BULL. AUSTRAL. MATH. SOC. VOL. 15 (1976), 277-291.

Some extensions of a dual of the Hahn-Banach Theorem, with applications to separation and Helly type theorems

Ivan Singer

In previous papers we have proved that if G is a w^* -closed subspace of the conjugate space B^* of a normed linear space B, then every $b \in B$ can be extended within B, from G to the whole B^* , with an arbitrarily small increase of the norm. Here we give some extensions of this result to the case when B^* is replaced by a normed linear space E and B by any linear subspace V of E^* , and some applications to separation and Helly type theorems.

1.

In [7], [8], [9] we have proved and given some applications of the following theorem, which is dual, in a certain sense, to the classical theorem of Hahn-Banach on the norm-preserving extension of continuous linear functionals.

THEOREM DHB. Let B be a (real or complex) normed linear space and G a $\sigma(B^*, B)$ -closed linear subspace of the conjugate space B^* . Then for every $b \in B$ and $\varepsilon > 0$ there exists an element $b_{\varepsilon} \in B$ such that

(1)
$$x(b_{\varepsilon}) = x(b) \quad (x \in G) ,$$

(2)
$$\|b_{\varepsilon}\| \leq \sup_{\substack{x \in G \\ \|x\| \leq 1}} |x(b)| + \varepsilon$$
.

Received 27 May 1976.

Some results related to Theorem DHB have been obtained by Günzler [6]. Recently Alfsen and Effros have rediscovered Theorem DHB ([1], p. 116), with our proof given in [9] and they have given a sufficient condition on G under which it is possible to delete the $\varepsilon > 0$ in (2) above ([1], Corollary 5.5), as well as some related extension theorems (see, for example, [1], Theorem 5.4). Apparently Alfsen and Effros [1] have been unaware of the papers [7], [8], [9], and [6].

In §2 of the present paper we shall give an extension of Theorem DHB to the more general case when B^* is replaced by an arbitrary normed linear space E and B is replaced by an arbitrary linear subspace V of E^* (Theorem 1), and some applications to separation and Helly type results (Theorems 2-4). In §3 we shall give some related results on the factor $\frac{1}{r'r}$ and the $\varepsilon > 0$ occurring in Theorem 1 (Propositions 1-4), which may have their own interest even in the particular case when $E = B^*$ and $V = \pi(B)$, where $\pi : B \to B^{**}$ is the canonical embedding (Corollaries 1 and 2).

Let us recall the terminology and notations, which we shall use in the sequel.

Let E be a normed linear space and V a linear subspace of E^* . We shall denote by \tilde{V} the $\sigma(E^*, E)$ -closure of V in E^* . Following Dixmier [4], the *characteristic* $r_{\tilde{V}}'(V)$ of V with respect to \tilde{V} is the greatest number r' such that the unit ball $S_V = \{f \in V \mid |\|f\| \le 1\}$ of V is $\sigma(E^*, E)$ -dense in the r'-ball $r'S_{\tilde{V}} = \{h \in \tilde{V} \mid \|h\| \le r'\}$ of \tilde{V} . It is known ([4], Theorem 7') that

(3)
$$r_{\widetilde{V}}'(V) = \inf_{\substack{x \in E \\ x \notin V_{\perp}}} \frac{\sup_{f \in S_{V}} |f(x)|}{\sup_{h \in S_{\widetilde{V}}} |h(x)|},$$

where $V_{\perp} = \{x \in E \mid f(x) = 0 \ (f \in V)\}$. Clearly, $0 \le r_{\widetilde{V}}'(V) \le 1$. The characteristic r(V) of V is [4] the number

(4)
$$r(V) = \begin{cases} r'_{E^*}(V) = \inf_{\substack{x \in E \ f \in S_V \\ x \neq 0}} \sup_{v \in V} \left| f\left(\frac{x}{||x||}\right) \right| & \text{if } \tilde{V} = E^* , \\ 0 & \text{if } \tilde{V} \neq E^* . \end{cases}$$

The canonical mapping u of E into V^* is the continuous linear mapping defined by

(5)
$$u(x)(f) = f(x) \quad (x \in E, f \in V) .$$

Clearly, u is one-to-one if and only if V is *total* on E (that is, $V_{\perp} = \{0\}$, or, what is equivalent, V is $\sigma(E^*, E)$ -dense in E^*). Also, by (5), u is an isomorphism of E into V^* if and only if r(V) > 0, and in this case

(6)
$$||u^{-1}|| = \frac{1}{r(V)}$$
.

