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Abstract. The study of pure-injectivity is accessed from an alternative point of
view. A module M is called pure-subinjective relative to a module N if for every pure
extension K of N, every homomorphism N → M can be extended to a homomorphism
K → M. The pure-subinjectivity domain of the module M is defined to be the class of
modules N such that M is N-pure-subinjective. Basic properties of the notion of
pure-subinjectivity are investigated. We obtain characterizations for various types of
rings and modules, including absolutely pure (or, FP-injective) modules, von Neumann
regular rings and (pure-) semisimple rings in terms of pure-subinjectivity domains. We
also consider cotorsion modules, endomorphism rings of certain modules, and, for a
module N, (pure) quotients of N-pure-subinjective modules.

2010 Mathematics Subject Classification. 16D10, 16D80.

1. Introduction and preliminaries. The study of injectivity has frequently been
approached from the perspective of relative notions. For a module M, its injectivity
domain, denoted by I−1(M), consists of all modules N such that M is injective relative
to N (or N-injective). In [8], it is proposed that one view the class of all injectivity
domains of modules over a ring R as an ordered structure P(R) (the injective profile of
the ring R) and investigate the interactions between properties of that injective profile
and those of the ring itself. In recent papers, authors have explored an alternative
perspective: Instead of using the injectivity domain of a module M as a mean to gauge
the extent of its injectivity, [3] proposes to consider the so-called subdomain of injectivity
or subinjectivity domain I−1(M) = {N | M is N-subinjective}. The expression M is
N-subinjective means that if for every extension K of N and every homomorphism
f : N → M, there exists a homomorphism g : K → M such that g|N = f . This idea
yields naturally the notion of the subinjectivity profile P(R) of a ring R.

In [6], the pure-injectivity profile of a ring is introduced as an analogue to the
injectivity profile of [8]. The pure-injectivity domain of a module M, denoted by
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PI−1(M), consists of those modules N such that M is N-pure-injective. Several
complications arise in the process. For example, it is pointed out in [8] that the injective
profile of a ring is always in a one-to-one correspondence with a set; that may not be the
case for the pure-injectivity profile. The aim of this paper is to investigate the viability
of obtaining valuable information about a ring R from yet another perspective as we
consider the pure-subinjectivity profile (also called sub pure-injectivity profile) inspired
by the notion of relative subinjectivity from [3].

In the study of the various profiles of a ring, in contrast to the injective modules
(or the pure-injective modules in the case of [6]), an effort has been made to understand
also the diametrical opposite notion of modules which are injective (subinjective, pure-
injective) only with respect to the smallest possible family of modules. Such modules
are often named poor (with appropriate modifications as needed, e.g., injectively poor,
subinjectively poor, pure-injectively poor, etc.). While a leading objective is to lay down
the foundations for the study of pure-subinjectively poor modules, we are saving our
report on the study of pure-subinjectively poor for a future paper; the research for
which is currently in progress. Such modules are the analogue of the poor modules in
[1], [5], and the indigent modules of [3].

Throughout this paper, R denotes an associative ring with identity and modules
are unital right R-modules unless otherwise stated. In what follows �, �, �, �n, E(M),
PE(M) and C(M) denote the natural numbers, integers, rational numbers, the ring of
integers modulo n, the injective hull, the pure-injective hull and the cotorsion envelope
of a module M, respectively.

Let P be a submodule of a right R-module M and i : P → M be the inclusion map.
Then P is called a pure submodule of M if for any left R-module X , the natural induced
map on tensor products i ⊗ 1X : P ⊗ X → M ⊗ X is injective. This is well-known to
be equivalent to say that for any finite system of equations over P which is solvable
in M, the system is also solvable in P. A submodule K of a module M is said to be
pure-essential in M if K is pure in M and for any non-zero submodule N of M, either
K ∩ N �= 0 or (K ⊕ N)/N is not pure in M/N. Let M and N be R-modules. Recall that
M is called N-pure-injective if every homomorphism from a pure submodule of N to
M can be extended to a homomorphism from N to M, and M is called pure-injective
if it is N-pure-injective for every module N. A ring R is called right pure-semisimple if
every right R-module is a direct sum of finitely generated modules.

The reader should consult standard references such as [15] and [16] for more
information about the subject. For convenience, the following remarks summarize
various well-known results so that they may be easily referenced in the paper.

REMARK 1.1 ([15, 53.6]). A ring R is right pure-semisimple if and only if every
right R-module is pure-injective.

REMARK 1.2 ([15, 34.13(2)]). Every �-module K , with nK = 0 for some n ∈ �, is
pure-injective.

REMARK 1.3 ([14, Theorem 6]). If B is a pure-injective module, A is a module,
and f : A → B is an embedding of A as a pure submodule in B, then f extends to a
homomorphism PE(A) → B, embedding PE(A) as a pure submodule of B.

REMARK 1.4 ([6, Lemma 3.6]). Let A be a pure submodule of a module B. Then
A/AJ can be embedded in B/BJ as a pure submodule for any ideal J of R.
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REMARK 1.5 ([15, 34.6]). For any module M, the map

ϕM : M −→ Hom�(Hom�(M, �/�), �/�)

defined by ϕM(m)(α) = α(m) for any m ∈ M and α ∈ Hom�(M, �/�) is a pure
monomorphism.

In [9], a module M is said to be absolutely pure if it is pure in every module
containing it as a submodule, equivalently, Ext1

R(N, M) = 0 for every finitely presented
module N, i.e., M is FP-injective in the terminology of [12].

REMARK 1.6 ([10, Theorem 2.8, Example 3.4]). For any module M, the following
are equivalent:

(1) M is absolutely pure.
(2) M is a pure submodule of an injective module.
(3) PE(M) = E(M).

In Section 2, we introduce relative pure-subinjectivity for modules and pure-
subinjectivity domains. Comparing pure-subinjectivity domains with (pure-)injectivity
domains and subinjectivity domains yields characterizations of various classes of
modules and rings such as pure-injective modules, absolutely pure modules, von
Neumann regular rings and (pure-)semisimple rings.

