2013), it is difficult to tease apart the
grammatical vs. semantic knowledge of classifiers via a paradigm that tests only known
items. An exception is a study by Li et al. (2010) which tested Mandarin children’s
comprehension of numeral classifiers by using both familiar and novel items. The results
showed no differences in accuracy between familiar and novel items even for children as
young as age three (although their accuracy was 56% overall with 33% as chance level),
suggesting that children are able to extract semantic information from classifiers at a
relatively young age. Another exception comes from a training study by Uchida and Imai

Figure 1. Japanese numeral classifier system (taken from Yamamoto & Keil, 2000, p.381).
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(1999) which tested four- and five-year old Japanese children’s ability to learn the semantic
rule of a classifier -too (big animals) by undergoing two different types of training:
(a) explicit instruction; or (b) exemplar-only explanation. The findings demonstrated that
while four-year olds did not make use of the examples provided by the researcher to
generalize themeaning of -too to novel items, five-year-olds were successfully able to do so,
performing on par with their peers who received explicit instruction.

Given that (a) Li et al. (2010) and Uchida and Imai (1999) only examined the
 of classifiers in novel contexts and (b) the  of classifiers
documented in a larger literature attests a more protracted trajectory than comprehen-
sion, it is crucial to test children’s knowledge of classifiers in familiar and novel contexts in
modalities. In doing so, we can better gauge how and when semantic knowledge of
classifiers is acquired in childhood, while shedding light on if (and why) the modality of
testing – comprehension versus production –matters for attaining the evidence needed to
answer this query. In the current study, we investigated Japanese monolingual children’s
processing, knowledge, and use of classifiers in novel and familiar contexts by employing
a mouse-tracking/comprehension and a production task. We incorporated a mouse-
tracking extension in the comprehension task to examine whether there are any discrep-
ancies between behavioral accuracy and real-time processing of classifiers. Combining
online and offlinemeasures and showing replication acrossmodalities or lack thereof, will
contribute further to revealing how modality affects acquisition patterns of classifiers.

Following this, we formulated the following research questions:

1. What is the developmental trajectory of comprehension and production of clas-
sifiers in Japanese monolingual children? What is the critical age in which the use
and knowledge of classifiers is acquired?

We hypothesize that children’s use and knowledge of classifiers will undergo rapid
development around the age in which they enter the formal schooling (from age six to
seven), given that they will receive more quantitatively and qualitatively rich input from
the environment.

2. Does familiarity (nonce, familiar) and animacy (animate, inanimate) modulate the
development of classifier production and comprehension?

We hypothesize that both familiarity and animacy will modulate the development of
classifier production and comprehension (as stated in detail in Section 2.5 Statistical
Analysis, there should be a significant interaction between Age and Familiarity as well as
Age and Animacy). Namely, we expect children to perform better on familiar than nonce
as well as animate than inanimate items until aroundmiddle childhood (age ten to twelve)
in which they should perform at ceiling (i.e., fully acquire the target classifier system)
regardless of familiarity or animacy. There may also be a three-way interaction between
Age, Familiarity, and Animacy, in which the developmental differences between familiar
and nonce items may be present only in the animate or inanimate items.

2. Methods

2.1. Participants

145 children participated in this study via an internet-based experiment platform (Gorilla).
Six participants’ data were excluded due to poor data quality. This study was approved by
Norwegian Center for Research Data (Ref number: 309414). Five other participants’ data
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were removed because they indicated language impairment or developmental disorders.
An additional 14 participants’ data were excluded due to them not fitting the age criteria,
leaving the final pool of participants as 120 children (Mean age = 6.21, SD = 2.05,
Range = 3.05 – 11.83, Female = 62). The numbers of participants in each group are
presented in Table 1. Theywere all nativemonolingual speakers of Japanese living in Japan
with Japanese parents. Their Socio-Economic Status (SES) was measured via the mother’s
final education from a scale of 1 to 5 (Mean = 4.52, SD = 0.71, Range = 3 – 5). The
participants were recruited through a Japanese online recruitment platform (Lancers).

2.2. Materials

We tested Japanese children’s knowledge and use of classifiers by administering a
comprehension task with a mouse-tracking extension and a production task, both built
and run in Gorilla. For both tasks, we tested the children on six classifier categories: -hon
(long, thin), -mai (flat, thin), -dai (machine), -ri (humans), -hiki (small animals), -wa
(birds). These classifiers were chosen since they are frequently used in modern Japanese,
havewell-defined and salient perceptual features, and are visually distinct and common in
ordinary life.

For the comprehension task, there were 48 target items in total, with 24 familiar items
and 24 nonce items. There were 4 items in each classifier category for familiar and nonce
items, as presented in Table 2. The frequency of the familiar items was matched within
each classifier category, but not across categories. Indeed, it was extremely difficult to
match the frequency across categories, due to the fact that some categories (such as -dai
for machines and -wa for birds) only occur with specific items/animals that are
not as frequent in the input compared to those that belong to more general categories
such as -hon (long, thin) or -hiki (small animals).