Finally, dually to the notation V_{\perp} , for a subspace G of E we shall use the notation $G^{\perp} = \{f \in E^* \mid f(x) = 0 \ (x \in G)\}$.

2.

We have the following extension of Theorem DHB (the proof is rather short, since it uses Theorem DHB itself).

THEOREM 1. Let E be a normed linear space, G a linear subspace of E, and V a linear subspace of E*. Then for every $f \in V$ and $\varepsilon > 0$ there exists an element $f_{\varepsilon} \in V$ such that

(7)
$$f_{\varepsilon}(x) = f(x) \quad (x \in G) ,$$

(8)
$$\|f_{\varepsilon}\| \leq \frac{1}{r_{u(G)}^{\prime}(u(G))r(V)} \|f|_{G}\| + \varepsilon,$$

where u is the canonical mapping of E into V^* .

Proof. If either $r'_{u(G)}(u(G)) = 0$ or r(V) = 0, then condition (8) is void, so we may take $f_{\varepsilon} = f$.

Assume now that both $r'_{u(G)}(u(G)) = r' > 0$ and r(V) = r > 0. Then, by Theorem DHB applied to V and $u(G) \subset V^*$, for every $f \in V$ and $\varepsilon > 0$ there exists an $f_c \in V$ such that

$$\begin{split} f_{\varepsilon}(x) &= u(x) \left(f_{\varepsilon} \right) = u(x) (f) = f(x) \quad (x \in G) , \\ \|f_{\varepsilon}\| &\leq \sup_{\substack{\psi \in u(G) \\ \||\psi\| \leq 1}} |\psi(f)| + \varepsilon \leq \frac{1}{r'} \sup_{\substack{u(x) \in u(G) \\ \||u(x)\| \leq 1}} |u(x)(f)| + \varepsilon \leq \frac{1}{r'r} \|f\|_{G} \| + \varepsilon , \\ &\leq \frac{1}{r'} \sup_{\substack{x \in G \\ \||x\|| \leq \|u^{-1}\|}} |f(x)| + \varepsilon = \frac{1}{r'r} \|f\|_{G} \| + \varepsilon , \end{split}$$

which completes the proof of Theorem 1.

REMARK 1. (a) Theorem DHB can be obtained as a consequence of Theorem 1, as follows. Let *B* be a normed linear space, $E = B^*$, $V = \pi(B) \subset B^{**} = E^*$, where $\pi : B \to B^{**}$ is the canonical embedding, and let *G* be a $\sigma(B^*, B)$ -closed subspace of $B^* = E$. Then r(V) = 1 and the canonical mapping $u : E \to V^*$ is an isometry of *E* onto *V* (actually, $u = (\pi^{-1})^*$). Also, *u* is an isomorphism for $\sigma(B^*, B)$, $\sigma(V^*, V)$, whence, since *G* is $\sigma(B^*, B)$ -closed, u(G) = u(G) and therefore $r'_{u(G)}(u(G)) = 1$. Consequently, by Theorem 1, we obtain Theorem DHB.