In Section 3, we consider cotorsion modules and, for any module N, the (pure)
quotients of N-pure-subinjective modules. We also determine when an R-module is
R-pure-subinjective. The notion of pure-subinjectivity is used to provide conditions
equivalent to being a right pure hereditary ring. We also analyse the quotient module
PE(N)/N of an arbitrary module N in terms of flatness.

Section 4 consists of further results on the notion of pure-subinjectivity domain of
a module. We study the endomorphism rings of various types of modules. Using pure-
subinjectivity, we provide an alternative proof of the known result that endomorphism
rings of pure-injective modules are also right pure-injective.

2. The pure-subinjectivity domain of a module. In this section, we introduce
the notion of the pure-subinjectivity domain of a module and investigate its basic
properties. The (sub)injective domains and (pure-)subinjective domains are compared,
also some characterizations of absolutely pure modules, (pure-)injective modules, von
Neumann regular rings, right pure-semisimple rings and semisimple rings are obtained
in terms of pure-subinjectivity.

DEFINITION 2.1. Let M and N be R-modules. M is called N-pure-subinjective if
for every pure extension K of N, every homomorphism from N to M can be extended
to a homomorphism from K to M. The pure-subinjectivity domain of M (denoted
PI−1(M)) consists of those modules N such that M is N-pure-subinjective.

We start by offering alternative characterizations of the pure-subinjectivity domain
PI−1(M) of a module M.

THEOREM 2.2. Let M and N be R-modules. Then the following are equivalent:
(1) N ∈ PI−1(M).
(2) For every pure-essential extension K of N, every homomorphism from N to M

can be extended to a homomorphism from K to M.
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(3) Every homomorphism from N to M can be extended to a homomorphism from
PE(N) to M.

Proof. (1) ⇒ (2) ⇒ (3) Clear.
(3) ⇒ (1) Let K be a pure extension of N and f : N → M a homomorphism. By (3), there
exists a homomorphism g : PE(N) → M such that g|N = f . By Remark 1.3, PE(N) is a
direct summand of PE(K). Hence, g extended a homomorphism g ⊕ 0: PE(K) → M.
Since (g ⊕ 0)|K i = f where i : N → K is the inclusion map, the proof is complete. �

THEOREM 2.3. An R-module M is pure-injective if and only if PI−1(M) = Mod-R
if and only if M ∈ PI−1(M).

Proof. Let M be a pure-injective R-module. For any R-module N, pure-injectivitiy
of M implies that every homomorphism N → M can be extended to a homomorphism
PE(N) → M. Hence, PI−1(M) = Mod-R.
Now assume that M ∈ PI−1(M). Since M is pure in PE(M), the homomorphism
1M : M → M can be extended to a homomorphism PE(M) → M. This implies that
M is a direct summand of PE(M). Therefore, M is pure-injective. �

THEOREM 2.4. The intersection of pure-subinjectivity domains of all R-modules is
the class of all pure-injective R-modules.

Proof. Since a pure-injective module is a direct summand of its pure extensions, the
class of all pure-injective modules is contained in the intersection of pure-subinjectivity
domains of all modules. Let M be a module for which every module is M-pure-
subinjective. Since M ∈ PI−1(M), by Theorem 2.3, M is pure-injective. �

Clearly, the subinjectivity domainI−1(M) of a module M is contained inPI−1(M).
They need not be equal, as the following example shows.

EXAMPLE 2.5. Let M be the socle of the �-module �/4�. By Remark 1.2, M is
pure-injective and so by Theorem 2.3, M ∈ PI−1(M). On the other hand, since M is
not a direct summand of �/4�, it does not belong to I−1(M).

The example above basically illustrates the fact that for any �-module M, if there
exists 0 �= n ∈ � such that nM = 0, then M is pure-injective (see Remark 1.2) but not
injective, and therefore M ∈ PI−1(M) \ I−1(M).

It is well-known that the character module Hom�(M, �/�) of a module M is
pure-injective, so it is N-pure-subinjective for every module N. In the next theorem, we
determine the intersection of subinjectivity domains of character modules. In addition,
we see that N-pure-subinjectivity and N-subinjectivity coincide for an absolutely pure
module N; moreover, this condition is a characterization of N being an absolutely pure
module.

THEOREM 2.6. The following are equivalent for a module N.
(1) N is an absolutely pure module.
(2) Every module M is N-pure-subinjective if and only if it is N-subinjective.
(3) Hom�(M, �/�) is N-subinjective for every module M.
(4) Hom�(Hom�(N, �/�), �/�) is N-subinjective.
(5) PE(N) is N-subinjective.

Proof. (1) ⇒ (2) Since N is absolutely pure, by Remark 1.6, PE(N) = E(N). The
rest is clear.
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(2) ⇒ (3) ⇒ (4) It is obvious from the fact that the character module of any module is
pure-injective and Theorem 2.3.
(4) ⇒ (1) Let N∗∗ denote the module Hom�(Hom�(N, �/�), �/�). For the
homomorphism ϕN mentioned in Remark 1.5, by (4), there exists f : E(N) → N∗∗

such that f iN = ϕN where iN : N → E(N) is the inclusion. Since iN is an essential
monomorphism, f is a monomorphism. Since ϕN(N) is a pure submodule of N∗∗ and
ϕN(N) = f (N) ⊆ f (E(N)) ⊆ N∗∗, f (N) is a pure submodule of f (E(N)). Thus, N is pure
in E(N). Therefore, N is absolutely pure by Remark 1.6.
(2) ⇒ (5) By Theorem 2.3, PI−1(PE(N)) = Mod-R. Hence, PE(N) is N-pure-
subinjective. By (2), PE(N) is also N-subinjective.
(5) ⇒ (1) Let i1 : N → E(N) and i2 : N → PE(N) be the inclusions. By (5), there
exists a homomorphism f : E(N) → PE(N) such that f i1 = i2. Since i1 is an essential
monomorphism, f is a monomorphism. It follows that N is pure in E(N). So
Remark 1.6 completes the proof. �

It is natural at this stage to consider when the various injectivity and subinjectivity
domains (regular and pure) may coincide for certain modules or for all modules. The
next five results deal with related conditions and all point out that they will coincide
only in the most of the trivial cases. We start by showing that the only time when
pure-injectivity domains and pure-subinjectivity domains are, respectively, the same
as their non-pure counterparts for all modules is the trivial case when the ring is von
Neumann regular (where, by trivial, we are referring to the fact that, for those rings,
all submodules are pure and pure-injectives are injective).

