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THREE TEST PROBLEMS FOR QUASISIMILARITY 

HARI BERCOVICI 

1. Kaplansky proposed in [7] three problems with which to test the 
adequacy of a proposed structure theory of infinite abelian groups. These 
problems can be rephrased as test problems for a structure theory of 
operators on Hilbert space. Thus, R. Kadison and I. Singer answered in [6] 
these test problems for the unitary equivalence of operators. We propose 
here a study of these problems for quasisimilarity of operators on Hilbert 
space. We recall first that two (bounded, linear) operators T and T\ acting 
on the Hilbert spaces J^ and 3tf", are said to be quasisimilar if there exist 
bounded operators X\3F —» 3fé" and Y\JF' —> 3% with densely defined 
inverses, satisfying the relations T'X = XT and TY = YT'. The fact that 
T and Tf are quasisimilar is indicated by T ~ Tf. The problems 
mentioned above can now be formulated as follows. 

Problem 1. If T and Tf are operators acting on Hilbert spaces, and 
TQ T ~ T' Q T',is it true that T and T' are quasisimilar? 

Problem 2. Assume that T, T\ and T" satisfy the relation T © T' ~ 
r e r . Does it follow that T and T" are quasisimilar? 

Problem 3. Assume that T7, T]9 T\ and T{ are such that T ~ T' © T[ 
and r - r e i 7 ! . Does it follow that T ~ T"> 

As in the case of unitary equivalence, it is clear that Problem 2 has a 
negative answer, unless some finiteness assumption is made about T. 
Simple counterexamples can be produced by taking T, T\ T" to be the 
zero operators on Hilbert spaces of various dimensions. In the case of 
unitary equivalence the answer to Problem 3 is always yes, and this can be 
seen by applying a version of the Cantor-Bernstein argument. The reader 
will easily convince himself that such an argument is bound to fail for 
quasisimilarity, or even for similarity. 

In what follows we will give complete answers to the three problems 
stated above in the particular case in which all the operators involved are 
of class C0. For the reader's convenience we recall some basic definitions 
(cf. also Chapter III of [8] ). An operator T, acting on a Hilbert space, 
is said to be of class C0 if it is a completely nonunitary contraction (i.e., 
| | r | | ^ 1 and Thas no unitary direct summands) and u(T) = 0 for some u 
in the algebra H°° of all bounded analytic functions on the unit disc 
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D = {\:|\| < 1}. 

The latter condition means that 

lim u(rT) = 0 

in the strong operator topology, where u(rT) is given, for example, by the 
Riesz-Dunford functional calculus. If T is an operator of class C0, 
the ideal {u e H°°:U(T) = 0} is principal, and it is generated by an 
(essentially unique) inner function denoted mT. 

The simplest operators of class C0 are the Jordan blocks which we 
presently define. Denote by H the usual Hardy space for D, that is, 

{ oo oo > 

f:f(\) = 2 an\", \\\ < 1, 2 \af < + <x> }, 
w=0 « = 0 ' 

and denote by 5 the shift operator on H2 defined by 

(Sf)(\) = \f(K), f G H\ A e D. 

For every inner function 0 e i/°° we set 

^T(<9) = H2 Q OH2, 

and denote by 5(0) the compression of 5 to Jf(0)\ 
S(ff) = PjrwSWiff). 

The operator S(6) is called a Jordan block; it is an operator of class C0 

and the ideal 

[u e H°°:u(S(0)) = 0} 

is generated by 0. Note that S(6) = 5((9r) if and only if 0r = yd for some 
y G C, H = 1. We write 6 = 0' if 5(0) - 5(0r)-

We can now define a more general class of operators, called the Jordan 
operators. Assume that for each ordinal number a we are given an inner 
function 6a G H°° such that 

(i) 6a divides Op whenever a ^ /?; 
(ii) 0a = dp whenever card(a) = card(j8); and 

(iii) 0a = 1 for some a (and hence Op = 1 for /? ^ a). 
In this case the operator 

T - $ S(0a) 

is called a Jordan operator; T is of class C0 and m r = 0O. The following 
result, proved in [3] and [1], shows why Jordan operators are important in 
the study of the class C0. 