(b) If $E = B^*$, $V = \pi(B)$, and $G \subset B^*$ is not necessarily $\sigma(B^*, B)$ -closed, we still have r(V) = 1 and, since u is an isometry and a w^* -isomorphism of $E = B^*$ onto V^* , we have $r'_{U(G)}(u(G)) = r'_{G}(G)$. Hence, in this case, from Theorem 1 we obtain the following generalization of Theorem DHB, due to Günzler ([6], Theorem 3). If B is a normed linear space and G is a linear subspace of B^* , then for every $b \in B$ and $\varepsilon > 0$ there exists an element $b_{\varepsilon} \in B$ satisfying (1) and

$$\|b_{\varepsilon}\| \leq \frac{1}{r_{G}^{*}(G)} \sup_{\substack{x \in G \\ \|x\| \leq 1}} |x(b)| + \varepsilon .$$

REMARK 2. The method of Remark 1 also shows how to construct examples of norm-closed $G \subseteq E$ with $r'_{u(G)}(u(G)) = 0$. Indeed, take again $E = B^*$, $V = \pi(B) \subseteq E^*$ and then take any norm-closed $\sigma(B^*, B)$ -dense subspace G of $B^* = E$, with r(G) = 0 (for examples of such $G \subseteq c_0^*$ or $(l^1)^*$ or $(l^\infty)^*$ see, for instance, [4]). Then, since $u = (\pi^{-1})^*$ is an isomorphism for $\sigma(B^*, B)$, $\sigma(V^*, V)$, and an isometry of E onto V^* , we have $u(G) = V^*$ and $r'_{u(G)}(u(G)) = 0$.

REMARK 3. In other words, Theorem 1 says that

(9) dist(f,
$$G^{\perp} \cap V$$
) = inf $||f-h|| = \inf_{\substack{h' \in V \\ h \in G^{\perp} \cap V}} ||h'|| \leq \frac{h' \in V}{h'|_{G} = f|_{G}}$
 $\leq \frac{1}{r'_{u(G)}(u(G))r(V)} ||f|_{G}|| \quad (f \in V)$

Hence, since $\|f\|_{G}\| \leq \operatorname{dist}(f, G^{\perp} \cap V) = \|f+(G^{\perp} \cap V)\|_{V/G^{\perp} \cap V}$ for all $f \in V$, it follows that if r(V) > 0 and $r'_{U(G)}(u(G)) > 0$, then $V|_{G}$ is isomorphic to $V/G^{\perp} \cap V$, by the mapping $f|_{G} \neq f + (G^{\perp} \cap V)$. Consequently, in this case the subspace $(G^{\perp} \cap V)^{\perp} \equiv (V/G^{\perp} \cap V)^{*}$ of V^{*} is isomorphic to $(V|_{G})^{*}$, by the mapping $\Phi \neq \psi$, where $\psi(f|_{G}) = \Phi(f)$ $(f \in V)$.

Let us give now some applications of Theorem 1 to separation and Helly type theorems.

We recall the following well known results (see, for example, [5], p. 422, Corollary 12, and [3], Chapter I, §4), which we shall use in the sequel.

LEMMA 1. Let E be a normed linear space and V a total linear subspace of E* . Then

- (a) a linear subspace G of E is $\sigma(E, V)$ -closed if and only if for each $x \notin G$ there exists $f \in G^{\perp} \cap V$ with f(x) = 1;
- (b) every finite-dimensional subspace G of E is $\sigma(E, V)$ -closed;
- (c) if G is a $\sigma(E, V)$ -closed linear subspace of E and F a finite-dimensional subspace of E such that $G \cap F = \{0\}$, then $G \oplus F$ is $\sigma(E, V)$ -closed.

The following application of Theorem 1 may be also regarded as a sharpening of part of Lemma 1 (a).

THEOREM 2. Let E be a normed linear space, V a total linear

subspace of E^* , and G a $\sigma(E, V)$ -closed linear subspace of E. Then for every $x \in E$ with dist(x, G) = d > 0 and every $\varepsilon > 0$ there exists an element $f_{\varepsilon} \in G^{\perp} \cap V$ satisfying $f_{\varepsilon}(x) = 1$ and

(10)
$$||f_{\varepsilon}|| \leq \frac{1}{r' \underbrace{(u(G \oplus [x]))r(V)d}_{u(G \oplus [x])} + \varepsilon},$$

where u is the canonical mapping of E into V^* .

Proof. If either $r' \underbrace{(u(G \oplus [x]))}_{u(G \oplus [x])} = 0$ or r(V) = 0, then condition (10) is void, so we may take f_{ε} to be any f as in Lemma 1 (a).