COROLLARY 2.7. The following are equivalent for a ring R:
(1) R is von Neumann regular.
(2) For every R-module M, PI−1(M) = I−1(M).
(3) For every R-module M, PI−1(M) ⊆ I−1(M).
(4) For every R-module M, PI−1(M) = I−1(M).
(5) For every R-module M, PI−1(M) ⊆ I−1(M).

Proof. (1) ⇒ (2) and (1) ⇒ (4) They are easy by the fact that every extension of a
module over a von Neumann regular ring is a pure extension.
(2) ⇒ (3) and (4) ⇒ (5) are obvious.
(3) ⇒ (1) Let M be a pure-injective R-module. Then by Theorem 2.3, M belongs to
PI−1(M). By hypothesis, M ∈ I−1(M) and hence M is M-subinjective, and so it is
injective. Thus, R is von-Neumann regular by [16, Theorem 3.3.2].
(5) ⇒ (1) Let M be a pure-injective R-module. Then Mod-R = PI−1(M) and by
hypothesis, Mod-R = I−1(M). Hence, M is injective and so R is von Neumann regular
by [16, Theorem 3.3.2]. �

THEOREM 2.8. The following are equivalent for a module M:
(1) M is pure-injective.
(2) PI−1(M) is closed under pure submodules.
(3) PI−1(M) = PI−1(M).
(4) PI−1(M) ⊆ PI−1(M).

Proof. (1) ⇒ (2) and (1) ⇒ (3) are clear since PI−1(M) = Mod-R = PI−1(M).
(2) ⇒ (1) Since PE(M) ∈ PI−1(M), by (2), M is also in PI−1(M). Then Theorem 2.3
completes the proof.
(3) ⇒ (4) Obvious.
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(4) ⇒ (1) By hypothesis, PE(M) belongs to PI−1(M). This implies that M is a direct
summand of PE(M), and so M is pure-injective. �

COROLLARY 2.9. The following are equivalent for a ring R:
(1) R is right pure-semisimple.
(2) For every R-module M, PI−1(M) ⊆ PI−1(M).
(3) For every R-module M, PI−1(M) = PI−1(M).

THEOREM 2.10. The following are equivalent for module M:
(1) M is injective.
(2) PI−1(M) = I−1(M).
(3) PI−1(M) ⊆ I−1(M).
(4) I−1(M) = I−1(M).
(5) I−1(M) ⊆ I−1(M).

Proof. (1) ⇒ (2) ⇒ (3) and (1) ⇒ (4) ⇒ (5) are clear.
(3) ⇒ (1) Since E(M) is pure-injective, E(M) ∈ PI−1(M). By hypothesis, E(M) ∈
I−1(M), and hence M is injective.
(5) ⇒ (1) Since E(M) is injective, E(M) ∈ I−1(M) and so by hypothesis, E(M) ∈
I−1(M). Therefore, M is injective. �

COROLLARY 2.11. The following are equivalent for a ring R.
(1) R is semisimple.
(2) For every R-module M, PI−1(M) = I−1(M).
(3) For every R-module M, PI−1(M) ⊆ I−1(M).
(4) For every R-module M, I−1(M) = I−1(M).
(5) For every R-module M, I−1(M) ⊆ I−1(M).
(6) For every R-module M, PI−1(M) = I−1(M).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1) are clear by Theorem 2.10.
(1) ⇒ (6) Obvious.
(6) ⇒ (1) Let M be an R-module. Then Mod-R = PI−1(PE(M)) and by hypothesis,
Mod-R = I−1(PE(M)). Hence, PE(M) is injective and so PE(M) ∈ I−1(M) ⊆
PI−1(M). Thus, M is PE(M)-pure-injective. Theorem 2.2 implies that M ∈ PI−1(M),
and by Theorem 2.3 , M is pure-injective, i.e., PI−1(M) = Mod-R. By (6), M is
injective. Since every R-module M is injective, R is semisimple. �

REMARK 2.12. Let R be a ring. If R ∈ PI−1(M) for a module M, then PI−1(M)
need not be equal to Mod-R. Consider a right pure-injective ring R which is not right
pure-semisimple (for example, an infinite direct product of the ring �/2� is right self-
injective as a ring but not right pure-semisimple because it is von Neumann regular).
Then R ∈ PI−1(M) for every module M by Theorem 2.4. On the other hand, by
Remark 1.1, there exists a module M which is not pure-injective.

Recall that a module M is called cotorsion if Ext1
R(F, M) = 0 for every flat module

F . It is known that every pure-injective module is cotorsion.

THEOREM 2.13. Let M and N be R-modules. Consider the following conditions:
(1) N ∈ PI−1(M).
(2) There exists a pure-injective extension K of N such that every homomorphism

from N to M can be extended to a homomorphism from K to M.
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(3) There exists a cotorsion extension K of N such that every homomorphism from
N to M can be extended to a homomorphism from K to M.

(4) For every extension K of N with K/N flat, every homomorphism from N to M
can be extended to a homomorphism from K to M.

Then (1) ⇔ (2) ⇒ (3) ⇔ (4). Also, if PE(N)/N is flat, then (4) ⇒ (1).

Proof. (1) ⇒ (2) Obvious by Theorem 2.2.
(2) ⇒ (1) Let L be a pure extension of N and f : N → M a homomorphism and
i : N → L the inclusion. By hypothesis, there exists a pure-injective module K with
N ≤ K and a homomorphism g : K → M such that giN = f where iN : N → K is the
inclusion. Also, there exists a homomorphism h : L → K with hi = iN because of the
pure-injectivity of K . Hence, ghi = f , and so f is extended to gh.
(2) ⇒ (3) Since every pure-injective module is cotorsion, the proof is clear.
(3) ⇒ (4) Let L be an extension of N with L/N flat and f : N → M a homomorphism.
Hence, 0 → N → L → L/N → 0 is a pure-exact sequence. If we apply the functor
HomR(−, K) to the pure-exact sequence where K is a cotorsion module in (3), then we
obtain the exact sequence

· · · → HomR(L, K) → HomR(N, K) → Ext1
R(L/N, K) = 0.