The nonce labels for the nonce items were normed with 46 adult native speakers of
Japanese. They were asked to rate how much meaning the words presented to them
carried, on a scale of 1-4 (1 = there is no meaning to this word, 4 = the meaning of this
word is clear). All nonce labels used in Table 2 scored below 1.4. The pictures used for
familiar and nonce items were normed twice with 49 adult native speakers of Japanese in
the first round and 59 adult native speakers of Japanese in the second round. In both

Table 1. The number of participants in each group

Age group Number

3 17

4 18

5 19

6 37

7 12

8 4

9 3

10 3

11 7
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Table 2. Full list of classifier items in the comprehension task

Familiar items

Inanimate Classifiers

Hon (1D long thin) Mai (2D flat) Dai (machines)

banana# leaf# TV#

pencil# map# phone#

carrot towel bicycle

rope plate car#

Animate Classifiers

Ri (humans) Hiki (animals) Wa (birds)

girl# cat# chicken#

boy# dog# crow#
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Table 2. (Continued)

Familiar items

man mouse crane

woman fish parrot

Nonce items

Inanimate Classifiers

Hon (1D long thin) Mai (2D flat) Dai (machine)

sonu# poru# naso#

yapu# mupi# koni#

honi nopu gemi

chiza napu nefu
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rounds of piloting, we asked them to write the appropriate classifier for each picture. In
the first round, there were some nonce pictures that had low classifier agreement (ranging
from 8% to 100% agreement) while the familiar pictures all elicited 80% agreement or
higher. Thus, we discarded those that elicited less than 70% agreement and created new
nonce stimuli. These new stimuli/pictures (along with those that were kept in the first
round) were tested again with a new set of raters. Pictures that reached higher than 70%
agreement in the second round were used in the experiment (as presented in Table 2).

2.2.1 Production task
In the production task, children were instructed to count the number of items depicted in
a picture. The number of items always followed the sequence of one, two, and three. First,
the participants watched a video of the researcher explaining the task in Japanese and
underwent amicrophone check tomake sure that the recording systemworked. Then, the

Table 2. (Continued)

Familiar items

Animate Classifiers

Ri (humans) Hiki (animals) Wa (birds)

memu# rido# sako#

yopo# romo# fuma#

yupi tasa reni

ropu suro tapo

#= subset of items used in the production task

8 Maki Kubota, Yuko Matsuoka and Jason Rothman

https://doi.org/10.1017/S0305000923000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000923000661


participants did two practice trials using classifiers that differed from the target classifiers
(i.e., -too for large animals and -hai for a glass/cup of liquid). In each trial, they were
presented with the name of the item (e.g., “kore wa yopo desuこれはヨポです” This is a
yopo). Then they were asked to count the items presented one by one on the screen as
depicted in Figure 2. After counting the items, they were asked to describe two sets of
pictures in which we also tested their knowledge of passive structures as a filler of sorts
(note that passives are formed in Japanese with a dedicated, overt morphological
exponent) and with the goal of using it for an additional study (thus the passive data
are not included as part of the current study).

In the production task, we used half of the items in the comprehension task (N = 24,
12 familiar items and 12 nonce items) which are presented in Table 2 with an asterisk. This
measure was taken to shorten the length of the experiment and minimize fatigue effects.
The trials were randomized across participants. The production task was programmed in
Gorilla such that the recording automatically startedwhen the picture was presented to the
participants and ended when the participant clicked on the button to move on to the next
picture/trial. There was a break after half of the trials were completed.

Four research assistants who are native speakers of Japanese and have training in
linguistics transcribed and coded the data. One of the principle investigators (PI), who is
also a native Japanese speaker, did a final quality control check – that is, went through all
the transcriptions and their coding to check for any inconsistencies. Any inconsistencies
or disagreements were resolved among the PI and the research assistants.

We first coded the data with a binary choice (0,1) depending on whether the child
produced the target classifier (or not). Phonological errors such as saying “sanpon”
instead of sanbon were coded as a target response (i.e., 1) as long as the child produced
the target classifier. As discussed in greater detail below in the procedures section, given
the age of the participants, a parent was required to supervise for those under 12.
Although the parents were instructed to not interfere with the self-contained automated
experiments, if they did, we would know since the sessions were recorded. All utterances

Figure 2. Illustration of the production task.
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in which a parent (always amother in our sample) provided the classifier to the child – for
example, by interjecting and asking the child: “Howmany CL?” –were removed from the
analysis. While occurring, parental interjection was quite rare, consisting of 0.6% of the
data. A further 2.5% of the data that were unintelligible or contained no audio were also
excluded from the analysis. All utterances coded as non-target were further categorized
into three non-target response types, one denoting omission and two denoting sub-classes
of commission: (a) NC = No classifier; (b) GC = general classifier; (c) WC = wrong
classifier. NC indicates that the participant did not use a classifier and produced only
numerals (e.g., ni instead of ni-hon). Responses are coded as GC when participants used
one of the general classifiers: -ko or -tsu (e.g., ni-ko instead of ni-hon). WC were coded
when the participant produced a non-target classifier (e.g., ni-mai instead of ni-hon). We
should note here that some of the responses in GC andWC are not necessarily an “error”
or “ungrammatical” – for instance, it is generally accepted to use the general classifier -ko
and -tsu for novice objects that are small and tangible (in the case of nonce items), or to
use -hiki instead of -wa for certain birds.