THEOREM 4. Every operator T of class C0 is quasisimilar to a unique 
Jordan operator, called the Jordan model of T. 
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We are now able to answer Problem 1 for the class C0. 

PROPOSITION 5. Assume that T and T' are operators of class C0. If 
T®T~T'®V, then T ~ V. 

Proof. The idea is that the Jordan model of T can be determined if we 
know the Jordan model T © T. Indeed, assume that 

© S(<eJ 
a 

is the Jordan model of T, and define inner functions \pa as follows: 

\pa = <pk if a = Ik or a = 2k + 1, k < <o, 

^a = <*>« if a = w. 
(Here co denotes, as usual, the first transfinite ordinal.) It is easy to check 
that 

© SOW 
a 

is a Jordan operator, and every inner function 6 appears twice as often 
among the \pa than among the <pa; this follows from conditions (ii) above, 
and the equality S = 2S for infinite cardinals X. Thus T © T is 
quasisimilar to 

© swa), 
a 

and hence © a S(\pa) must be the Jordan model of T © T. Now, it is clear 
that 

fa = 2̂«> « < co, and 

so that the Jordan model of T can be obtained from the Jordan model of 
T © T, as claimed. Now, if T © T — Tr © T, it follows that T © T and 
r r © T' have the same Jordan model. Consequently T and T' have the 
same Jordan model, and hence T ~ T' by Theorem 4, as desired. 

Likewise, Problem 3 has a positive answer whose proof is based on 
Jordan operators. In fact. B. Sz.-Nagy and C. Foias proved in [9] a much 
stronger result which we state below. We recall that an operator T can be 
injected into an operator T' if there exists a continuous one-to-one 
operator X satisfying the equation T'X = XT. We indicate by T -k Tf the 
fact that T can be injected into T'. Then the relevant result in [9] is as 
follows. 

THEOREM 6. Assume that T and T' are operators of class C0. If T -k T' 
and T' -k T, then T ~ T'. 

This clearly answers Problem 3, since T ~ T' © T[ implies easily 
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that V k T and, likewise, V ~ T ® Tx implies that T k V. 
Problem 2 is more difficult to answer, and its solution will occupy the 

rest of this paper. As mentioned above, a positive answer to Problem 2 can 
only be obtained under some additional finiteness assumption (we note 
here that the zero operator on any Hilbert space is an operator of class C0, 
so that the counterexample mentioned above does apply to the class C0). 
In order to arrive at the right finiteness assumption we need some 
preliminaries, and we begin with some simple combinatorics. 

We denote by 5^ the set of all bounded sequences {xn\n ^ 0} of 
nonnegative real numbers, and by 5^ the collection of all nonincreasing 
sequences i n ^ We can define a sorting operation sort: Sf —>Ŝ 0 as follows. 
Let x = {xn:n i^ 0} be an element of ^ and set 

°o = 0, on = sup{xZ] + xl2 < . . . + xln: 

0 ^ i, < i2 < . . . < in) for n ^ \. 

It is clear that the sequence {on:n â 0} is nondecreasing, and we set 
sort(jc) = y, where y = {yn:n i? 0} is given by 

yn = °n+\ - <v n = o. 
The following result shows that sort(x) belongs to S^0, and that sort is 
indeed a sorting in many cases (it is instructive to calculate sort(x) in case 
x is an increasing sequence). 

LEMMA 7. Let x = {xn:n ^ 0} and y = {yn'.n ^ 0} be such that x e 5f 
and sort(x) = y. Then for every integer n = 0, and every positive real 
number t the following assertions are equivalent: 

(ii) card{i:xi > t} ^ n. 