Assume now that both $r' \longrightarrow (u(G \oplus [x])) > 0$ and r(V) > 0. By $u(G \oplus [x])$ Lemma 1 (a) let $f \in G^{\perp} \cap V$, f(x) = 1. Then

$$\|y+\lambda x\| = |\lambda| \left\|\frac{1}{\lambda} y+x\right\| \geq |\lambda|d = |f(y+\lambda x)|d \quad (y+\lambda x \in G \oplus [x]) ,$$

whence $\|f|_{G \oplus [x]} \| \leq \frac{1}{d}$. Consequently, by Theorem 1 (applied to $G \oplus [x]$), there exists $f_{\varepsilon} \in G^{\perp} \cap V$ satisfying $f_{\varepsilon}(x) = 1$ and (10), which completes the proof.

REMARK 4. In general,
$$r' \underbrace{\bigcup}_{u(G \oplus [x])} (u(G \oplus [x])) \neq r' \underbrace{\bigcup}_{u(G)} (u(G))$$

Indeed, for example, let $E = c_0^* \equiv l^1$, $V = \pi_{c_0}(c_0) \subset l^\infty$ and let G be a $\sigma(c_0^*, c_0)$ -dense norm-closed hyperplane in c_0^* . Then $r_{c_0^*}(G) \leq \frac{1}{2}$ (by [4]), but for any $x \in c_0^* \setminus G$ we have $G \oplus [x] = c_0^*$, whence $r'_{G \oplus [x]}(G \oplus [x]) = 1$. Consequently, as in Remarks 1 and 2 above, we have

$$r' \underbrace{(G \oplus [x])}_{u(G \oplus [x])} (u(G \oplus [x])) = 1 \neq \frac{1}{2} = r' \underbrace{(u(G)}_{u(G)} (u(G))$$

REMARK 5. (a) In the particular case when $V = E^*$, we have r(V) = 1 and $u = \pi$, the canonical embedding of E into E^{**} , whence $r'_{u(G)}(u(G)) = 1$ for every subspace G of E. Consequently, Theorem 2 yields that for every $\sigma(E, E^*)$ -closed (and hence for every) linear

subspace G of E, every $x \in E$ with $\operatorname{dist}(x, G) = d > 0$ and every $\varepsilon > 0$ there exists $f_{\varepsilon} \in G^{\perp}$ satisfying $f_{\varepsilon}(x) = 1$ and $\|f_{\varepsilon}\| \leq \frac{1}{d} + \varepsilon$. Combining this result with the $\sigma(E^*, E)$ -compactness of balls in E^* we obtain that there also exists $f_0 \in G^{\perp}$ satisfying $f_0(x) = 1$ and $\|f_0\| \leq \frac{1}{d}$, which is a well known corollary of the Hahn-Banach Theorem.

(b) If B is a normed linear space and G a $\sigma(E^*, E)$ -closed subspace of B^* and if we take E and V as in Remark 1, then Theorem 2 yields that for every $x \in B^*$ with dist(x, G) = d > 0 and every $\varepsilon > 0$ there exists $b_{\varepsilon} \in G_{\bot} \subset B$ satisfying $x(b_{\varepsilon}) = 1$ and

$$\|b_{\varepsilon}\| \leq \frac{1}{d} + \epsilon$$
.

This result is nothing else than a well known theorem of Banach ([2], p. 122, Theorem 1), which has been reproved also in [8], [9] as a consequence of Theorem DHB.

THEOREM 3. Let E be a normed linear space, V a linear subspace of E* with r(V) = 1, A a set in E such that G = [A] satisfies $r'_{u(G)}(u(G)) = 1$ (where [A] is the closed linear subspace spanned by A and u is the canonical mapping of E into V*), $f \in V$, and M > 0. In order that for every $\varepsilon > 0$ there exist an $f_{\varepsilon} \in V$ satisfying

(11)
$$f_{\varepsilon}(x) = f(x) \quad (x \in A),$$

$$\||f_{\varepsilon}\| \leq M + \varepsilon$$

it is necessary and sufficient that we have

(13)
$$\left|\sum_{i=1}^{n} \lambda_{i} f(z_{i})\right| \leq M \left\|\sum_{i=1}^{n} \lambda_{i} z_{i}\right\|$$

for every finite collection of scalars $\lambda_1, \ldots, \lambda_n$ and of elements $x_1, \ldots, x_n \in A$.