2.2.2 Comprehension task
In the comprehension task, the participants were instructed to choose the appropriate
picture that corresponds to the target classifier out of two options. Since the compre-
hension task included amouse-tracking extension, the participants had tomaximize their
browser to full-screenmode to proceed to the comprehension task. Each trial consisted of
the participant clicking on the small alien at the bottom of the screen to start the audio
(i.e., numeral + CL) as they moved the cursor to click on either the top left or the top right
picture. For instance in Figure 3, the participants hear “ichi-mai (one flat-CL)” after
clicking on the alien and they have to move their cursor to the right to click on the
corresponding target picture (i,e., plate). No time limit was set for each trial – the
participants automatically moved onto the next trial when they clicked on a picture.
They were instructed to click on the picture as quickly and accurately as possible.

As indicated in Table 2, there were 80 items in total, with 48 target items (24 familiar
and 24 nonce) and 32 fillers. The full list of stimuli can be found in the Supplementary
Materials. The target and the competitor were always either exclusively familiar or nonce
items. We did not include familiar-target & nonce-competitor (or vice-versa) pairs, since
children were likely to bias towards the familiar item when presented together with a
nonce item, regardless of what the classifier was.We also counterbalanced the animacy of
the target-competitor pairs. One-fourth of all trials were: (a) target-animate &
competitor-inanimate (mismatched pairs); (b) target-inanimate & competitor-animate
(mismatched pairs); (c) target-animate & competitor-animate (matched pairs);
(d) target-inanimate & competitor-inanimate (matched pairs) respectively. We manipu-
lated this factor given that Yamamoto andKeil (2000) found Japanese children to perform
better when the animacy of the target-competitor pairs was notmatched1. The position of
the target picture/item (right or left upper screen) was counterbalanced, and the trials
were randomized across participants. The comprehension task beganwith an explanation
video of the task followed by two practice trials, in which no target classifiers were
included. There was a break in between half of the trials. In the comprehension task, we

1As per suggested by the reviewer, we included the accuracy and reaction time of the target-competitor
pairs (matched or mismatched) in the Supplementary Materials.
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analyzed their accuracy (i.e., whether they chose the target picture or not), and reaction
time, as well as two common mouse-tracking measures: maximum absolute deviation
(MAD) and sample entropy. MAD is computed as the largest perpendicular deviation
between the actual and the idealized trajectory between starting and response positions.
MAD assesses the degree of attraction toward an unselected response magnitude of
activation for each response option as the decision process unfolds over time (Hehman
et al., 2015). Sample entropy quantifies the degree of unpredictability of movement along
the x-axis and is a measure of spatial disorder and complexity of the movement.

2.3. Mouse-tracking pre-processing

The mouse-tracking output from Gorilla provides a data file containing the coordinates of
the participant’s mouse position on the screen over time, with time stamps for each position.
All coordinates aremeasured in pixels from the bottom-left edge of the screen (0,0), with the
x-coordinate increasing as the mouse moves right and the y-coordinate increasing as the
mousemoves up. Since this experimentwas conducted online andparticipants have different
devices and screen sizes, we used the normalized x-coordinate andy-coordinate valueswhich
consider the proportion of the screen space, making these coordinates comparable across
different participants. We used the mousetrap package (Kieslich et al., 2019) in R to analyse
themouse-tracking data.We first filtered the data so that it only includes accurate trials, and
only kept trials where mouse positions varied and also removed duplicated time stamps
(1.1% data were removed). Trajectories were remapped so that all right-ending trajectories
were remapped to left. Cursor’s starting point was aligned by shifting the trajectories. Since
the sampling rate differed depending on the participant’s device, we interpolated trajectories
so that each is represented by the samenumber of positions (101 steps) separated by constant
time interval (i.e., time-normalization). The dependent variables (MADand sample entropy)
were calculated based on raw trajectory measures.

Figure 3. Illustration of the comprehension task.
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2.4. Procedure

As previously mentioned, the experiment was conducted remotely via Gorilla and the
participants took part in the study in their own homes.Wemade sure that they could only
access the experiment from their laptop or their computer (and not their phones or
iPads). The participants first watched a general introduction video which instructed them
to be in a quiet environment with no distractions. The parents were instructed to not
provide their children with answers, and we also asked them to supervise their children if
they were under 12 years old. After the parents signed the consent form, the children
watched a short animation cover story video that involved two astronauts, Ken and Lisa,
who get their spaceship stolen by aliens. The childrenwere asked to helpKen and Lisa take
back their spaceship by completing multiple missions that involve different creatures. We
always administered the production task before the comprehension task, since the
comprehension task gives away the target classifier and we wanted to avoid any learning
effects that arise from this to influence the children’s performance in the production task.
Upon completing the production and comprehension tasks, parents filled out a language
background questionnaire and a compensation form. The participants were compensated
with a 1000-yen gift card via email. The entire online experiment can be accessed through
the Gorilla open materials page https://app.gorilla.sc/openmaterials/686845.

