Some extensions of a dual of the Hahn-Banach Theorem, with applications to separation and Helly type theorems

Ivan Singer

Abstract

In previous papers we have proved that if G is a w^{*}-closed subspace of the conjugate space B^{*} of a normed linear space B, then every $b \in B$ can be extended within B, from G to the whole B^{*}, with an arbitrarily small increase of the norm. Here we give some extensions of this result to the case when B^{*} is replaced by a normed linear space E and B by any linear subspace V of E^{*}, and some applications to separation and Helly type theorems.

1.

In [7], [8], [9] we have proved and given some applications of the following theorem, which is dual, in a certain sense, to the classical theorem of Hahn-Banach on the norm-preserving extension of continuous linear functionals.

THEOREM DHB. Let B be a (real or complex) normed linear space and G a $\sigma\left(B^{*}, B\right)$-closed linear subspace of the conjugate space B^{*}. Then for every $b \in B$ and $\varepsilon>0$ there exists an element $b_{\varepsilon} \in B$ such that
(1)

$$
x\left(b_{\varepsilon}\right)=x(b) \quad(x \in G),
$$

(2)

$$
\left\|b_{\varepsilon}\right\| \leq \sup _{\substack{x \in G \\\|x\| \leq 1}}|x(b)|+\varepsilon .
$$

Received 27 May 1976.

Some results related to Theorem DHB have been obtained by Günzler [6]. Recently AIfsen and Effros have rediscovered Theorem DHB ([1], p. 116), with our proof given in [9] and they have given a sufficient condition on G under which it is possible to delete the $\varepsilon>0$ in (2) above ([1], Corollary 5.5), as well as some related extension theorems (see, for example, [1], Theorem 5.4). Apparently Alfsen and Effros [1] have been unaware of the papers [7], [8], [9], and [6].

In $\S 2$ of the present paper we shall give an extension of Theorem DHB to the more general case when B^{*} is replaced by an arbitrary normed linear space E and B is replaced by an arbitrary linear subspace V of E^{*} (Theorem 1), and some applications to separation and Helly type results (Theorems 2-4). In §3 we shall give some related results on the factor $\frac{l}{r^{\prime} r}$ and the $\varepsilon>0$ occurring in Theorem 1 (Propositions $1-4$), which may have their own interest even in the particular case when $E=B^{*}$ and $V=\pi(B)$, where $\pi: B \rightarrow B^{* *}$ is the canonical embedding (Corollaries l and 2).

Let us recall the terminology and notations, which we shall use in the sequel.

Let E be a normed linear space and V a linear subspace of E^{*}. We shall denote by \tilde{V} the $\sigma\left(E^{*}, E\right)$-closure of V in E^{*}. Following Dixmier [4], the characteristic $r \tilde{V}_{V}^{\prime}(V)$ of V with respect to \tilde{V} is the greatest number r^{\prime} such that the unit ball $S_{V}=\{f \in V \mid\|f\| \leq 1\}$ of V is $\sigma\left(E^{*}, E\right)$-dense in the r^{\prime}-ball $r^{\prime} S_{\tilde{V}}=\left\{h \in \tilde{V} \mid\|h\| \leq r^{\prime}\right\}$ of \tilde{V}. It is known ([4], Theorem 7') that

$$
\begin{equation*}
r_{V}^{\prime}(V)=\inf _{\substack{x \in E \\ x \notin V_{\perp}}} \frac{\sup _{f \in S_{V}}|f(x)|}{\sup _{h \in S_{V}}|h(x)|} \tag{3}
\end{equation*}
$$

where $V_{\perp}=\{x \in E \mid f(x)=0(f \in V)\}$. Clearly, $0 \leq r_{V}^{\prime}(V) \leq 1$. The characteristic $r(V)$ of V is [4] the number

$$
r(V)= \begin{cases}r_{E^{*}}^{\prime}(V)=\inf _{\substack{x \in E \\ x \neq 0}} \sup _{f \in S}\left|f\left(\frac{x}{\|x\|}\right)\right| & \text { if } \quad \tilde{V}=E^{*}, \tag{4}\\ 0 & \text { if } \tilde{V} \neq E^{*}\end{cases}
$$

The canonical mapping u of E into V^{*} is the continuous linear mapping defined by

$$
\begin{equation*}
u(x)(f)=f(x) \quad(x \in E, f \in V) . \tag{5}
\end{equation*}
$$

Clearly, u is one-to-one if and only if V is total on E (that is, $V_{\perp}=\{0\}$, or, what is equivalent, V is $\sigma\left(E^{*}, E\right)$-dense in $\left.E^{*}\right)$. Also, by (5), u is an isomorphism of E into V^{*} if and only if $r(V)>0$, and in this case

$$
\begin{equation*}
\left\|u^{-1}\right\|=\frac{1}{r(V)} . \tag{6}
\end{equation*}
$$

Finally, dually to the notation V_{\perp}, for a subspace G of E we shall use the notation $G^{\perp}=\left\{f \in E^{*} \mid f(x)=0(x \in G)\right\}$.