Proof Assume first that (ii) holds, and let 0 ^ iA < i2 < . . . < /„ + 1 be 
integers. Then it follows that there exists some k, 1 ^ k ^ n -\- 1, such 
that JC, â t. Thus 

lk 

X: + X: + . . . + X: = 2j X: + X: 
' l l2 ln+\ . , . lj lk 

^ 2 x, + t 
j*k J 

^ °n + U 
and, since zl5 /2, • • •, in + \ were arbitrarily chosen, we deduce that 

°n+\ = a« + '• 

Thus 

that is (i). 
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Conversely, assume that (ii) fails, so that 

c2LTd{i:xi > t} ê n + 1, 

and choose c such that actually 

C2Lrd{i:xi ^ / + c} ^ « + 1. 

Let 0 ^ Z] < i2 < . . . < /„ be a sequence of integers. Then there must 
exist /* £ {/j, z2, . . . , in} such that st ^ t + e; we infer 

« n 

2 -S/. + * + * = 2 *,-. + X; ̂  â  + 1 
7 = 1 ' 7 = 1 J 

and, as before, this implies that 

an + t + e ^ aw + 1. 

Equivalently, we proved that t + e ^ yn, and hence (i) fails. The lemma is 
proved. 

If JC = {xn:n ^ 0} andjy = {yn\n = 0} are elements of £? we denote by 
x U y the sequence JC0, y0, x^, y^9. . . i.e., 

x U y = {z„:/7 g 0}, 

where z2A: = x^ and z2k + \ = J^, /: ^ 0. 

LEMMA 8. Assume that x is a sequence in S^0. The map 

y —> sort(x U y) 

is one-to-one on S^0 if and only if x converges to zero. 

Proof. Assume first that x = {xn:n = 0} does not converge to zero, and 
let j^ = {yn'-n = 0} be defined by^ 7 = t, n i? 0, where / is any number 
satisfying 

0 < / < lim xn. 

It is easy to verify that x = sort(x U j ) , and hence the map 

y —> sort(jc U y) 

is not one-to-one. 
Conversely, assume that 

lim xn = 0, 
n—>oo 

and let y = {y'n'-n = 0} and y" = {y^'-n = 0} be two distinct elements 
of <9Q. Denote by q the first integer such that y'q ¥= j / ' and assume for 
definiteness that y' < y'J. Denote next by p the first integer satisfying the 
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inequality x < y^\ such an integer exists because 

lim xn = 0. 
n—*oo 

We will show that 

sortO U / ) = {zf
n\n ^ 0} 

is different from 

sort(jc U / ' ) = {z'^n â 0} 

by proving that 

°p+q+\ = Z0 + Z\ + • • • + 4+4+1 ^ °p+q+\ 

— z 0 ^ z l 1" • • • "•" z/7 + < ? + 1 . 

The definition of sort, and that fact that x, y' e ^Q, shows that 

<^+<7+i = max{x0 + ^ + . . . + xj + ^ 

+ / , + . . . + j ; + , - y - i : - l ^ 7 ^ / > + <?}, 

where the x terms [respectively the y terms] are absent if j = — 1 [res
pectively j = p + q]. We claim that the maximum is attained either for 
j = p — 1, or for j = p. Indeed, if j ^ p — 2, we have 

j + \ ^ p — \ and p + q— j — \ ^ q + l , 

so that 

*/ + ! = XP~\ >y'q>y'q =?q + \ =yp+q-j-\' 

It is then easy to see that 

X0 + XX + . . . + Xj + /0 + / ! + . . . + j / +^- 7 - l 

< X0 + Xj + . . . + *,-+, + ^ + / ! + . . . + ^+^_y._2» 

and hence the maximum is not attained for j ^ p — 2. Analogously, if 
j ^ p + \, then p + q — j = q — 1, from which we deduce 

and 

x0 + x, + . . . + xj + y'0 + y\ + ... + y'p +q-j-] 

< x0 + x, + ... + xJ_] + y'0 + y\ + ... + yp +q_r 

We conclude that 
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°p+q+\ = max{x0 + x, + . . . + xp_x + y'0 + y\ 4- . . . + y'r 

x0 + x, + . . . + xp + ^ + y\ + . . . + yq_x) 

= x0 + xx + . . . + x ^ + y'0 + / , + . . . + y'q_x 

+ m a x ^ j / } . 