2.5. Statistical analysis

We ran a generalized linearmixed effects model for binary dependentmeasures (accuracy
on comprehension and production tasks), poisson generalized linear mixed effects model
for count measures (non-target responses type) and a linear mixed effects model for
continuous numerical dependent measures (reaction time on comprehension task and
MAD and sample entropy values onmouse-tracking) using the lmer package (Bates et al.,
2015) in R (R Core Team, 2021). We included age, familiarity (nonce or familiar), and
animacy (animate, inanimate) as well as the interaction between age and familiarity and a
three-way interaction between age, familiarity, and animacy into eachmodel. Participants
and items were included as random intercepts and familiarity as a by-participant slope.
Age was centered around themean. In order to investigate the critical age in which the use
and knowledge of classifiers is acquired, we also used a modeling technique called
Conditional Inference Trees (CTrees) (Breiman, 2001) using the partykit function
(Hothorn et al., 2015) in R. CTrees first tests the significance of each independent variable,
then the variable with the strongest association with the response is chosen, and a binary
split is performed on the independent variable, which divides the dataset. The process
then repeats on the subsets of the data and tests the remaining independent variables. We
included age and familiarity as predictors since we were most interested in the interaction
between these two variables. The outcome of the test can be visualized graphically as a
tree, with the most important independent variable located at the top of the tree with
further associations between independent variables shown lower down. P values and
significant results are obtained via permutation, a resampling process similar to boot-
strapping (see Levshina, 2015, p.291 for further details).

3. Results

We will first describe the results of the production task, then the behavioral results of the
comprehension task, and lastly the mouse-tracking results.
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3.1. Production task

3.1.1 Descriptive analysis
The accuracy of the production of classifier types split by animacy and familiarity is
presented in Figure 4. Overall, it appears to be the case that children perform better on
familiar than nonce items (familiar:M = .31, SD = .46, nonce:M = .26, SD = .44), and also
perform better on animate than inanimate items (animate:M = .34, SD = .47, inanimate:
M = .22, SD = .42). The accuracy of classifier production split by each age group, animacy,
and familiarity can be found in the Supplementary Materials.

3.1.2 Generalized linear mixed effects (glmer) model
The summary output of the glmer is summarized in Table 3. Here, we are interested in
examining the interaction between the predictors, specifically between age and familiar-
ity, as this two-way interaction informs us about whether the development trajectories of
familiar and nonce items differ and to what extent. We see a significant two-way
interaction between familiarity and age (p = .04) and a significant three-way interaction
between familiarity, age, and animacy (p = .03).

The significant two-way interaction between familiarity and age is illustrated in
Figure 5. Children at around age three to five perform poorly, regardless of whether
the items are nonce or familiar. From around age six to ten, they begin to produce more
target classifiers for familiar than nonce items. This gap closes around 11 years old, where
they perform near-ceiling on both familiar and nonce items. In sum, familiarity does not
seem to play a role for younger and older children who perform at either floor or ceiling;
but for those in middle childhood, it is more difficult to extend the classifier meaning to
novice items in production than producing classifier-noun pairings that are available in
their input.

This two-way interaction between age and familiarity is further modulated by ani-
macy. As illustrated in Figure 6, the developmental differences between familiar and
nonce items seem to be motivated from the animate items. When the items are animate,
the developmental trajectories of familiar and nonce items differ (with familiar items
developing faster) but when the items are inanimate, there are smaller differences in the
rate of development between familiar and nonce items.

3.1.3 Conditional inference tree
The conditional inference tree, shown in Figure 7, corroborates the results of the previous
mixed effectsmodel, showing that age is a significant variable that predicts the production
of target classifiers. The tree depicted in Figure 7 consists of a series of binary splits that
divide the data into different subsets based on the predictor variables: age and familiarity
(familiar and nonce). Each split represents a decision point where the tree branches into
different paths. The tree selects the most relevant variables to create the splits based on
their importance in predicting the outcome variable. The boxes at the bottom of Figure 7
represent the accuracy of classifier production from 0% to 100%. The first split occurs at
age six, suggesting that age that is deemed most important for classifier production is six
years old – children below this threshold have quite low accuracy while children above
this threshold perform significantly better with more than 40% production accuracy
(even for nonce items). Familiarity also plays a role in predicting their classifier produc-
tion performance, especially for children who are under seven (see the bubble with
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number 14 in Figure 7), with familiar items eliciting higher accuracy than nonce items. At
seven years and above, children perform over 80% on both familiar and nonce items.

3.1.4 Qualitative analysis
Recall that the non-target responses (NTR) that the participants produced were coded
within three types: (a) NC = no classifier; (b) GC = general classifier; (c) WC = wrong

Figure 4. Accuracy of the classifier types split by animacy and familiarity for production. Error bars indicate
standard error.

Table 3. The output of the generalized linear mixed effects model for production accuracy

Model: glmer(accuracy_production ~ familiarity * age *animacy+ (familiarity| participant) + (1| item))