2.

We have the following extension of Theorem DHB (the proof is rather short, since it uses Theorem DHB itself).

THEOREM 1. Let E be a normed linear space, G a linear subspace of E, and V a linear subspace of E^{*}. Then for every $f \in V$ and $\varepsilon>0$ there exists an element $f_{\varepsilon} \in V$ such that

$$
\begin{equation*}
f_{\varepsilon}(x)=f(x) \quad(x \in G), \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f_{\varepsilon}\right\| \leq \frac{1}{r_{u(G)}^{\prime}(u(G)) r(V)}\left\|\left.f\right|_{G}\right\|+\varepsilon, \tag{8}
\end{equation*}
$$

where u is the canonical mapping of E into V^{*}.
Proof. If either $\underset{u(G)}{\sim}(u(G))=0$ or $r(V)=0$, then condition (8) is void, so we may take $f_{\varepsilon}=f$.

Assume now that both $\underset{\sim(G)}{\prime}(u(G))=r^{\prime}>0$ and $r(V)=r>0$. Then, by Theorem DHB applied to V and $\widetilde{u(G)} \subset V^{*}$, for every $f \in V$ and $\varepsilon>0$
there exists an $f_{\varepsilon} \in V$ such that

$$
\begin{aligned}
& f_{\varepsilon}(x)=u(x)\left(f_{\varepsilon}\right)=u(x)(f)=f(x) \quad(x \in G), \\
& \left\|f_{\varepsilon}\right\| \leq \sup _{\substack{\psi \in \mathcal{u (G)} \\
\|\psi\| \leq 1}}|\psi(f)|+\varepsilon \leq \frac{1}{r^{\prime}} \sup _{\substack{u(x) \in u(G) \\
\|u(x)\| \leq 1}}|u(x)(f)|+\varepsilon \leq \\
& \leq \frac{1}{r^{\prime}} \sup _{\substack{x \in G \\
\|x\| \leq\left\|u^{-1}\right\|}}|f(x)|+\varepsilon=\frac{1}{r^{\prime} r}\left\|\left.f\right|_{G}\right\|+\varepsilon,
\end{aligned}
$$

which completes the proof of Theorem 1.
REMARK 1. (a) Theorem DHB can be obtained as a consequence of Theorem l, as follows. Let B be a normed linear space, $E=B^{*}$, $V=\pi(B) \subset B^{* *}=E^{*}$, where $\pi: B \rightarrow B^{* *}$ is the canonical embedding, and let G be a $\sigma\left(B^{*}, B\right)$-closed subspace of $B^{*}=E$. Then $r(V)=1$ and the canonical mapping $u: E \rightarrow V^{*}$ is an isometry of E onto V (actually, $\left.u=\left(\pi^{-1}\right)^{*}\right)$. Also, u is an isomorphism for $\sigma\left(B^{*}, B\right)$, $\sigma\left(V^{*}, V\right)$, whence, since G is $\sigma\left(B^{*}, B\right)$-closed, $\widehat{u(G)}=u(G)$ and therefore $\underset{u(G)}{\underset{\sim}{\prime}}(u(G))=1$. Consequently, by Theorem 1, we obtain Theorem DHB.
(b) If $E=B^{*}, V=\pi(B)$, and $G \subset B^{*}$ is not necessarily $\sigma\left(B^{*}, B\right)$-closed, we still have $r(V)=1$ and, since u is an isometry and a w^{*}-isomorphism of $E=B^{*}$ onto V^{*}, we have $\underset{\sim(G)}{r \dot{\sim}}(u(G))=r_{G}^{\prime}(G)$. Hence, in this case, from Theorem 1 we obtain the following generalization of Theorem DHB, due to Günzler ([6], Theorem 3). If B is a normed linear space and G is a linear subspace of B^{*}, then for every $b \in B$ and $\varepsilon>0$ there exists an element $b_{\varepsilon} \in B$ satisfying (1) and

$$
\left\|b_{\varepsilon}\right\| \leq \frac{1}{r_{\tilde{G}}(G)} \sup _{\substack{x \in G \\\|x\| \leq 1}}|x(b)|+\varepsilon .
$$