Proof. If for every $\varepsilon > 0$ there exists an $f_{\varepsilon} \in V$ satisfying (11),

(12), then for every $\lambda_1, \ldots, \lambda_n$ and $x_1, \ldots, x_n \in A$ and every $\varepsilon > 0$, we have

$$\left|\sum_{i=1}^{n} \lambda_{i} f(x_{i})\right| = \left|\sum_{i=1}^{n} \lambda_{i} f_{\varepsilon}(x_{i})\right| \leq \|f_{\varepsilon}\| \left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \leq (M+\varepsilon) \left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\|,$$

whence, since $\varepsilon > 0$ was arbitrary, we obtain (13).

Conversely, if we have (13), then $||f|_G|| \leq M$ and hence, by Theorem 1, for every $\varepsilon > 0$ there exists an $f_{\varepsilon} \in V$ satisfying (11), (12), which completes the proof.

REMARK 6. If B is a normed linear space and if we take E and V as in Remark 1, then Theorem 3 yields the extension of a "dual" theorem of Helly, which was obtained in $[\delta]$, [9] (as a consequence of Theorem DHB).

LEMMA 2. Let E be a normed linear space, V a total linear subspace of E^{*}, $x_1, \ldots, x_n \in E$ and let c_1, \ldots, c_n be scalars. In order that there exist an $f \in V$ satisfying

(14) $f(x_i) = c_i \quad (i = 1, ..., n)$,

it is necessary and sufficient that for any scalars $\lambda_1, \ldots, \lambda_n$ the

relations
$$\sum_{i=1}^{n} \lambda_i x_i = 0$$
 imply $\sum_{i=1}^{n} \lambda_i c_i = 0$.

Proof. The necessity is an immediate consequence of the linearity of \boldsymbol{f} .

We shall prove the sufficiency by induction on n .

Let n = 1 and assume that for any scalar λ_1 the relation $\lambda_1 x_1 = 0$ implies $\lambda_1 c_1 = 0$. If $x_1 \neq 0$, then, since V is total on E, there exists $f_0 \in V$ such that $f_0(x_1) = 1$. Hence $f = c_1 f_0 \in V$ and satisfies (14). If $x_1 = 0$, then, by our assumption, $\lambda_1 c_1 = 0$ for all scalars λ_1 , whence $c_1 = 0$; so any $f \in V$ satisfies (14).

Assume now that the sufficiency part is true for n - 1 and that the condition is satisfied (for n). Then the condition is also satisfied for

n - 1 and hence, by the induction hypothesis, there exist $f'_j \in V$ (j = 1, ..., n) such that $f'_j(x_i) = c_i$ $(i \neq j; i, j = 1, ..., n)$.

Now if x_1, \ldots, x_n are linearly independent, then, since by Lemma 1 (b), $G_j = [x_i]_{i \neq j}$ is $\sigma(E, V)$ -closed $(j = 1, \ldots, n)$, there exist, by Lemma 1 (a), $f_j \in V$ satisfying $f_j(x_i) = \delta_{ij}$ (i, $j = 1, \ldots, n$). Consequently, $f = \sum_{j=1}^n c_j f_j \in V$ and satisfies (14).

On the other hand, if x_1, \ldots, x_n are linearly dependent, say $x_j - \sum_{i \neq j} \alpha_i x_i = 0$ for some j, then by our assumption $c_j - \sum_{i \neq j} \alpha_i c_i = 0$, whence

$$f'_j(x_j) = \sum_{i \neq j} \alpha_i f'_j(x_i) = \sum_{i \neq j} \alpha_i c_i = c_j ,$$

so $f = f'_{j} \in V$ satisfies (14), which completes the proof.