Predictors Odds Ratios CI p

(Intercept) 0.00 0.00 – 0.00 <0.001

familiarity [nonce] 2.94 0.51 – 17.01 0.229

age 4.27 3.02 – 6.05 <0.001

animacy [inanimate] 0.16 0.05 – 0.53 0.003

familiarity [nonce] * age 0.80 0.64 – 1.00 0.047

familiarity [nonce] * animacy [inanimate] 0.34 0.07 – 1.76 0.199

age * animacy [inanimate] 1.01 0.88 – 1.17 0.888

(familiarity [nonce] * age) * animacy [inanimate] 1.24 1.02 – 1.50 0.031

Observations 7878

Marginal R2 / Conditional R2 0.404 / 0.845
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classifier. The descriptive statistics of the number of observations per type as a function of
familiarity is provided in Table 4. NCwas themost observed type of NTR (Sum= 2841,M
= 12.25, SD = 6.49, 51% of all NTRs), followed byWC (Sum = 1391,M = 7.36, SD = 4.87,
25% of all NTRs) and GC (Sum = 1348,M = 9.30, SD = 5.63, 24% of all NTRs). Moreover,
nonce items (Sum = 2858,M = 9.89, SD = 6.24) elicited slightly more NTR than familiar
items (Sum = 2722,M = 9.83, SD = 6.05). Post-hoc comparisons using emmeans package

Figure 5. The plot of two-way interaction effects between age and familiarity.

Figure 6. The plot of three-way interaction effects between age, familiarity, and animacy.
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with Tukey correction on the main effect of Type showed that occurrence of NC is
greater thanWC (p = .009) and GC (p = .004) and occurrence of GCwas greater thanWC
(p < .001). The results of the poisson generalized linear mixed effects model are presented
in Table 5. The only significant interaction was between familiarity and type (E = 1.16,
p = .03). Post-hoc comparisons showed that the difference in the number of NTR between
familiarity and nonce items varied across types, specifically between GC and NC (E = .14,
Z= 2.00 p= .04). That is, there weremoreNTR for nonce items than familiar items forNC
(i.e., no production of classifiers) when compared to GC (i.e., replacement of general
classifiers).

As for theNC type, all classifiers elicited no classifiers/bare numerals to a similar extent
(wa = 445; hiki = 459;mai = 474; ri = 475; hon = 480; dai =493). In terms of GC type, -dai
elicited the most occurrences of general classifiers (n = 393) followed by -hon (n = 389)
and -mai (n = 352). This is not surprising as the general classifiers (-ko and -tsu) can only

Figure 7. Conditional Inference Tree for production accuracy.

Table 4. Descriptive statistics of non-target response type for familiar and nonce items

Familiarity Type Number of obs Percentage

familiar GC 686 25.2%

familiar NC 1376 50.5%

familiar WC 660 24.2%

nonce GC 662 23.1%

nonce NC 1465 51.2%

nonce WC 731 25.5%
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be used with inanimate objects. However, there were still some occurrences of the use of
general classifiers for animate classifiers: -ri (n = 68), -hiki (n = 68), and -wa (n = 78).With
respect to WC type, Table 6 illustrates the ten most common non-target responses that
were categorized as using the wrong classifier. Since -too (classifier for large animals) was
used in the example video which explained the task to the children, many of the responses

Table 5. The output of the poisson generalized linear mixed effects model for number of observations
per non-target response (NTR) type

glmer(n ~ type*familiarity*age_z+ (type|participant), family=poisson)

Predictors Incidence Rate Ratios CI p

(Intercept) 7.00 5.66 – 8.66 <0.001

type [NC] 0.85 0.61 – 1.18 0.332

type [WC] 0.78 0.61 – 1.00 0.050

familiarity [nonce] 0.93 0.83 – 1.04 0.185

age z 0.97 0.80 – 1.18 0.777

type [NC] * familiarity [nonce] 1.16 1.01 – 1.34 0.037

type [WC] * familiarity [nonce] 1.08 0.93 – 1.27 0.317

type [NC] * age z 0.76 0.54 – 1.07 0.117

type [WC] * age z 0.85 0.67 – 1.08 0.195

familiarity [nonce] * age z 0.97 0.85 – 1.11 0.661

(type [NC] * familiarity [nonce]) * age z 1.05 0.89 – 1.24 0.556

(type [WC] * familiarity [nonce]) * age z 1.08 0.89 – 1.31 0.430

Marginal R2 / Conditional R2 0.057 / 0.771

Table 6. The ten most common non-target responses that were categorized as using the wrong classifier
(WC)

Child’s Response Target Classifier Number of obs

hiki wa 214

too hiki 151

too wa 118

ri hiki 76

hiki ri 67

ri wa 56

too dai 39

too mai 38

too ri 35

hiki mai 31
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categorized as WC involved the use of -too classifier for objects that take on animate
classifiers (-ri, -hiki, -wa) but also for inanimate classifiers (-dai, -mai).

3.2. Comprehension task

3.2.1 Descriptive results
The accuracy and reaction time of the comprehension of classifier types split by animacy and
familiarity are presented in Figure 8. Interestingly, in contrast to the production results,

Figure 8. Accuracy and reaction time of the classifier types split by animacy and familiarity for comprehension.
Error bars indicate standard error.
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children performed at ceiling (more than 90%) on all classifier types, regardless of whether
the item was animate (Accuracy: M = .94 SD = .23, RT: M = 2312.58, SD = 1536.51)
or inanimate (Accuracy: M =.95, SD = .22, RT: M = 2242.96 SD = 1323.77), or familiar
(Accuracy:M = .95, SD = .22, RT:M = 2254.02 SD = 1406.84) or nonce (Accuracy:M = .95,
SD = .23, RT: M = 2301.48, SD = 1461.17). The accuracy and reaction time of classifier
comprehension split by each age group, animacy, and familiarity can be found in the
Supplementary Materials.