Since HomR(L, K) → HomR(N, K) is surjective, by a similar discussion in the proof
of the implication (2) ⇒ (1), f is extended to a homomorphism L → M.
(4) ⇒ (3) By Wakamatsu’s Lemma (see [16, Lemma 2.1.2]), C(N)/N is flat. The rest is
clear by (4).
(4) ⇒ (1) Let f : N → M be a homomorphism. Since PE(N)/N is flat, f is
extended to a homomorphism PE(N) → M. This implies that N ∈ PI−1(M) due to
Theorem 2.2. �

THEOREM 2.14. Let R be a ring, {Mi}i∈I a class of R-modules for any index set I and
N an R-module. Then N ∈ PI−1(

∏
i∈I Mi) if and only if N ∈ PI−1(Mi) for all i ∈ I.

Proof. Let N ∈ PI−1(
∏

i∈I Mi), i ∈ I and f : N → Mi be a homomorphism.
Then there exists a homomorphism g : PE(N) → ∏

i∈I Mi such that giN = iMi f where
iN : N → PE(N) and iMi : Mi → ∏

i∈I Mi are the inclusions. Let πMi denote the
natural projection

∏
i∈I Mi → Mi. Since πMi giN = f , f is extended to πMi g. Therefore,

N ∈ PI−1(Mi). Conversely, let N ∈ PI−1(Mi) for all i ∈ I and f : N → ∏
i∈I Mi be a

homomorphism. Hence for each i ∈ I , there exists gi : PE(N) → Mi with giiN = πMi f .
Now define g : PE(N) → ∏

i∈I Mi by g : x → (gi(x)). Since giN = f , g extends f . Thus,
N ∈ PI−1(

∏
i∈I Mi). �

COROLLARY 2.15. Let N be a module. Then the following hold:
(1) Every finite direct sum of N-pure-subinjective modules is N-pure-subinjective.
(2) Every direct summand of an N-pure-subinjective module is also N-pure-

subinjective.

THEOREM 2.16. Let M, N1 and N2 be R-modules. Then N1 ⊕ N2 ∈ PI−1(M) if and
only if Ni ∈ PI−1(M) for i = 1, 2.

Proof. Let N1 ⊕ N2 ∈ PI−1(M) and f : N1 → M a homomorphism. Since N1

is pure in N1 ⊕ N2, by Remark 1.3, PE(N1) is a direct summand of PE(N1 ⊕
N2). Let πN1 : N1 ⊕ N2 → N1 and iN1⊕N2 : N1 ⊕ N2 → PE(N1 ⊕ N2) be the natural
projection and inclusion, respectively. Then there exists a homomorphism g : PE(N1 ⊕
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N2) → M such that giN1⊕N2 = f πN1 . It is easy to check that giPE(N1)i′N1
= f , where

iPE(N1) : PE(N1) → PE(N1 ⊕ N2) and i′N1
: N1 → PE(N1) are the inclusions. Thus,

N1 ∈ PI−1(M). Similarly, N2 ∈ PI−1(M), as desired. Now let f : N1 ⊕ N2 → M
be a homomorphism, iN1⊕N2 and iNj denote the inclusions N1 ⊕ N2 → PE(N1 ⊕
N2) and Nj → N1 ⊕ N2, respectively, for each j = 1, 2. Since Nj ∈ PI−1(M), there
exist gj : PE(Nj) → M with gji′Nj

= f iNj for j = 1, 2. Since PE(N1) and PE(N2)
are direct summands of PE(N1 ⊕ N2), consider the homomorphism g1πPE(N1) +
g2πPE(N2) : PE(N1 ⊕ N2) → M, where πPE(N1) and πPE(N2) are natural projections. Due
to (g1πPE(N1) + g2πPE(N2))iN1⊕N2 = f , M is (N1 ⊕ N2)-pure-subinjective. �

As a consequence of Theorem 2.16 and Corollary 2.15, we have the next result.

COROLLARY 2.17. Let {Mi}i∈I and {Ni}i∈I be classes of R-modules for an index set
I = {1, . . . , n} with n a positive integer. Then

⊕
i∈I Mi is

⊕
i∈I Ni-pure-subinjective if and

only if Mi is Nj-pure-subinjective for all i, j ∈ I.

The following examples show that Theorem 2.14 and Theorem 2.16 do not hold
for infinite direct sums.

EXAMPLES 2.18.

(1) Consider the modules Mi = �pi and N = ⊕
i∈� Mi where pi is a prime

integer for all i ∈ �. Since every Mi is pure-injective, N ∈ PI−1(Mi) and
Mi ∈ PI−1(N) for all i ∈ �. But N is a pure submodule of

∏
i∈� Mi and

N is not a direct summand of it; hence, N is not pure-injective, and so
N /∈ PI−1(N) = PI−1(

⊕
i∈� Mi).

(2) If R is a right pure-injective ring which is not �-pure-injective over itself,
then R ∈ PI−1(R(I)) and R(I) ∈ PI−1(R) but R(I) /∈ PI−1(R(I)) for some infinite
index set I .

THEOREM 2.19. Let M and N be R-modules and K a submodule of N with
HomR(K, M) = 0. If M is (N/K)-pure-subinjective, then M is N-pure-subinjective.

Proof. Let f : N → M be a homomorphism. Since f iK ∈ HomR(K, M) = 0 where
iK : K → N is the inclusion, K ⊆ Kerf . By the Factor Theorem, there exists f̄ : N/K →
M with f̄ πN = f where πN : N → N/K is the natural projection. Also, N/K is pure
in PE(N)/K . By hypothesis, there exists h : PE(N)/K → M with hiN/K = f̄ where
iN/K : N/K → PE(N)/K is the inclusion. Since hπPE(N)iN = f , N ∈ PI−1(M). �

3. When pure relative subinjectivity is inherited by (pure) quotients and extensions.
In this section, we deal with the (pure) quotients of N-pure-subinjective modules
for a module N and cotorsion modules, and investigate when the class of N-pure-
subinjective modules is closed under extensions. We also obtain some characterizations
of the module PE(N)/N being flat for a module N in terms of the cotorsion envelope
of N. The following theorem is a generalization of [16, Theorem 3.5.1].
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THEOREM 3.1. The following are equivalent for a module N:
(1) PE(N)/N is flat.
(2) Every cotorsion module is N-pure-subinjective.
(3) C(N) is N-pure-subinjective.
(4) C(N) is pure-injective (i.e., C(N) = PE(N)).
(5) For every exact sequence 0 → P′ → P → P′′ → 0 with P′ pure-injective, if

(a) P′′ pure-injective, or
(b) P′′ = PE(N), or
(c) P′′ = C(N),
then P is N-pure-subinjective.