REMARK 2. The method of Remark 1 also shows how to construct examples of norm-closed $G \subset E$ with $\underset{u(G)}{r}(u(G))=0$. Indeed, take again $E=B^{*}, V=\pi(B) \subset E^{*}$ and then take any norm-closed $\sigma\left(B^{*}, B\right)$-dense subspace G of $B^{*}=E$, with $r(G)=0$ (for examples of such $G \subset c_{0}^{*}$ or $\left(2^{1}\right)^{*}$ or $\left(2^{\infty}\right)^{*}$ see, for instance, [4]). Then, since $u=\left(\pi^{-1}\right)^{*}$ is an
isomorphism for $\sigma\left(B^{*}, B\right), \sigma\left(V^{*}, V\right)$, and an isometry of E onto V^{*}, we have $\widehat{u(G)}=V^{*}$ and ${\underset{\sim}{r}}_{\prime}^{\prime}(u(G))=0$.

REMARK 3. In other words, Theorem 1 says that
(9) $\operatorname{dist}\left(f, G^{\perp} \cap V\right)=$

$$
\leq \frac{1}{r_{\underset{u(G)}{\top}}^{\sim}(u(G)) r(V)}\left\|\left.f\right|_{G}\right\| \quad(f \in V)
$$

Hence, since $\left\|\left.f\right|_{G}\right\| \leq \operatorname{dist}\left(f, G^{\perp} \cap V\right)=\left\|f+\left(G^{\perp} \cap V\right)\right\|_{V / G^{\perp} \cap V}$ for all $f \in V$, it follows that if $r(V)>0$ and $\underset{\sim}{r_{(G)}^{\prime}}(u(G))>0$, then $\left.V\right|_{G}$ is isomorphic to $V / G^{\perp} \cap V$, by the mapping $\left.f\right|_{G} \rightarrow f+\left(G^{\perp} \cap V\right)$. Consequently, in this case the subspace $\left(G^{\perp} \cap V\right)^{\perp} \equiv\left(V / G^{\perp} \cap V\right)^{*}$ of V^{*} is isomorphic to $\left(\left.V\right|_{G}\right)^{*}$, by the mapping $\Phi \rightarrow \psi$, where $\psi\left(\left.f\right|_{G}\right)=\Phi(f) \quad(f \in V)$.

Let us give now some applications of Theorem 1 to separation and Helly type theorems.

We recall the following well known results (see, for example, [5], p. 422, Corollary 12, and [3], Chapter I, §4), which we shall use in the sequel.

LEMMA 1. Let E be a normed linear space and V a total linear subspace of E^{*}. Then
(a) a linear subspace G of E is $\sigma(E, V)$-closed if and only if for each $x \notin G$ there exists $f \in G^{\perp} \cap V$ with $f(x)=1 ;$
(b) every finite-dimensional subspace G of E is $\sigma(E, V)-$ closed;
(c) if G is a $\sigma(E, V)$-closed linear subspace of E and F a finite-dimensional subspace of E such that $G \cap F=\{0\}$, then $G \oplus F$ is $\sigma(E, V)$-closed.

The following application of Theorem 1 may be also regarded as a sharpening of part of Lemma 1 (a).

THEOREM 2. Let E be a normed linear space, V a total linear
subspace of E^{*}, and $G a \sigma(E, V)$-closed linear subspace of E. Then for every $x \in E$ with $\operatorname{dist}(x, G)=d>0$ and every $\varepsilon>0$ there exists an element $f_{\varepsilon} \in G^{\perp} \cap V$ satisfying $f_{\varepsilon}(x)=1$ and

$$
\begin{equation*}
\left\|f_{\varepsilon}\right\| \leq \frac{1}{r^{\prime} \underset{u(G \theta[x])}{ }(u(G \oplus[x])) r(V) d}+\varepsilon, \tag{10}
\end{equation*}
$$

where u is the canonical mapping of E into V^{*}.
Proof. If either $r^{\prime} \sim_{\mathcal{U}(G \oplus[x])}^{\sim}(u(G \oplus[x]))=0$ or $r(V)=0$, then condition (10) is void, so we may take f_{E} to be any f as in Lemma 1 (a).