REMARK 7. More generally, both Lemma 1 and Lemma 2 are valid, with the same proof, for E^* replaced by $E^{\#}$, the linear space of all linear functionals on E. In the particular case when $V = E^{\#}$, Lemma 2 has been given in [3], Chapter I, §2, Lemma 1, and in the particular case when $V \subseteq E^{\#}$ is total, but x_1, \ldots, x_n are linearly independent (whence the condition of the lemma is satisfied), it can be found in [3], Chapter I, §2, Corollary 1.

The following "Helly type" application may be also regarded as a sharpening of Lemma 2.

THEOREM 4. Let E be a normed linear space, V a linear subspace of E* with r(V) = 1, $x_1, \ldots, x_n \in E$, and let c_1, \ldots, c_n be scalars and M > 0. In order that for every $\varepsilon > 0$ there exist an $f_{\varepsilon} \in V$ satisfying

(15)
$$f_{\varepsilon}(x_i) = c_i \quad (i = 1, ..., n)$$
,

and (12), it is necessary and sufficient that we have

(16)
$$\left|\sum_{i=1}^{n} \lambda_{i} c_{i}\right| \leq M \left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\|$$

for all scalars $\lambda_1, \ldots, \lambda_n$.

Proof. The necessity is obvious.

Conversely, assume now that we have (16) for all scalars $\lambda_1, \ldots, \lambda_n$. Then the condition of Lemma 2 is satisfied and hence there exists an $f \in V$ satisfying (14).

Now let $A = \{x_1, \ldots, x_n\}$ and G = [A], and let u be the canonical linear mapping of E into V^* . Then dim $u(G) \leq \dim G < \infty$, whence u(G) = u(G) and thus $r'_{u(G)}(u(G)) = 1$. Consequently, by Theorem 3, there exists an $f_{\varepsilon} \in V$ satisfying $f_{\varepsilon}(x_i) = f(x_i) = c_i$ $(i = 1, \ldots, n)$ and (12), which completes the proof.

REMARK 8. (a) In the particular case when $V = E^*$ (hence r(V) = 1), Theorem 4, combined with the $\sigma(E^*, E)$ -compactness of balls in E^* , yields the classical theorem of Helly (see, for example, [3], Chapter II, §5, Corollary 1), with $M + \varepsilon$ replaced by M in (12).

(b) If B is a normed linear space and if we take E and V as in Remark 1, then Theorem 4 yields the "dual" Helly Theorem (see, for example, [3], Chapter II, §5, Theorem 3), which gives a necessary and sufficient condition in order that for $x_1, \ldots, x_n \in B^*$, c_1, \ldots, c_n scalars, M > 0 and $\varepsilon > 0$, there exist an element $b_{\varepsilon} \in B$ satisfying $x_i(b_{\varepsilon}) = c_i$ $(i = 1, \ldots, n)$ and $\|b_{\varepsilon}\| \leq M + \varepsilon$.

3.

For the finite-dimensional subspaces G (and hence, more generally, for the subspaces G with $r'_{U(G)} u(G) = 1$), the constant in formula (8) of Theorem 1 is the "best possible", in the following sense.

PROPOSITION 1. Let E be a normed linear space and V a total

linear subspace of E^* . Then r(V) is the greatest number c such that for every finite-dimensional subspace G of E, every $f \in V$ and every $\varepsilon > 0$ there exists an element $f_{\varepsilon} \in V$ satisfying (7) and

$$\|f_{\varepsilon}\| \leq \frac{1}{c} \|f|_{G}\| + \varepsilon .$$

Proof. If dim $G < \infty$, then, as we have observed above, for any linear subspace V of E^* we have $r'_{U(G)}(u(G)) = 1$. Hence, by Theorem 1, for any c with $0 \le c \le r(V)$ and for every $f \in V$ and $\varepsilon > 0$ there exists $f_{\varepsilon} \in V$ satisfying (7) and (17).