(6) For every exact sequence 0 → P′ → P → P′′ → 0 with P′ pure-injective and P′′

N-pure-subinjective, P is N-pure-subinjective.

Proof. (1) ⇒ (2) Let M be a cotorsion module. By applying the functor
HomR(−, M) to the exact sequence 0 → N → PE(N) → PE(N)/N → 0, we obtain

· · · → HomR(PE(N), M) → HomR(N, M) → Ext1
R(PE(N)/N, M) · · ·

Since PE(N)/N is flat, Ext1
R(PE(N)/N, M) = 0. HomR(PE(N), M) → HomR(N, M)

being surjective implies N ∈ PI−1(M).
(2) ⇒ (3) Obvious.
(3) ⇒ (4) Let i1 : N → C(N) and i : N → PE(N) be the inclusions. By (3), C(N) is N-
pure-subinjective; hence, by Theorem 2.2, there exists a homomorphism φ : PE(N) →
C(N) such that φi = i1. Since every pure-injective module is cotorsion and C(N) is
cotorsion envelope of N, there exists a homomorphism α : C(N) → PE(N) such that
αi1 = i. Thus, αφi = i and φαi1 = i1; hence, by the definitions of injective hull and
cotorsion envelope (see [16, Definition 1.2.1]), αφ and φα are automorphisms and
hence α and φ are isomorphisms.
(4) ⇒ (2) Let M be a cotorsion module. Since C(N) is the cotorsion envelope of N,
every homomorphism from N to M can be extended to a homomorphism from C(N)
to M. Thus by Theorem 2.2, M is N-pure-subinjective.
(2) ⇒ (5) Let 0 → P′ → P → P′′ → 0 be an exact sequence with P′ and P′′ cotorsion
R-modules. Since the class of cotorsion modules is closed under extension, P is also
cotorsion and hence by (2), P is N-pure-subinjective.
(5)(c) ⇒ (3) Let P = C(N) ⊕ P′. By hypothesis, P is N-pure-subinjective hence by
Corollary 2.15, C(N) is N-pure-subinjective.
(6) ⇒ (5)(a) ⇒ (5)(b) Obvious.
(5)(b) ⇒ (6) Let 0 → P′ → P

α→ P′′ → 0 be an exact sequence with P′ pure-injective
and P′′ N-pure-subinjective. By Theorem 2.2, for every homomorphism f : N → P,
there exists a homomorphism ϕ : PE(N) → P′′ such that αf = ϕi where i : N → PE(N)
is the inclusion. Now consider the following pullback diagram:

0 �� P′

1

��

�� L

g

��

ψ �� PE(N)

ϕ

��

�� 0

0 �� P′ �� P α
�� P′′ �� 0

By pullback diagram property, there exists a homomorphism φ : N → L such that
gφ = f and ψφ = i. By hypothesis, L is N-pure-subinjective, so by Theorem 2.2, there
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exists a homomorphism λ : PE(N) → L such that λi = φ. Thus, gλi = gφ = f and so
by Theorem 2.2, P is N-pure-subinjective.
(5)(b) ⇒ (1) By [16, Lemma 3.4.1], it is enough to show that Ext1

R(PE(N)/N, K) = 0
for every pure-injective module K . Let K be a pure-injective module. For every exact

sequence 0 → K → H
f→ PE(N)/N → 0, consider the pullback diagram of f : H →

PE(N)/N and π : PE(N) → PE(N)/N,

0 �� K

1

��

�� L

g

��

α �� PE(N)

π

��

�� 0

0 �� K �� H
f

�� PE(N)/N �� 0

and since the following diagram commutes:

N

0

��

i �� PE(N)

π

��
H

f
�� PE(N)/N

so by the property of pullback diagram, there exists a homomorphism σ : N → L such
that ασ = i and gσ = 0. By hypothesis, L is N-pure-subinjective, thus by Theorem
2.2, there exists a homomorphism φ : PE(N) → L such that φi = σ and so αφi = i.
By the property of pure-injective hulls, αφ is an automorphism of PE(N); hence,
i = (αφ)−1i and gφ(αφ)−1i = gφi = gσ = 0. Therefore, π = fgφ(αφ)−1 and it implies
that iPE(N)/N = f ψ where ψ = gφ(αφ)−1 : PE(N)/N → H and iPE(N)/N : PE(N)/N →
PE(N)/N. Consequently, Ext1

R(PE(N)/N, K) = 0. �
COROLLARY 3.2. The following statements hold:

(1) For a pure submodule N of a module M, if PE(M) is flat, then C(N) is a pure-
injective flat module.

(2) For a cotorsion module M, PE(M)/M is flat if and only if M = PE(M).
(3) Let A be a class of all cotorsion �-modules. Then for every �-module M in A,⊕

i∈� �pi and
⊕

i∈� �pi belong to PI−1(M), where p and pi are prime integers for
all i ∈ �.

Proof.
(1) Let N be a pure submodule of M. By Remark 1.3, PE(N) is a direct summand

of PE(M), and so PE(N) is flat by hypothesis. Consider the pure-exact sequence
0 → N → PE(N) → PE(N)/N → 0. Flatness of PE(N) implies that PE(N)/N
is flat by [7, Corollary 4.86]. Therefore, C(N) is pure-injective due to Theorem
3.1.