Assume now that both $r^{\prime} \underbrace{\sim}_{u(G \oplus[x])}(u(G \oplus[x]))>0$ and $r(V)>0$. By Lemma 1 (a) let $f \in G^{\perp} \cap V, f(x)=1$. Then

$$
\|y+\lambda x\|=|\lambda|\left\|\frac{1}{\lambda} y+x\right\| \geq|\lambda| d=|f(y+\lambda x)| d \quad(y+\lambda x \in G \oplus[x])
$$

whence $\left\|\left.f\right|_{G \in[x]}\right\| \leq \frac{1}{\vec{d}}$. Consequently, by Theorem 1 (applied to $G \oplus[x]$), there exists $f_{\varepsilon} \in G^{\perp} \cap V$ satisfying $f_{\varepsilon}(x)=1$ and (10), which completes the proof.

REMARK 4. In general, $r^{\prime} \underset{u(G \oplus[x])}{\sim}(u(G \oplus[x])) \neq r^{\prime} \underset{u(G)}{\sim}(u(G))$. Indeed, for example, let $E=c_{0}^{*} \equiv \imath^{l}, V=\pi_{c_{0}}\left(c_{0}\right) \subset \eta^{\infty}$ and let G be a $\sigma\left(c_{0}^{*}, c_{0}\right)$-dense norm-closed hyperplane in c_{0}^{*}. Then $r_{c_{0}^{*}}(G) \leq \frac{z_{2}}{2}$ (by [4]), but for any $x \in c_{0}^{*} \backslash G$ we have $G \oplus[x]=c_{0}^{*}$, whence $r_{G \oplus[x]}^{\prime}(G \oplus[x])=1$. Consequently, as in Remarks 1 and 2 above, we have

$$
r_{u(G \uplus[x])}^{\prime}(u(G \oplus[x]))=1 \neq \frac{1}{2}=r_{u(G)}^{\prime}(u(G)) .
$$

REMARK 5. (a) In the particular case when $V=E^{*}$, we have $r(V)=1$ and $u=\pi$, the canonical embedding of E into $E^{* *}$, whence $\underset{u(G)}{\prime}(u(G))=1$ for every subspace G of E. Consequently, Theorem 2 yields that for every $\sigma\left(E, E^{*}\right)$-closed (and hence for every) linear
subspace G of E, every $x \in E$ with dist $(x, G)=d>0$ and every $\varepsilon>0$ there exists $f_{E} \in G^{\perp}$ satisfying $f_{\varepsilon}(x)=1$ and $\left\|f_{\varepsilon}\right\| \leq \frac{1}{d}+\varepsilon$. Combining this result with the $\sigma\left(E^{*}, E\right)$-compactness of balls in E^{*} we obtain that there also exists $f_{0} \in G^{\perp}$ satisfying $f_{0}(x)=1$ and $\left\|f_{0}\right\| \leq \frac{1}{d}$, which is a well known corollary of the HahnBanach Theorem.
(b) If B is a normed linear space and G a $\sigma\left(E^{*}, E\right)$-closed subspace of B^{*} and if we take E and V as in Remark 1 , then Theorem 2 yields that for every $x \in B^{*}$ with $\operatorname{dist}(x, G)=d>0$ and every $\varepsilon>0$ there exists $b_{\varepsilon} \in G_{\perp} \subset B$ satisfying $x\left(b_{\varepsilon}\right)=1$ and

$$
\left\|b_{\varepsilon}\right\| \leq \frac{1}{d}+\varepsilon .
$$

This result is nothing else than a well known theorem of Banach ([2], p. 122, Theorem 1), which has been reproved also in [8], [9] as a consequence of Theorem DHB .

THEOREM 3. Let E be a normed linear space, V a linear subspace of E^{*} with $r(V)=1, A$ a set in E such that $G=[A]$ satisfies $r_{u(G)}^{\prime}(u(G))=1$ (where $[A]$ is the closed linear subspace sparned by A and u is the canonical mapping of E into V^{*}), $f \in V$, and $M>0$. In order that for every $\varepsilon>0$ there exist an $f_{\varepsilon} \in V$ satisfying

$$
\begin{align*}
f_{\varepsilon}(x) & =f(x) \quad(x \in A) \tag{11}\\
\left\|f_{\varepsilon}\right\| & \leq M+\varepsilon \tag{12}
\end{align*}
$$

it is necessary and sufficient that we have

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \lambda_{i} f\left(\approx_{i}\right)\right| \leq M\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \tag{13}
\end{equation*}
$$

for every finite collection of scalars $\lambda_{1}, \ldots, \lambda_{n}$ and of elements $x_{1}, \ldots, x_{n} \in A$.