3.2.2 Generalized and linear mixed effects model
The summary outputs of the generalized linear mixed effects model (Accuracy) and
linear mixed effects model (log RT) are presented in Table 7. The only significant
predictor in both models was age (Accuracy: p < .001, logRT = p < .001), and there was
no significant interaction between age and familiarity (p’s > .53) or a three-way
interaction between age, animacy, and familiarity (p’s > .06). These results demonstrate
that children become more accurate and faster in comprehending classifiers as they
grow older, but this developmental trajectory does not differ between familiar/nonce or
inanimate/animate items.

3.2.3 Conditional inference tree
The conditional inference tree of the comprehension accuracy is presented in Figure 9.
Here, we can see that the first split occurs at four years old, suggesting that this is a crucial
age in which development of comprehension of classifiers takes place. Unlike in the
production task in which familiarity influenced the children’s performance until age
seven, this factor only played a role in comprehension performance among children who
are three years old (see bubblemarkedwith number 3), with familiar items eliciting higher
accuracy than nonce items. These findings suggest that comprehension of common
classifiers, including its semantic information, is acquired by the age of four in mono-
lingual Japanese children.

3.3. Mouse-tracking results

Mean mouse trajectories are visualized in Figure 10 as a function of familiarity and
animacy. Visual inspection and descriptive results indicate thatmousemovements do not
diverge between familiar (MAD = .41, Entropy = .11) and nonce items (MAD = .40,
Entropy = .11) or between animate (MAD = .39, Entropy = .11) and inanimate items
(MAD = .41, Entropy = .11). This is also supported by the output of the linear mixed
effects model that we ran separately for MAD and Entropy. In terms of the MADmodel,
the only significant predictor was age (E = -.05, t = 4.52, p < .001), and no other main
effects or interactions were significant (p’s > .13). For the sample entropy model, no
significant main effects or interactions were found (p’s > .47). In sum, the mouse-tracking
results show that children perform similarly regardless of the familiarity or the animacy of
the item, suggesting that they are able to process the semantic properties of classifiers in
real-time and generalize them to novice contexts.
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Table 7. The output of the generalized linear mixed effects model (Accuracy) and linear mixed effects
model (RTs) for comprehension

Model: glmer/lmer(accuracy/log(RT) ~ familiarity * age *animacy+ (familiarity| participant) + (1| item))

Accuracy Log RT

Predictors Odds Ratios CI p Estimates CI p

(Intercept) 0.05 0.01 – 0.18 <0.001 8.82 8.64 – 9.01 <0.001

age 2.90 2.29 – 3.68 <0.001 -0.13 -0.15 – -0.10 <0.001

familiarity [nonce] 0.69 0.25 – 1.89 0.468 0.08 -0.02 – 0.19 0.115

animacy [inanimate] 0.81 0.28 – 2.39 0.706 0.04 -0.07 – 0.15 0.453

age * familiarity
[nonce]

0.95 0.77 – 1.18 0.667 -0.01 -0.02 – 0.01 0.532

age * animacy
[inanimate]

0.98 0.79 – 1.22 0.865 -0.01 -0.02 – 0.01 0.437

familiarity [nonce] *
animacy
[inanimate]

0.57 0.13 – 2.49 0.458 -0.04 -0.17 – 0.09 0.554

(age * familiarity
[nonce]) * animacy
[inanimate]

1.34 0.98 – 1.83 0.066 -0.00 -0.02 – 0.02 0.927

Observations 5789 5789

Marginal R2 /
Conditional R2

0.538 / 0.675 0.221 / 0.496

Figure 9. Conditional Inference Tree for comprehension accuracy.
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4. Discussion

The current study investigated the production, comprehension, and processing of clas-
sifiers using familiar and nonce items in 3 to 12-year-old Japanese monolingual children.
Not least because existing evidence is mixed and highly skewed towards production, the
primary goal of combining modalities was to examine   of the acquisition of
the semantic system of basic numeral classifiers in childhood from converging evidence
bases. The present study is set up to also address , and if so , evidence for
acquisition depends on the modality of testing. In order to examine children’s ability to
extract semantic information of classifiers and extend it to novel situations, our experi-
ments combine familiar and nonce stimuli to ensure that the participants have never
encountered such classifier-noun pairings in the input.

To sumup the  data, results show that children perform better on familiar
than nonce items, but this pattern was significantlymodulated by age. That is, for younger
or older children who performed at floor or at ceiling respectively, their performance did
not differ, regardless of whether the items were familiar or nonce. However, for those in
middle childhoodwho are in the process of developing their classifier knowledge, having a
form-class cue in the input correlates to increasing accuracy in the production of expected
classifiers. Not surprisingly given its prominence in the Japanese system, this pattern was
further modulated by animacy – children as young as five showed increased production
accuracy for familiar over nonce items when these items were animate – providing
independent evidence that semantic features can drive production choices, even before
ceiling levels are reached. However, this pattern is asymmetric: a difference between
inanimate familiar and nonce items is never attested at any age, irrespective of overall
accuracy increasing as a function of age. Given that inanimate nouns potentially have less
cognitive and/or pragmatic salience, at the youngest of ages our child participants

Figure 10. Mean mouse trajectories split by familiarity (Panel A) and animacy (Panel B).
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(perhaps Japanese children in general) may not have had enough experience (or cognitive
resources) to bootstrap the production of classifiers with inanimate items.