On the other hand, assume now that c > r(V). We shall show that in this case there exist a one-dimensional subspace G of E and a pair $f \in V$, $\varepsilon > 0$, for which the extension property (7), (17) fails. Since r(V) < c, there exists an element $x_0 \in E$, $x_0 \neq 0$, such that

(18)
$$\sup_{\substack{f \in V \\ \|f\| \le 1}} |f(x_0)| < c \|x_0\|$$

Let $G = \begin{bmatrix} x_0 \end{bmatrix}$, the one-dimensional subspace of E spanned by x_0 . Then G is $\sigma(E, V)$ -closed (by Lemma 1 (b)) and $V \notin G^{\perp}$ (since V is $\sigma(E^*, E)$ -dense in E^* and $G^{\perp} \neq E^*$ is $\sigma(E^*, E)$ -closed). Consequently, there exists an $f \in V$ such that $f\left(\frac{x_0}{||x_0||}\right) = 1$; clearly,

$$\begin{split} \|f\|_{G} &\| = \sup_{|\alpha| \leq 1} \left| f \left(\frac{\alpha x_{0}}{\|x_{0}\|} \right) \right| = 1 \text{ . Assume that for each } \varepsilon > 0 \text{ there exists an} \\ f_{\varepsilon} \in V \text{ satisfying (7) and (17). Then for } h_{\varepsilon} = \frac{f_{\varepsilon}}{\|f_{\varepsilon}\|} \in V \text{ we have} \\ \|h_{\varepsilon}\| = 1 \text{ and} \end{split}$$

$$|h_{\varepsilon}(x_{0})| = \frac{1}{\|f_{\varepsilon}\|} |f_{\varepsilon}(x_{0})| = \frac{1}{\|f_{\varepsilon}\|} |f(x_{0})| = \frac{\|x_{0}\|}{\|f_{\varepsilon}\|} \ge \frac{\|x_{0}\|}{(1/c)+\varepsilon} = \frac{c}{1+\varepsilon c} \|x_{0}\| ,$$

which contradicts (18) for $\varepsilon > 0$ sufficiently small. Thus, there exists $\varepsilon > 0$ for which there is no $f_{\varepsilon} \in V$ satisfying (7) and (17), which completes the proof of Proposition 1.

Now we shall give some cases in which the factor $\frac{1}{r'r}$ and the $\varepsilon > 0$ in (8) can be replaced by 1 and 0 respectively.

PROPOSITION 2. Let E be a normed linear space, V a linear subspace of E^{*} and G a linear subspace of E, such that $G^{\downarrow} \subset V$. Then for every $f \in V$ there exists an element $f_{0} \in V$ such that

(19) $f_0(x) = f(x) \quad (x \in G)$,

(20)
$$||f_0|| = ||f|_G||$$
.

Proof. By the Hahn-Banach Theorem, there exists $f_0 \in E^*$ satisfying (19), (20). But, by (19), $G^{\perp} \subset V$ and $f \in V$ we have $f_0 \in f + G^{\perp} \subset f + V = V$,

which completes the proof. Note that if G is norm-closed, the condition $G^{\perp} \subset V$ implies that G is $\sigma(E, V)$ -closed (since $G = \overline{G} = \bigcap_{f \in G} \ker f$).

PROPOSITION 3. Let E be a normed linear space, V a total linear subspace of E^* , and G a $\sigma(E, V)$ -closed subspace of finite codimension in E. Then for every $f \in V$ there exists an element $f_0 \in V$ satisfying (19), (20).

Proof. Since G is also norm-closed, let $\{x_i\}_{i=1}^n \subset E$ be linearly independent and such that $G \oplus [x_i]_{i=1}^n = E$. Then, since G is $\sigma(E, V)$ closed and since $\dim[x_i]_{i\neq j} < \infty$, the subspaces $G \oplus [x_i]_{i\neq j}$ (j = 1, ..., n) are $\sigma(E, V)$ -closed (by Lemma 1 (c)). Hence, since $x_j \notin G \oplus [x_i]_{i\neq j}$, there exist (by Lemma 1 (a)), $f_i \in G^{\perp} \cap V$ (i = 1, ..., n) such that $f_i(x_j) = \delta_{ij}$ (i, j = 1, ..., n). But then f_1, \ldots, f_n are linearly independent, so $\dim[f_i]_{i=1}^n = n$, whence, since $[f_i]_{i=1}^n \subset G^{\perp}$ and $\dim G^{\perp} = n$, we obtain $[f_i]_{i=1}^n = G^{\perp}$. Consequently, $G^{\perp} = [f_i]_{i=1}^n \subset V$, whence, by Proposition 2, the conclusion follows. If B is a normed linear space and if we take E and V as in