Proof. If for every $\varepsilon>0$ there exists an $f_{\varepsilon} \in V$ satisfying (11),
(12), then for every $\lambda_{1}, \ldots, \lambda_{n}$ and $x_{1}, \ldots, x_{n}{ }^{\prime} \in A$ and every $\varepsilon>0$, we have

$$
\left|\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)\right|=\left|\sum_{i=1}^{n} \lambda_{i} f_{\varepsilon}\left(x_{i}\right)\right| \leq\left\|f_{\varepsilon}\right\|\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \leq(M+\varepsilon)\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\|,
$$

whence, since $\varepsilon>0$ was arbitrary, we obtain (13).
Conversely, if we have (13), then $\left\|\left.f\right|_{G}\right\| \leq M$ and hence, by Theorem 1 , for every $\varepsilon>0$ there exists an $f_{\varepsilon} \in V$ satisfying (11), (12), which completes the proof.

REMARK 6. If B is a normed linear space and if we take E and V as in Remark 1 , then Theorem 3 yields the extension of a "dual" theorem of Helly, which was obtained in [8], [9] (as a consequence of Theorem DHB).

LEMMA 2. Let E be a normed linear space, V a total linear subspace of $E^{*}, x_{1}, \ldots, x_{n} \in E$ and let c_{1}, \ldots, c_{n} be scalars. In order that there exist an $f \in V$ satisfying

$$
\begin{equation*}
f\left(x_{i}\right)=c_{i} \quad(i=1, \ldots, n) \tag{14}
\end{equation*}
$$

it is necessary and sufficient that for any scalars $\lambda_{1}, \ldots, \lambda_{n}$ the relations $\sum_{i=1}^{n} \lambda_{i} x_{i}=0$ imply $\sum_{i=1}^{n} \lambda_{i} c_{i}=0$.

Proof. The necessity is an immediate consequence of the linearity of f.

We shall prove the sufficiency by induction on n.
Let $n=1$ and assume that for any scalar λ_{1} the relation $\lambda_{1} x_{1}=0$ implies $\lambda_{1} c_{1}=0$. If $x_{1} \neq 0$, then, since V is total on E, there exists $f_{0} \in V$ such that $f_{0}\left(x_{1}\right)=1$. Hence $f=c_{1} f_{0} \in V$ and satisfies (14). If $x_{1}=0$, then, by our assumption, $\lambda_{1} c_{1}=0$ for all scalars λ_{1}, whence $c_{1}=0 ;$ so any $f \in V$ satisfies (14).

Assume now that the sufficiency part is true for $n-1$ and that the condition is satisfied (for n). Then the condition is also satisfied for
$n-1$ and hence, by the induction hypothesis, there exist $f_{j}^{\prime} \in V$ $(j=1, \ldots, n)$ such that $f_{j}^{\prime}\left(x_{i}\right)=c_{i}(i \neq j ; i, j=1, \ldots, n)$.

Now if x_{1}, \ldots, x_{n} are linearly independent, then, since by Lemma 1 (b), $G_{j}=\left[x_{i}\right]_{i \neq j}$ is $\sigma(E, V)$-closed $(j=1, \ldots, n)$, there exist, by Lemma $I(a), f_{j} \in V$ satisfying $f_{j}\left(x_{i}\right)=\delta_{i j}(i, j=1, \ldots, n)$. Consequently, $f=\sum_{j=1}^{n} e_{j} f_{j} \in V$ and satisfies (14).

On the other hand, if x_{1}, \ldots, x_{n} are linearly dependent, say $x_{j}-\sum_{i \neq j} \alpha_{i} x_{i}=0$ for some j, then by our assumption $c_{j}-\sum_{i \neq j} \alpha_{i} c_{i}=0$, whence

$$
f_{j}^{\prime}\left(x_{j}\right)=\sum_{i \neq j} \alpha_{i} f_{j}^{\prime}\left(x_{i}\right)=\sum_{i \neq j} \alpha_{i} c_{i}=c_{j},
$$

so $f=f_{j}^{\prime} \in V$ satisfies (14), which completes the proof.
REMARK 7. More generally, both Lemma 1 and Lemma 2 are valid, with the same proof, for E^{*} replaced by $E^{\#}$, the linear space of all linear functionals on E. In the particular case when $V=E^{\#}$, Lemma 2 has been given in [3], Chapter I, §2, Lemma 1, and in the particular case when $V \subset E^{\#}$ is total, but x_{1}, \ldots, x_{n} are linearly independent (whence the condition of the lemma is satisfied), it can be found in [3], Chapter I, §2, Corollary 1.

The following "Helly type" application may be also regarded as a sharpening of Lemma 2.