The output of the Conditional Inference Tree indicates that six years of age is a critical
point in which development of classifiers takes place for , which most likely
coincides with introduction to formal schooling and enhancement in literacy skills, as
they receive more quantitatively and qualitatively rich input from the environment. Most
importantly, children do not perform equally well on familiar and nonce items until they
are seven years old. Our results are in similar vein towhat has been suggested previously in
the literature (Uchida & Imai, 1996, 1999). If the present study only had production data,
we might be inclined to argue in favor of significantly protracted development of the
semantics of numeral classifiers. Although possible, we argue that converging evidence
beyond production in isolation is needed to make such a conclusion. While we do
acknowledge the importance of production data in acquisition studies, production alone
cannot be conflated with, as if being equivalent to, acquisition proper. As the results above
indicate (which we will proceed to unpack below), both the comprehension and process-
ing parts of the study rather suggest that the production evidence underdetermines the
system that younger Japanese children have. In other words, while we replicate the
patterns that have previously been shown in production studies, all that can be definitively
concluded from the present production data is that Japanese children have protracted
 development of classifiers in relation to their semantics, not the represen-
tation of the basic semantic system of the classifiers per se.

Before delving deeper into the complementary modalities of testing, it is worth
commenting on a particular aspect of the qualitative analysis for production, as the
pattern departs from previous studies. In summary, the most common non-target
responses made by children are omissions of classifiers (NC; counting items with bare
numerals), followed by substitutions with general classifiers (GC) and, then, use of
incorrect classifiers (WC). This finding is in contrast with other studies finding omissions
of classifiers to be rare even among younger Japanese and Chinese children (Hao et al.,
2021; Uchida & Imai, 1999). Such discrepancies may be affected by the inclusion of nonce
items in this study. Encountering nonce itemsmay have influenced the children to opt for
a strategy of completely omitting classifiers when they could not extend the meaning of
classifiers to novice contexts. This is indexed by the fact that children omitted classifiers
more frequently when counting nonce items than familiar ones. Out of 120 participants,
20 children did not produce any classifiers (16% of the population, average age = 4.80, SD
= 1.15) and 35% of children’s total production (both correct and incorrect) consisted of
classifier omission responses. While our study shows a comparatively higher rate of
omission, it does not deviate too greatly fromwhat Uchida and Imai (1999) found in their
study using only familiar items, in which they found that Japanese monolingual four-
year-olds make classifier omission errors around 20% of the time.

The findings of the  task were in stark contrast to the production
results – children’s accuracy was above 90% on all classifier types and there was no
difference in accuracy between familiar vs. nonce or animate vs. inanimate items.
Moreover, there was no interaction between age, familiarity, or animacy for both reaction
time and accuracy. This suggests that the acquisition of the underlying semantics of
common classifiers is robustly represented from the earliest of ages tested, such that in
comprehension it can be deployed equally for familiar and nonce items, regardless of
animacy (or the target-competitor pairings as indicated in the Supplementary Materials).
The only significant predictor for comprehension was age. That is, children becamemore
accurate and faster in comprehending classifiers as they grew older. The significant role of
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age is also found in processing via the mouse-tracking results, with no interactions
between familiarity or animacy for measurements of movement trajectory (MAD) and
complexity (sample entropy). This demonstrates that children become better at process-
ing classifiers in real-time as they get older, and they are also able to process the semantic
system of classifiers at a relatively young age.

The output of the Conditional Inference Tree corroborates the behavioral andmouse-
tracking results, indicating that significant improvement in  of classifiers
takes place around the age of four. This is in line with what Uchida and Imai (1999) and
Yamamoto and Keil (2000) found in their study of Japanese monolingual children using
comprehension tasks. Acquisition of the common classifiers, therefore, seems to take
place at least two years prior to production (which occurs around the age of six). In
addition, while familiar items had higher accuracy than nonce items until age seven for
production, only three-year olds displayed such differences for comprehension. This
suggests that at least by the age of three to four, children have acquired the semantic
properties of the most common classifiers for comprehension and are able to extend it to
novel items with high accuracy.

Given that production appears to lag behind comprehension and processing for
several years, a natural question emerges: Why is there such a gap? Yamamoto and Keil
(2000) speculate that this is due to several converging factors such as: (a) the form of
classifiers changing depending on the preceding numerals (e.g., human classifiers: hito-ri,
futa-ri, sann-nin); (b) alternation of the phonological shape depending on the preceding
numeral (e.g., long, thin classifiers: ip-pon, ni-hon, san-bon); (c) the use of incorrect
classifiers not hindering communication (if presented with a noun). However, such
factors do not apply only to production – indeed, successful comprehension of classifiers
also requires children to understand that the classifier form and phonology changes
depending on the preceding numeral. Additionally, contrary to what Yamamoto and Keil
(2000) suggest, comprehension of the grammatical or semantic function of classifiers is
not necessarily needed for production than it would be relevant for comprehension, as
long as children can understand the properties of numerals and nouns (e.g., when a child
hears “inu ga ip-piki (dog-particle-one-CL)”, they do not necessarily need to understand
the function of the classifier to interpret that the speaker is talking about one dog). Rather,
we stipulate that the discrepancy stems from processing issues related to activation of
grammatical and semantic information of classifiers. After all, there is more involved in
production (an active process) than comprehension and processing (a comparatively
more passive one) such that one can demonstrate empirically “knowing more than they
say” (González Alonso & Puig-Mayenco, 2021; Hendriks & Koster, 2010).