(2) It is an easy consequence of Theorem 3.1.
(3) It is a consequence of Theorem 3.1 by the facts that PE(

⊕
i∈� �pi ) = ∏

i∈� �pi

where pi is a prime integer for all i ∈ � and
∏

i∈� �pi/
⊕

i∈� �pi is divisible
torsion-free, and so a flat �-module. Similar discussion also holds for

⊕
i∈� �pi

where p is a prime integer.
�

Recall that a ring R is called left coherent provided that every finitely generated
left ideal is finitely presented.
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THEOREM 3.3. Let R be a left coherent ring. Assume for any R-module N and
every exact sequence 0 → A → B → C → 0, A being pure-injective and B being N-
pure-subinjective implies that C is N-pure-subinjective. Then PE(N)/N is flat.

Proof. Let N be an R-module such that for every exact sequence 0 → A → B →
C → 0, A being pure-injective and B being N-pure-subinjective implies that C is N-
pure-subinjective. Consider an exact sequence 0 → P′ → P → PE(N) → 0 with P′

pure-injective, we shall show that P is N-pure-subinjective, then by Theorem 3.1,
PE(N)/N is flat. By [4], PE(N) has a flat cover F . Consider the following pullback
diagram:

0

��

0

��
K

��

K

f
��

0 �� P′

1

��

�� L

σ

��

τ �� F

ρ

��

�� 0

0 �� P′ �� P

��

g
�� PE(N)

��

�� 0

0 0

By [16, Lemma 3.2.4], F and K are pure-injective. Also, F being flat implies that the
sequence 0 → P′ → L → F → 0 is pure-exact. Since P′ is pure-injective, L ∼= F ⊕ P′,
and so L is pure-injective. Hence by hypothesis, P is N-pure subinjective. Therefore,
PE(N)/N is flat. �

THEOREM 3.4. The following statements are equivalent for a module N:
(1) The class of N-pure-subinjective modules is closed under extensions.
(2) For every exact sequence 0 → P′ → P → C(N) → 0 with P′ N-pure-

subinjective, P is N-pure-subinjective.
(3) For every exact sequence 0 → P′ → P → PE(N) → 0 with P′ N-pure-

subinjective, P is N-pure-subinjective.

Proof. (1) ⇒ (2) Let 0 → P′ → P → C(N) → 0 be an exact sequence with P′ N-
pure-subinjective. We prove that C(N) is N-pure-subinjective. Let 0 → A′ → A →
A′′ → 0 be an exact sequence with A′ pure-injective and A′′ N-pure-subinjective.
Then A′ is also N-pure-subinjective. By hypothesis, A is N-pure-subinjective. Thus
by Theorem 3.1(3) ⇔ (6), C(N) is N-pure-subinjective and so again by hypothesis, P
is N-pure-subinjective.
(2) ⇒ (3) Let 0 → P′ → P → C(N) → 0 be an exact sequence with P′ pure-injective.
Then P′ is N-pure-subinjective. By (2), P is N-pure-subinjective. By Theorem 3.1(4) ⇔
(5)(c), C(N) is pure-injective. Therefore, C(N) = PE(N).
(3) ⇒ (1) It is similar to the proof of (5)(b) ⇒ (6) of Theorem 3.1. �

The next lemma is analogue of the characterization of projectivity in terms of
injective modules in [11, Lemma 4.22].
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LEMMA 3.5. A module M is pure-projective if and only if it has the projective property
relative to every pure-exact sequence 0 → A → B → C → 0 of modules with B pure-
injective.

Proof. The necessity is clear. For the sufficiency, let 0 → K → L → N → 0 be a
pure-exact sequence of modules and consider the following diagram:

0

��

M

f
��

0 �� K

1

��

i �� L

σ

��

τ �� N

ρ

��

�� 0

0 �� K σ i
�� PE(L)

π
�� Q �� 0

where σ : L → PE(L) is the inclusion and Q = PE(L)/Im(σ i). Note that ρ exists
by diagram chasing with πσ = ρτ . Since the first row is pure-exact and L is pure
in PE(L), the second row is pure-exact. By hypothesis, there exists g : M → PE(L)
such that πg = ρf . We claim that Img ⊆ L. Let m ∈ M. Since τ is surjective, there
exists x ∈ L such that τ (x) = f (m). Then πσ (x) = ρτ (x) = ρf (m) = πg(m). Hence,
σ (x) − g(m) ∈ Kerπ = Im(σ i), so g(m) = σ (x − i(k)) for some k ∈ K . Since σ is the
inclusion, g(m) ∈ L. Thus, Img ⊆ L, and so M is pure-projective. �

THEOREM 3.6. Let N be a module and consider the following conditions:
(1) N is pure-projective.
(2) Every pure quotient of an N-pure-subinjective module is N-pure-subinjective.
(3) Every pure quotient of a cotorsion module is N-pure-subinjective.
(4) Every pure quotient of a pure-injective module is N-pure-subinjective.

Then (1) ⇒ (2) ⇒ (4) and (3) ⇒ (4). If PE(N) is pure-projective, then (4) ⇒ (1). Also,
(2) ⇒ (3) if PE(N)/N is flat.

Proof. (1) ⇒ (2) Let M be an N-pure-subinjective module, K a pure submodule
of M and f : N → M/K a homomorphism. Let π : M → M/K denote the natural
projection. By the pure-projectivity of N, there exists a homomorphism g : N → M
such that f = πg. Since M is N-pure-subinjective, g = hiN for some homomorphism
h : PE(N) → M where iN : N → PE(N) is the inclusion. Due to πhiN = f , M/K is
N-pure-subinjective.
(2) ⇒ (4) and (3) ⇒ (4) are obvious.
(4) ⇒ (1) Let M be a pure-injective module and consider a pure-exact sequence
0 → K → M

π→ M/K → 0 where K is a pure submodule of M. Let f : N → M/K be
a homomorphism. By (4), N ∈ PI−1(M/K). Then gi = f for some g : PE(N) → M/K
where i : N → PE(N) is the inclusion. By the pure-projectivity of PE(N), there exists
h : PE(N) → M such that πh = g. Hence, we have πhi = f . Therefore, N is pure-
projective by Lemma 3.5.
If PE(N)/N is flat, then (2) ⇒ (3) follows from Theorem 3.1(1)⇔(2). �

COROLLARY 3.7. Consider the following conditions for an R-module N.
(1) Every flat R-module is N-pure-subinjective.
(2) Every projective R-module is N-pure-subinjective.
(3) Every free R-module is N-pure-subinjective.
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Then (1) ⇒ (2) ⇔ (3). If N is pure-projective, then (3) ⇒ (1).