THEOREM 4. Let E be a normed linear space, V a linear subspace of E^{*} with $r(V)=1, x_{1}, \ldots, x_{n} \in E$, and let c_{1}, \ldots, c_{n} be scalars and $M>0$. In order that for every $\varepsilon>0$ there exist an $f_{\varepsilon} \in V$ satisfying

$$
\begin{equation*}
f_{\varepsilon}\left(x_{i}\right)=c_{i} \quad(i=1, \ldots, n) \tag{15}
\end{equation*}
$$

and (12), it is necessary and sufficient that we have

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \lambda_{i} c_{i}\right| \leq M\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \tag{16}
\end{equation*}
$$

for all scalars $\lambda_{1}, \ldots, \lambda_{n}$.
Proof. The necessity is obvious.
Conversely, assume now that we have (16) for all scalars $\lambda_{1}, \ldots, \lambda_{n}$. Then the condition of Lemma 2 is satisfied and hence there exists an $f \in V$ satisfying (14).

Now let $A=\left\{x_{1}, \ldots, x_{n}\right\}$ and $G=[A]$, and let u be the canonical linear mapping of E into V^{*}. Then $\operatorname{dim} u(G) \leq \operatorname{dim} G<\infty$, whence $u(G)=\widetilde{u(G)}$ and thus $\underset{u(G)}{r^{\prime}}(u(G))=1$. Consequently, by Theorem 3, there exists an $f_{\varepsilon} \in V$ satisfying $f_{\varepsilon}\left(x_{i}\right)=f\left(x_{i}\right)=c_{i}$ ($i=1, \ldots, n$) and (12), which completes the proof.

REMARK 8. (a) In the particular case when $V=E^{*}$ (hence $r(V)=1)$, Theorem 4, combined with the $\sigma\left(E^{*}, E\right)$-compactness of balls in E^{*}, yields the classical theorem of Helly (see, for example, [3], Chapter II, §5, Corollary 1), with $M+\varepsilon$ replaced by M in (12).
(b) If B is a normed linear space and if we take E and V as in Remark 1, then Theorem 4 yields the "dual" Helly Theorem (see, for example, [3], Chapter II, §5, Theorem 3), which gives a necessary and sufficient condition in order that for $x_{1}, \ldots, x_{n} \in B^{*}, c_{1}, \ldots, c_{n}$ scalars, $M>0$ and $\varepsilon>0$, there exist an element $b_{\varepsilon} \in B$ satisfying $x_{i}\left(b_{\varepsilon}\right)=c_{i}(i=1, \ldots, n)$ and $\left\|b_{\varepsilon}\right\| \leq M+\varepsilon$.

3.

For the finite-dimensional subspaces G (and hence, more generally, for the subspaces G with $\underset{\sim(G)}{\sim} u(G)=1$), the constant in formula (8) of Theorem I is the "best possible", in the following sense.

PROPOSITION 1. Let E be a normed linear space and V a total
linear subspace of E^{*}. Then $r(V)$ is the greatest number c such that for every finite-dimensional subspace G of E, every $f \in V$ and every $\varepsilon>0$ there exists an element $f_{\varepsilon} \in V$ satisfying (7) and

$$
\begin{equation*}
\left\|f_{\varepsilon}\right\| \leq \frac{1}{c}\left\|\left.f\right|_{G}\right\|+\varepsilon . \tag{17}
\end{equation*}
$$

Proof. If $\operatorname{dim} G<\infty$, then, as we have observed above, for any linear subspace V of E^{*} we have $\underset{\sim(G)}{\prime}(u(G))=1$. Hence, by Theorem 1 , for any c with $0 \leq c \leq r(V)$ and for every $f \in V$ and $\varepsilon>0$ there exists $f_{\varepsilon} \in V$ satisfying (7) and (17).

On the other hand, assume now that $c>r(V)$. We shall show that in this case there exist a one-dimensional subspace G of E and a pair $f \in V, \varepsilon>0$, for which the extension property (7), (17) fails. Since $r(V)<c$, there exists an element $x_{0} \in E, x_{0} \neq 0$, such that