Let us consider a few aspects implicit to differences in production and comprehension/
processing methods that might further illuminate the present asymmetry. In compre-
hension experiments such as the ones we used, the child is provided with a specific
classifier (e.g., hon) and they have to first decode its semantic function by extracting its
specific features (e.g., long, thin, 3D). The next step involves matching the extracted
semantics to the inherent features of the target item – or in the current experimental
paradigm, choosing a picture out of two options that best matches the classifier features to
those of specific items. In other words, they primarily have to decode (and match)
something that is given to them.

In production, a similar process (this time decoding from a picture), albeit in reverse,
applies. However, in doing so the ultimate task of producing language is not accom-
plished: encoding must also take place precisely because the child is not afforded the
specific classifier in the experimentation. Alternatively, on the basis of a picture, the child
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first needs to access the lexical entry for the target item noun, inclusive of its relevant
semantic features, to then also activate and access the associated classifier (e.g., shape,
color, animacy, texture, function etc.). In doing so, they have to narrow down the features
to the ones that best represent the item (e.g., long, thin, brown, green, inanimate. 3D),
while activating the features of potential classifiers (e.g., mai = thin, flat, 2D; hon = thin,
long, 3D) and, only then, selecting/producing a classifier in which the features match.
Given this, there is a potential for more optionality implicit to the production of
classifiers, a context which should then impart greater processing demands.

Fromwhat we have seen in the sum of the present data acrossmethods, the asymmetry
suggests at least a few things. Firstly, specific classifiers are indeed not stored as part of the
lexical inventory of particular nouns. Rather Japanese classifier selection embodies the
underlying matching of semantic features across related, but, crucially, distinct lexical
items. Secondly, the semantic system is not problematic for acquisition per se, but rather
the matching of features between the two lexical items required by the grammar is the
issue. There is an accessing cost that is not fully overcome until relatively late in
acquisition/cognitive developmental terms, lingering in later childhood when the activity
is more demanding (i.e., surfacing in production). In other words, while the development
of productive ability of classifiers is more protracted than comprehension, comprehen-
sion data show that children are able to extend semantic properties of classifiers to novice
contexts as young as age three.

5. Conclusion

In sum, our findings show that, distinct from what has been argued/assumed in previous
literature, children as young as three acquire the semantic system of basic Japanese
classifiers. We argue this on the basis of convergent data from two types of comprehen-
sion, offline behavior and online processing. Crucially, not only do children perform well
in comprehension of Japanese classifiers overall, a pattern previously attested (Sumiya &
Colunga, 2006; Uchida & Imai, 1996, 1999; Yamamoto & Keil, 2000), by juxtaposing
comprehension and production with the same participants and by incorporating nonce
words in our experiments, we can offer firmer conclusions. While previous work (Uchida
& Imai, 1999) also found a similar asymmetry, because they only used familiar words, it is
not immediately clear from their data that the semantic system has been acquired.
Alternatively, it could be the case that their children have associated specific classifiers
to particular known nouns (lexically), the accessing of which is somehow less problem-
atic/costly in comprehension over production. Given the fact that the present compre-
hension data show no asymmetry between familiar and nonce items (or any influences
from target-competitor pairings), it must be the case that young Japanese children have
acquired the underlying semantics of the classifier system, at least in terms of the most
common classifiers. Absent of this, one leaves unexplained how they were able to extend
such knowledge for items encountered for the first time in the experiments (and crucially,
in line with the norming study we ran with adult Japanese speakers).

Replicating results from previous production-based methods, the present data also
evidence a delay in achieving adult-like mastery of classifier selection in production. We
speculated that the developmental asymmetry between comprehension and production is
due to greater task complexity/processing demands involved in production. Because
children have limited cognitive resources to handle the greater processing demands,
having both semantic information and form-class cue (instead of semantic information
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alone) mitigates the processing load, contributing to higher accuracy of classifiers for
familiar over nonce items – a finding that could only be revealed and whose significance
understood in a method such as the one adopted here. However, we would like to
highlight that the focus on the present case does not imply a universally superior role
for comprehension over production. Instead, it demonstrates that, in this particular
instance, it is justifiable to propose that comprehension data from young children indicate
a level of knowledge that has not been extensively examined in prior related research,
which has primarily focused on production. Various factors may contribute to the
asymmetries in performance between comprehension and production, and the answer
seems to lie in aspects of production that fall beyond the scope of what comprehension
can assess – specifically, outside the realm of underlying grammatical representation
itself. If we are on the right track, future studies should further examine how domain-
general cognitive ability interacts with the developmental trajectories of Japanese classi-
fiers, at the aggregated and individual levels, specifically examining the question of
whether cognitive ability is an important predictor for classifier production.

Supplementary material. The supplementary material for this article can be found at http://doi.org/
10.1017/S0305000923000661.
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