Analogously, 

< ^ V n = *o + *i + • • • + xp-\ + ^o + / / + • .• + yZ-i 

+ max{^ , >£} 

= x0 + X! + . . . + xp_x + y'0+ y\ + . . . + >^_1 + >£ 

and it is readily seen that 

°p+q+\ < °p+q+\' 

Therefore the map y —> sort(x U y) is one-to-one, as desired. The lemma 
follows. 

In order to see what is the relevance of sorting to the theory of the class 
C0, we study the Jordan models of certain operators acting on separable 
spaces. Let {<p.:j < to} be a sequence of inner functions in H°°. We remark 
that the operator 

T = e sty 

(not assumed to be a Jordan operator) is of class C0 if and only if 
the family {<p.:y < co} admits a least common inner multiple, denoted 
V{<Vj'.j < to}. Moreover, if T is of class C0, then 

mT = V{<p :y < OJ}. 

Assume now that 

T = e s(V.) 

is an operator of class C0, and consider the natural question of 
determining the Jordan model of T. Let 

0 Sty) 

denote the Jordan model of T (we have 0^=1 because T acts on a 
separable space). By the results of [4], we have 

Bj = dj+x/dp j < co, 

where d0 = 1, and, for j ^ 1, ^ is the least scalar multiple of the yth 
exterior power of the characteristic function of T. Now, the characteristic 
function of T clearly coincides (in the sense of [8], Chapter VI) with the 
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diagonal matrix whose diagonal entries are the functions <p-, j < co. Thus 
we see that they'th exterior power of this characteristic function coincides 
with a diagonal matrix whose diagonal entries are all the possible 
products 

<pl}<Pi2 - • • v,-. with i, < i2 < < ijm 

We deduce at once the formula 

dj = V{V/iV/-2. . . <çt\ix < i2 < / , } , j ^ 1. 

The formula for Q. can thus be viewed as a multiplicative analogue of the 
sorting operation in H°°. The analogy can be made more precise by 
the use of the factorization theory for inner functions. 

We recall (cf., e.g., [5] ) the definitions of Blaschke products and of 
singular inner functions. For every point a e D we set 

Ba(X) = X if a = 0, and 

a 1 — aX 

Assume now that /x:Z) —> {0, 1, 2, . . . } is a function satisfying the 
condition 

2 Ka)(l ~\a\)< +oo. 

Then the Blaschke product b^ determined by ju is defined as 

tyX) = I ! Ba(Xfa\ À e D , 

and it is an inner function. Let now v be a finite positive Borel measure 
on 

T = {Mfl = 1}, 

singular to Lebesgue (arclength) measure, and define the singular inner 
function sv by 

(̂X) = exp(-jT^|^(n). 

It is known that every inner function 0 e H°° can be written uniquely 
as 

0 = yb^sv, 

where y e T, b^ is a Blaschke product, and sv is a singular inner 
function, as defined above. Moreover, if 0' = y'b^Sj is another inner func
tion, then 
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00' = yYb^^sv^v, 

In particular, it follows that 0 divides 0' if and only if /x ^ /x' and v ^ v' 
(these inequalities are defined in the obvious way). 