Let $G=\left[x_{0}\right]$, the one-dimensional subspace of E spanned by x_{0}. Then G is $\sigma(E, V)$-closed (by Lemma $l(b)$) and $V \notin G^{L}$ (since V is $\sigma\left(E^{*}, E\right)$-dense in E^{*} and $G^{\perp} \neq E^{*}$ is $\sigma\left(E^{*}, E\right)$-closed). Consequently, there exists an $f \in V$ such that $f\left(\frac{x_{0}}{\left\|x_{0}\right\|}\right)=1$; clearly, $\|\left. f\right|_{G^{\|}}=\sup _{|\alpha| \leq 1}\left|f\left(\frac{\alpha x_{0}}{\left\|x_{0}\right\|}\right)\right|=1$. Assume that for each $\varepsilon>0$ there exists an $f_{\varepsilon} \in V$ satisfying (7) and (17). Then for $h_{\varepsilon}=\frac{f_{\varepsilon}}{\left\|f_{\varepsilon}\right\|} \in V$ we have $\left\|h_{\varepsilon}\right\|=1$ and

$$
\left|h_{\varepsilon}\left(x_{0}\right)\right|=\frac{1}{\left\|f_{\varepsilon}\right\|}\left|f_{\varepsilon}\left(x_{0}\right)\right|=\frac{1}{\left\|f_{\varepsilon}\right\|}\left|f\left(x_{0}\right)\right|=\frac{\left\|x_{0}\right\|}{\left\|f_{\varepsilon}\right\|} \geq \frac{\left\|x_{0}\right\|}{(1 / c)+\varepsilon}=\frac{c}{1+\varepsilon c}\left\|x_{0}\right\|
$$

which contradicts (18) for $\varepsilon>0$ sufficiently small. Thus, there exists $\varepsilon>0$ for which there is no $f_{\varepsilon} \in V$ satisfying (7) and (17), which completes the proof of Proposition 1.

Now we shall give some cases in which the factor $\frac{l}{r^{\prime} r}$ and the $\varepsilon>0$ in (8) can be replaced by 1 and 0 respectively.

PROPOSITION 2. Let E be a normed Iinear space, V a linear subspace of E^{*} and G a linear subspace of E, such that $G^{\perp} \subset V$. Then for every $f \in V$ there exists an element $f_{0} \in V$ such that

$$
\begin{align*}
f_{0}(x) & =f(x) \quad(x \in G), \tag{19}\\
\left\|f_{0}\right\| & =\left\|\left.f\right|_{G}\right\|
\end{align*}
$$

Proof. By the Hahn-Banach Theorem, there exists $f_{0} \in E^{*}$ satisfying (19), (20). But, by (19), $G^{\perp} \subset V$ and $f \in V$ we have

$$
f_{0} \in f+G^{\perp} \subset f+V=V,
$$

which completes the proof. Note that if G is norm-closed, the condition $G^{\perp} \subset V$ implies that G is $\sigma(E, V)$-closed (since $G=\bar{G}=\bigcap_{f \in G}^{\perp}$ ker f).

PROPOSITION 3. Let E be a normed linear space, V a total linear subspace of E^{*}, and G a $\sigma(E, V)$-closed subspace of finite codimension in E. Then for every $f \in V$ there exists an element $f_{0} \in V$ satisfying (19), (20).

Proof. Since G is also norm-closed, let $\left\{x_{i}\right\}_{i=1}^{n} \subset E$ be linearly independent and such that $G \oplus\left[x_{i}\right]_{i=1}^{n}=E$. Then, since G is $\sigma(E, V)-$ closed and since $\operatorname{dim}\left[x_{i}\right]_{i \neq j}<\infty$, the subspaces $G \oplus\left[x_{i}\right]_{i \neq j}$ ($j=1, \ldots, n$) are $\sigma(E, V)$-closed (by Lemma 1 (c)). Hence, since $x_{j} \notin G \oplus\left[x_{i}\right]_{i \neq j}$, there exist (by Lemmal $\left.1(a)\right), f_{i} \in G^{L} \cap V$ $(i=1, \ldots, n)$ such that $f_{i}\left(x_{j}\right)=\delta_{i j}(i, j=1, \ldots, n)$. But then f_{1}, \ldots, f_{n} are linearly independent, so $\operatorname{dim}\left[f_{i}\right]_{i=1}^{n}=n$, whence, since $\left[f_{i}\right]_{i=1}^{n} \subset G^{\perp}$ and $\operatorname{dim} G^{\perp}=n$, we obtain $\left[f_{i}\right]_{i=1}^{n}=G^{\perp}$. Consequently, $G^{L}=\left[f_{i}\right]_{i=1}^{n} \subset V$, whence, by Proposition 2, the conclusion follows.