Remark 1, then from Propositions 2 and 3 we obtain

COROLLARY 1. Let B be a normed linear space and G a linear subspace of B* such that $G^{\perp} \subset \pi(B)$, where $\pi : B \rightarrow B^{**}$ is the canonical embedding. Then for every $b \in B$ there exists an element $b_{0} \in B$ such that

(21)
$$x(b_0) = x(b) \quad (x \in G)$$
,

(22)
$$||b_0|| = \sup_{\substack{g \in G \\ ||g|| \le 1}} |g(b)|;$$

in particular, if G is a $\sigma(B^*, B)$ -closed linear subspace of B^* , of finite codimension in B^* , then for every $b \in B$ there exists $b_0 \in B$ satisfying (21), (22).

PROPOSITION 4. Let E be a normed linear space, V a linear subspace of E^* , and G a subspace of E such that there exists a (not necessarily linear) projection p of E onto G, of norm

$$||p|| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||p(x)||}{||x||} = 1 , satisfying$$

Then for every $f \in V$ there exists an $f_0 \in V$ satisfying (19), (20).

which completes the proof.

COROLLARY 2. Let B be a normed linear space and G a linear subspace of B^* such that there exists a (not necessarily linear) projection q on B, of norm 1, satisfying

Ivan Singer

Then for every $b \in B$ there exists $b_0 \in B$ satisfying (21), (22).

Proof. Take, as in Remark 1, $E = B^*$ and $V = \pi(B)$, where $\pi : B \to B^{**}$ is the canonical embedding, and let $p = q^*$. Then, by our assumption, p is a (not necessarily linear) projection of E onto G, of norm ||p|| = 1 and we have

$$p^{*}(V) = p^{*}(\pi(B)) = q^{**}(\pi(B)) = \pi(q(B)) \subset \pi(B) = V$$
;

that is, (23). Hence, the conclusion follows by applying Proposition 4; the proof also shows that one can take $b_{\alpha} = q(b)$.

References

- [1] Erik M. Alfsen and Edward G. Effros, "Structure in real Banach spaces.
 Part I", Ann. of Math. (2) 96 (1972), 98-128.
- [2] Stefan Banach, Théorie des opérations linéaires (Monografje Matematyczne, I. Subwencji Funduszu Kultury Narodowej, Warszawa, 1932).
- [3] Mahlon M. Day, Normed linear spaces, 3rd ed. (Ergebnisse der Mathematik und ihrer Grenzgebiete, 21. Springer-Verlag, Berlin, Heidelberg, New York, 1973).
- [4] J. Dixmier, "Sur un théorème de Banach", Duke Math. J. 15 (1948), 1057-1071.
- [5] Nelson Dunford and Jacob J. Schwartz, Linear operators. Part I: General theory (Pure and Applied Mathematics, 7. Interscience, New York, London, 1958).
- [6] H. Günzler, "Uber ein Analogon zum Satz von Hahn und Banach", Arch. Math. (Basel) 10 (1959), 366-372.
- [7] Ivan Singer, "Un dual du théorème de Hahn-Banach", C.R. Acad. Sci. Paris Sér. A 247 (1958), 408-411.
- [8] Ivan Singer, "Quelques applications d'un dual du théorème de Hahn-Banach", C.R. Acad. Sci. Paris Sér. A 247 (1958), 846-849.

[9] Ivan Singer, "Sur un dual du théorème de Hahn-Banach et sur un théorème de Banach", Rend. Accad. Naz. Lincei 25 (1958), 443-446.

Institute of Mathematics, Bucuresti, Romania; National Institute for Scientific and Technical Creation, Bucuresti, Romania.