Proof. (1) ⇒ (2) ⇒ (3) Obvious. (3) ⇒ (2) Clear by Corollary 2.15(2).
Now assume that N is pure-projective and (3) holds. Let M be a flat module. Then M
is a pure quotient of a free module F . Since F is N-pure-subinjective, by Theorem 3.6,
M is N-pure-subinjective. Therefore, (1) holds. �

THEOREM 3.8. Let N be a module and consider the following conditions:
(1) N is projective.
(2) Every quotient of an N-pure-subinjective module is N-pure-subinjective.
(3) Every quotient of a cotorsion module is N-pure-subinjective.
(4) Every quotient of a pure-injective module is N-pure-subinjective.
(5) Every quotient of an injective module is N-pure-subinjective.

Then (1) ⇒ (2) ⇒ (4) ⇒ (5) and (3) ⇒ (4). If PE(N) is projective, then all of them are
equivalent. Moreover, consider

(6) every quotient of a flat cotorsion module is N-pure-subinjective;
(7) every cotorsion module is N-pure-subinjective.

Then (3) ⇒ (6) ⇒ (7). Also, together (1) and (7) imply (3).

Proof. (1) ⇒ (2) and (1) and (7) ⇒ (3) are similar to the proof of (1) ⇒ (2) in
Theorem 3.6.
(2) ⇒ (4) ⇒ (5), (3) ⇒ (4) and (3) ⇒ (6) are obvious.
(5) ⇒ (1) It is proved as (4) ⇒ (1) in Theorem 3.6.
(2) ⇒ (3) PE(N) being projective implies that PE(N)/N is flat. So Theorem 3.1
completes the proof.

(6) ⇒ (7) Let M be a cotorsion module. Then M has a flat cover F
f→ M → 0. By

Wakamatsu’s Lemma (see [16, Lemma 2.1.1]), Kerf is cotorsion. It follows that F is
also cotorsion. By (6), M ∼= F/Kerf is N-pure-subinjective. �

COROLLARY 3.9. Consider the following conditions for an R-module N:
(1) R is N-pure-subinjective as an R-module.
(2) Every finitely presented R-module is N-pure-subinjective.
(3) Every finitely generated R-module is N-pure-subinjective.

Then (3) ⇒ (2) ⇒ (1). If N is projective, then (1) ⇒ (3).

Proof. (3) ⇒ (2) ⇒ (1) Obvious.
Now assume that N is a projective module and (1) holds. Let M be a finitely generated
module. Then M is a quotient of a finitely generated free module F . By Corollary
2.15(1), F is N-pure-subinjective, and so N ∈ PI−1(M) by Theorem 3.8. Therefore, (3)
holds. �

COROLLARY 3.10. The following are equivalent for an R-module M:
(1) M is R-pure-subinjective.
(2) Every finitely generated projective R-module belongs to PI−1(M/K) for each

submodule K of M.
(3) Every finitely generated projective R-module belongs to PI−1(M/K) for each

pure submodule K of M.

Proof. (1) ⇒ (2) Let R ∈ PI−1(M). By Theorem 2.16, every finitely generated
free R-module belongs to PI−1(M), then so does every finitely generated projective
R-module. For any submodule K of M and any finitely generated projective R-module
P, due to Theorem 3.8, P ∈ PI−1(M/K).
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(2) ⇒ (3) Obvious.
(3) ⇒ (1) Clear by the fact that 0 is a pure submodule of M. �

In [2], a ring R is called right pure hereditary if every pure right ideal of R is
projective. The next result is a characterization of right pure hereditary rings whose
pure-injective hulls are projective in terms of pure-subinjectivity.

THEOREM 3.11. Let R be a ring and S denote the set {I ≤ RR : I is pure in R}.
Consider the following conditions:

(1) R is right pure hereditary.
(2) For every I ∈ S, every quotient of an I-pure-subinjective module is I-pure-

subinjective.
(3) For every I ∈ S, every quotient of a cotorsion module is I-pure-subinjective.
(4) For every I ∈ S, every quotient of a pure-injective module is I-pure-subinjective.
(5) For every I ∈ S, every quotient of an injective module is I-pure-subinjective.

Then (1) ⇒ (2) ⇒ (4) ⇒ (5) and (3) ⇒ (4). If PE(RR) is projective, then all of them are
equivalent.

Proof. Let I ∈ S. By Remark 1.3, PE(I) is a direct summand of PE(RR). If PE(RR)
is projective, then so is PE(I). The rest is clear by Theorem 3.8. �

4. Further results. This section is devoted to further results on the concept
of pure-subinjectivity. We show that the pure-subinjectivity domain of any non-
singular module is closed under the essential pure-extensions. It is also obtained
that endomorphism rings of pure-injective right modules are right pure-injective.
In the next, we completely determine the pure submodules which belong to pure-
subinjectivity domain of a module.

THEOREM 4.1. Every pure submodule N of a module M with N ∈ PI−1(M) is pure-
essential in a direct summand of M, also this direct summand is PE(N).

Proof. Let M be a module, N a pure submodule of M and N ∈ PI−1(M). Then
there exists f : PE(N) → M such that f |N = i where i : N → M is the inclusion. We
claim that f is monic. To see this, let p ∈ PE(N) with f (p) = 0. If p ∈ N, then p = 0.
Assume that p /∈ N. Since f |N = i, clearly, pR ∩ N = 0. Let

∑n
i=1 xirij = nj + pR be a

finite system of equations over (pR + N)/pR where rij ∈ R, nj ∈ N for j = 1, . . . , m and
{ai + pR : i = 1, . . . , n} a solution in PE(N)/pR. Then

∑n
i=1(ai + pR)rij = nj + pR, and

so
∑n

i=1 airij = nj + prj for some rj ∈ R and j = 1, . . . , m. Since f |N = i and f (p) = 0,
we obtain

∑n
i=1 f (ai)rij = nj for j = 1, . . . , m. Due to purity of N in M, there exists {bi ∈

N : i = 1, . . . , n} such that
∑n

i=1 birij = nj for j = 1, . . . , m. It follows that
∑n

i=1(bi +
pR)rij = nj + pR for j = 1, . . . , m. Hence, (pR + N)/pR is pure in PE(N)/pR. Since
N is pure-essential in PE(N), we have pR = 0, and so p = 0. Thus, PE(N) ≤ M. On
the other hand, since N is pure in M, PE(N) is a direct summand of PE(M). By the
modularity condition, the pure-essential extension PE(N) of N is a direct summand
of M. �

The next result is a consequence of Theorems 4.1 2.14.