If B is a normed linear space and if we take E and V as in

Remark 1, then from Propositions 2 and 3 we obtain
COROLLARY 1. Let B be a normed linear space and G a linear subspace of B^{*} such that $G^{\perp} \subset \pi(B)$, where $\pi: B \rightarrow B^{* *}$ is the canonical embedding. Then for every $b \in B$ there exists an element $b_{0} \in B$ such that

$$
\begin{gather*}
x\left(b_{0}\right)=x(b) \quad(x \in G), \tag{21}\\
\left\|b_{0}\right\|=\sup _{\substack{g \in G \\
\|g\| \leq 1}}|g(b)| ; \tag{22}
\end{gather*}
$$

in particular, if G is a $\sigma\left(B^{*}, B\right)$-closed linear subspace of B^{*}, of finite codimension in B^{*}, then for every $b \in B$ there exists $b_{0} \in B$ satisfying (21), (22).

PROPOSITION 4. Let E be a normed linear space, V a linear subspace of E^{*}, and G a subspace of E such that there exists a (not necessarily linear) projection p of E onto G, of norm
$\|p\|=\sup _{\substack{x \in E \\ x \neq 0}} \frac{\|p(x)\|}{\|x\|}=1$, satisfying

$$
\begin{equation*}
p^{*}(V) \subset V \tag{23}
\end{equation*}
$$

Then for every $f \in V$ there exists an $f_{0} \in V$ satisfying (19), (20).
Proof. Let $f_{0}=p^{*}(f)$. Then, by (23), $f_{0} \in V$. Turthermore, since $x \in G$ if and only if $x=p(x)$, and since $\|p(x)\| \leq\|x\|$ ($x \in E \backslash\{0\}$), we have
$f_{0}(x)=p^{*}(f)(x)=f(p(x))=f(x) \quad(x \in G)$,
$\left\|f_{0}\right\|=\left\|p^{*}(f)\right\|=\sup _{\substack{x \in E \\\|x\|=1}}\left|p^{*}(f)(x)\right| \leq \sup _{\substack{p(x) \in p(E) \\\|p(x)\| \leq 1}}|f(p(x))|=\left\|\left.f\right|_{p(E)}\right\|=$

$$
=\left\|\left.f\right|_{G}\right\|=\left\|\left.f_{0}\right|_{G}\right\| \leq\left\|f_{0}\right\|
$$

which completes the proof.
COROLLARY 2. Let B be a normed linear space and G a linear subspace of B^{*} such that there exists a (not necessarily linear) projection q on B, of norm 1 , satisfying
(24)

$$
q^{*}\left(B^{*}\right)=G
$$

Then for every $b \in B$ there exists $b_{0} \in B$ satisfying (21), (22).
Proof. Take, as in Remark $1, E=B^{*}$ and $V=\pi(B)$, where $\pi: B \rightarrow B^{* *}$ is the canonical embedding, and let $p=q^{*}$. Then, by our assumption, p is a (not necessarily linear) projection of E onto G, of norm $\|p\|=1$ and we have

$$
p^{*}(V)=p^{*}(\pi(B))=q^{* *}(\pi(B))=\pi(q(B)) \subset \pi(B)=V
$$

that is, (23). Hence, the conclusion follows by applying Proposition 4; the proof also shows that one can take $b_{0}=q(b)$.

References

[1] Erik M. Alfsen and Edward G. Effros, "Structure in real Banach spaces. Part I', Ann. of Math. (2) 96 (1972), 98-128.
[2] Stefan Banach, Théorie des opérations Zinéaires (Monografje Matematyczne, I. Subwencji Funduszu Kultury Narodowej, Warszawa, 1932).
[3] Mahlon M. Day, Normed Zinear spaces, 3rd ed. (Ergebnisse der Mathematik und ihrer Grenzgebiete, 21. Springer-Verlag, Berlin, Heidelberg, New York, 1973).
[4] J. Dixmier, "Sur un théorème de Banach", Duke Math. J. 15 (1948), 1057-1071.
[5] Nelson Dunford and Jacob J. Schwartz, Linear operators. Part I: General theory (Pure and Applied Mathematics, 7. Interscience, New York, London, 1958).
[6] H. Günzler, "Über ein Analogon zum Satz von Hahn und Banach", Arch. Math. (BaseZ) 10 (1959), 366-372.
[7] Ivan Singer, "Un dual du théorème de Hahn-Banach", C.R. Acad. Sci. Paris Sér. A 247 (1958), 408-411.
[8] Ivan Singer, "Quelques applications d'un dual du théorème de HahnBanach", C.R. Acad. Sci. Paris Sér. A 247 (1958), 846-849.
[9] Ivan Singer, "Sur un dual du théorème de Hahn-Banach et sur un théorème de Banach", Rend. Accad. Naz. Lincei 25 (1958), 443-446.

Institute of Mathematics,
Bucuresti,
Romania;
National Institute for Scientific and Technical Creation, Bucuresti,
Romania.