Let us return now to our operator 

T = e S(<PJ), 

which we assume to be of class C0. Consider an arbitrary inner function 

6 = ybflsv 

such that 0(T) = 0. As noted above, 0 must be a common inner multiple 
of {ffj.j < to}, and hence we can write 

Vj = YA/v J < w> 
with fij ^ ju and v- ^ v. Furthermore, we may write dv- = f-dv, where f- is a 
Borel function defined on T such that 0 ^ / ^ 1, j < to. We compute 
next the functions dp 1 ^ j < to, where 

4 = v K<r , 2 • • • Vi.:i\ < i2< < *}}. 

Since 

<*^2 • • • <Pi. = YZlY,2 • • • Y ^ + ^ + . . . + ^ . + ^ + . . . + v 

it is easily seen that 

dj = V"; 
where 

p!j(a) = sup{/^(tf) + /^(a) + . . . + JU^Û):/, < z2 < . . . < / } } , a e A 

^ / = / / ^ > a n d 

fj® = suP{y;.i(n + 4(f) + • • • + fip-.h < h < • < (,•>• 
Finally, we see from the formulas 0 = d-+x/d that the Jordan model 

e se*,) 

is given by 

where 

{nZ(a\ n\\a),. . . } = sortfjuoia), /i ,(a),. . . }, a G D, 

dv/ = f'/dv, and 

{/o(ft, /"«"), • • • } = sort{/0(0, / , « % • • • }, ? e T. 
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The result just described is the basic ingredient in our solution of 
Problem 2; we don't state it as a separate proposition because such a 
statement would be rather lengthy and cumbersome. 

Definition 9. An operator T of class C0 is said to have property (P) if 
every operator X e {T}', satisfying the condition ker X = {0}, has dense 
range. 

Operators with property (P) are characterized by the following result 
from [2]. 

THEOREM 10. Let T be an operator of class C0 with Jordan model 

e s(6j. 
a 

Then T has property (P) if and only if the greatest common inner divisor of 
{O/.j < co} is 1, i.e., A{0j:j < co} EE 1. 

Note that one consequence of the relation A {0: j < co} = 1 is that 
0W == 1, and hence 

e s(ea) = e s(6.) 
a 7<w J 

acts on a separable space. We can now state the solution of Problem 2 for 
the class C0. 

THEOREM 11. Assume that T is an operator of class C0. 
(i) If T has property (P), T' and T" are operators of class C0, and 

7 0 T ~ T © T\ then T — T". 
(ii) If T does not have property (P), there exists an operator T' of class C0, 

acting on a non trivial Hilbert space, such that T® T' ~~ T. 

Proof. Since quasisimilarity is an equivalence relation, we may assume 
that all the operators T, T\ T" involved are Jordan operators. Assume 
first that 

T = 0 S(0a) 
a 

does not have property (P), so that <p = A{6/:y < co} is not a constant 
function. We will prove that T © S(<p) ~ T7, and to do this it clearly 
suffices to show that 

( © Sm) 0 S ( V ) ~ 0 S (OX 

Choose an inner multiple 0 = 7^5^ of 0O, and write 

<9y = yfasy \ij ^ /x, rfij- =fjdp9 0 ^ f ^ \ for7 < co, 

and 

v = Y V ^ M' = M> dv'=fdv, O ^ f ^ l . 
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Since ©,-<(0 S (ft) is a Jordan model and <p divides ft for all j < co, we 
have 

/*'(*) = ty+ifa) = My(û), a e D,j < œ9 

and, upon a ^-negligible modification of the functions /", we may also 
assume that 

/xn ^ y;+,(n ̂  #n, ?eT,;<«. 
We prove now that the Jordan model of 

(<B Sty)) © S(V) 

is precisely 

© s(6j). 

By the remarks preceding Definition 9, it suffices to show that 

sort{/i'(fl), HQ(Û)9 /i,(û), . . . } = {/A0(a), /A^Û), . . . }, « G A 

and 

sort{/m /0(n, /,(?), • • •} = {/o(n, /,«),... >, ^ T . 
These relations are quite obvious from the definition of sort, and thus 
(ii) is proved (note that S(<p) acts on a trivial Hilbert space if and only if 
<P = 1). 