COROLLARY 4.2. Let M be a module and N a submodule of M. Then the following
are equivalent:
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(1) N is pure in M and N ∈ PI−1(M).
(2) M = PE(N) ⊕ K for some submodule K of M and N ∈ PI−1(K).

For a module M, Z(M) = {m ∈ M | mI = 0 for some essential right ideal I in
R} is called singular submodule of M. Equivalently, m ∈ Z(M) if and only if the right
annihilator rR(m) of m in R is an essential right ideal of R. Recall that a module M
with Z(M) = 0 is called non-singular.

THEOREM 4.3. Let M be a non-singular module and N ∈ PI−1(M). Then every
essential pure extension of N belongs to PI−1(M).

Proof. Let K be an essential pure extension of N, L a pure extension of K , and
f : K → M a homomorphism. Then N is pure in L. Since N ∈ PI−1(M), there exists
g : L → M with g|N = f |N . We claim that rR(f (k) − g(k)) is essential in R for any
k ∈ K . Let k ∈ K and 0 �= a ∈ R. If ka = 0, then a ∈ rR(f (k) − g(k)). If ka �= 0, then
there exists b ∈ R such that 0 �= kab ∈ N by the essentiality of N in K . Hence, f (kab) =
g(kab), and so 0 �= ab ∈ rR(f (k) − g(k)). Thus, we proved the assertion. This implies
f (k) − g(k) ∈ Z(M) = 0. It follows that g extends f . Therefore, K ∈ PI−1(M). �

In the following, we deal with an R-module structure of an R/I-module where I
is an ideal of a ring R.

THEOREM 4.4. Let R be a ring, I an ideal of R, M an R/I-module and N an R-module.
If M is an N/(NI)-pure-subinjective R/I-module, then it is an N-pure-subinjective R-
module.

Proof. Let N/(NI) ∈ PI−1(MR/I ), an R-module K be a pure extension of N and
f : N → M an R-homomorphism. By Remark 1.4, N/NI can be embedded in K/KI as
a pure submodule via g : N/NI → K/KI defined by g(n + NI) = n + KI for any n ∈
N. Since NI ≤ Kerf , by Factor Theorem, there exists f̄ : N/(NI) → M such that f̄ πN =
f where πN : N → N/NI is natural projection. By assumption, there exists an R/I-
homomorphism h : K/KI → M such that hg = f̄ . Since h is also an R-homomorphism
and hπK iN = f where πK : K → K/KI is the natural projection and iN : N → K is the
inclusion, hπK extends f . Thus, N ∈ PI−1(MR). �

COROLLARY 4.5. Let R be a ring and I an ideal of R. Then the following hold:
(1) Let M and N be R/I-modules. Then M is an N-pure-subinjective R-module if

and only if it is an N-pure-subinjective R/I-module.
(2) [6, Theorem 3.7] Let M be an R/I-module. Then M is a pure-injective R-module

if and only if it is a pure-injective R/I-module.
(3) Let M be an R-module. Then PE(M/MI) has an R/I-module structure.

Proof. (1) The necessity is clear. The sufficiency holds by Theorem 4.4.
(2) This known result is a consequence of (1) by using Theorem 2.3.
(3) Due to (2), PE(M/MI)R/I is pure-injective as an R-module. By the definition of
the pure-injective hull of a module, PE(M/MI)R is contained in PE(M/MI)R/I . This
implies that PE(M/MI)R has an R/I-module structure. �

We close this paper by observing some results about the functor HomR(−,−), in
particular, the endomorphism rings of modules.

THEOREM 4.6. Let M be a right R-module and N a left S- right R-bimodule. If M is
N-pure-subinjective, then HomR(N, M) is an S-pure-subinjective right S-module.
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Proof. Let K be a pure extension of S as a right S-module. We need to show that
HomS(K, HomR(N, M)) → HomS(S, HomR(N, M)) is epic. For any left R-module
A, since S is pure in K as a right S-module, we have an exact sequence

0 → S ⊗S (N ⊗R A) → K ⊗S (N ⊗R A)

and so 0 → (S ⊗S N) ⊗R A → (K ⊗S N) ⊗R A. Hence, S ⊗S N is pure in the right R-
module K ⊗S N. Since S ⊗S N ∼= N as a right R-module and N ∈ PI−1(M), we obtain
the exact sequence HomR(K ⊗S N, M) → HomR(S ⊗S N, M) → 0. By the Adjoint
Isomorphism, we have the exact sequence

HomS(K, HomR(N, M)) → HomS(S, HomR(N, M)) → 0

as desired. Therefore, S ∈ PI−1(HomR(N, M)). �
Corollary 4.7(3) is known from [13, Lemma 33.4], also it is obtained as a

consequence of Theorems 2.3 and 4.6.

COROLLARY 4.7. The following hold:
(1) Let M and N be right R-modules. If N ∈ PI−1(M), then EndR(N) ∈

PI−1(HomR(N, M)) as a right EndR(N)-module.
(2) Let M be a module and N a submodule of M with N ∈ PI−1(M). If f (N) ⊆ N

for every homomorphism f : N → M, then EndR(N) is right pure-injective.
(3) Endomorphism ring of any pure-injective module is right pure-injective.

Proof. (1) Clear from Theorem 4.6. (3) The proof follows from (2).
(2) By (1), the right EndR(N)-module EndR(N) belongs to PI−1(HomR(N, M)). On
the other hand, HomR(N, M) = EndR(N) by hypothesis. Hence, EndR(N) is right
pure-injective due to Theorem 2.3. �
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