Assume now that 

T = e sty 
has property (P), so that A{0-:y < co} = 1, and let 

r = e s(̂ ) 
be an arbitrary Jordan operator. Let us consider the Jordan model 

e sty) 
of 

(7e sty) © (7e s^). 
According to the general recipe, and taking into account the fact that 

© 5(ft) and © S(6»') 

are Jordan operators, we have \p. = d:+x/d:, where d0 = 1, and 
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dj = V { ^ . . . Op_m . . . 6>_p_{:0 tàptk j), j i= 1. 

Since 6' divides ftf_n for 0 ^ p ^ /, d'M divides the function 
j J p r J J J 

v ^ , . . . op_m... %-,-$-„•$ ^p^j) 
which in turn divides d:+x. Thus ft' divides dJd:+x = \pj for ally < co. Now, 
for a ^ co and j < co, B'a divides 6-, and hence 0'a divides \p-. We conclude 
that the operator 

is a Jordan operator, and hence is the Jordan model of T © T'. The 
important conclusion is that the nonseparable part of the Jordan model of 
T® T' contains precisely the same functions as those in the nonseparable 
part of T''. Thus, in the proof of (i), we may restrict ourselves to the case in 
which T' and T" act on separable spaces. 

Assume therefore that 
T = © Sm9 T" = © S (ft"), and T®V~T® V. 

Choose an inner function 0 = yb^sv which is a common multiple of ft0, 0Q 
and 0Q\ and write 

Oj'= yJb^OvJ, / i / ^ / i , dp? = f?h>, Q^fJ^\, 

for y ^ 0. The sequences 

{/i/a):j S 0}, {/x;(a):7 ^ 0}, and {^(a):./ ^ 0} 

are nonincreasing for a ^ D, and, upon a ^-negligible modification, we 
may assume that the sequences 

{fj(£):j^0}, {f^Yj â 0}, and {/»(£): j ^ 0} 

are also nonincreasing for f e T. Furthermore, the condition 
A{^:y < w} = 1 implies that 

lim /ly-(û) = 0, a G Z) and 
y—»oo 

lim / ( f ) = 0 for ^-almost every f G T. 
y-»oo 

By the remarks preceding Definition 9, the relation !T © T' ~ T © 71" is 
equivalent to the relations 

sort( {v.j{a):j i£ 0} U {^(a):j ê 0} ) 

= sort( fa{a):j i= 0} U K ( a ) : . / ^ 0} ) 
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for a e Z), and 

sort( {fj(t):j â 0} U {ftf):j i= 0} ) 

= sort( {fjifrj a 0} u {fjay.j is 0} ) 

for ^-almost every f E T. Lemma 8 implies now that 

{tya):j ^ 0} = {/i/(fl):7 ^ 0}, a G A and 

{f>(0'J 1= 0} = {/}'(£):./ è 0} for ^-almost every f e T. 

We conclude that ft' = ft.''y < co, and hence 7 ' = T'\ as desired. (The 
conclusion 7" = T" is stronger that T' ~ T" because T' and T" were 
taken to be Jordan operators.) The proof of (i), and of the theorem, is now 
complete. 

We remark that Kadison and Singer [6] require, for the solution of 
Problem 2 in the case of unitary equivalence, that the von Neumann 
algebra W*(T) generated by T and the commutant W*(T)' be finite von 
Neumann algebras. Our condition in Theorem 11 only involves {T\. Of 
course, {T}' D W*(T)\ SO in a sense we require a stronger finiteness 
condition (which in our case turns out to be necessary as well as 
sufficient). It would be interesting to know whether Problem 2 has a 
positive answer for unitary equivalence under the condition that {T}' be 
finite or, more precisely, that T have property (P) (cf. Definition 9 
above). 
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