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ON GENERALISED MIXED CO-QUASI-VARIATIONAL
INEQUALITIES WITH NONCOMPACT VALUED MAPPINGS

RAIS AHMAD, QAMRUL HASAN ANSARI AND SYED SHAKAIB IRFAN

In this paper, we consider generalised mixed co-quasi-variational inequalities with
noncompact valued mappings and propose an iterative algorithm for computing their
approximate solutions. We prove that the approximate solutions obtained by the pro-
posed algorithm converge to the exact solution of our co-quasi-variational inequality.
Some special cases are also discussed.

1. INTRODUCTION AND FORMULATION

The projection iterative method is one of the most important and useful meth-
ods for finding the approximate solutions of fixed point problems, and variational and
quasi-variational inequality problems; See for example [5, 6, 8, 9, 10, 11 , 13, 14] and
references therein. In most of the papers appearing in the literature on this topic, the
metric projection operators, as in Hilbert spaces, are used. But it is impossible to use
the metric projection operator in the setting of Banach spaces because these operators
are not nonexpansive. Recently, Takahashi and Kim [15] used the sunny nonexpansive
retraction to set up an iterative scheme for finding a fixed point of a nonexpansive and
nonself mapping in Banach spaces. Inspired by the work of Takahashi and Kim [15], Al-
ber and Yao [2] used a sunny nonexpansive retraction to construct the projection iterative
method for finding the approximate solutions of a class of multivalued quasi-variational
inequalities in Banach spaces. They gave the name co-quasi-variational inequality for a
quasi-variational inequality in Banach spaces and presented an iterative algorithm. They
also proved several convergence results for approximate solutions obtained by their algo-
rithms and in particular several existence results were obtained. Recently, Chang [4] also
studied the existence and convergence of solutions of the Mann and Ishikawa iterative
processes for a class of variational inclusions with accretive type mappings in Banach
spaces. The mathematical approach in [4] is quite different from the one used by Alber
and Yao [2].
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Let B be a real Banach space with norm ||.||, B* its topological conjugate space
with norm ||.||, and (x,f) be a pairing between x G B and / G B*. Given single-valued
mappings f,g,p,G : B -* B and multivalued mappings M,S,T,K : B —>• 2B such that
V x G B, K(x) is a nonempty, closed and convex set, we consider the following generalised
mixed co-quasi-variational inequality problem :

Find x G B, u G M(x), v G S(x) and w G T(x)

such that G(x) G K(x) and

where J : B —¥ B* is the normalised duality mapping and 2B is the family of all nonempty

subsets of B.

The nonlinear operator J : B —> B* is called normalised duality mapping if

|| Jx | | . = ||z|| and (x, J(x)) - ||a;||2, V x e B .

For further detail of the duality mapping J, we refer to [1].

Let us see some special cases of generalised mixed co-quasi-variational inequality

problems.

SPECIAL CASES:

(i) If p = 0, g and M are identity mappings and T is single-valued mapping,
then generalised mixed co-quasi-variational inequality problem reduces to
the problem of finding x € B and v e S(x) such that G(x) G K(x) and

(1.1) (T(x)-f(v),j(z-G(x)))>0, VzGtf(z),

A problem similar to (1.1) is recently considered and studied by Alber and
Yao [2].

(ii) If B is a Hilbert space, / , g and M are identity mappings, G(x) — p(x) and
K(x) — K V x E B then generalised mixed co-quasi-variational inequality
problem becomes the following generalised variational inequality problem
considered and studied by Verma [16]:

f

Find x e B, v G S(x) and w G T(x) such that

(p(x)-(v-w),z-p{x))2 0, VzeK.

It is clear that the generalised mixed co-quasi-variational inequality problem includes
many kinds of quasi-variational inequality problems, variational inequality problems and
complementarity problems as special cases, such as [8, 13, 16, 17].
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In this paper, we extend the approach of Alber and Yao [2] to a more general
and unified problem called the generalised mixed co-quasi-variational inequality problem.
We suggest and analyse an iterative algorithm to compute the approximate solutions of
the generalised mixed co-quasi-variational inequality problem with noncompact valued
mappings. We also prove convergence result for the approximate solutions obtained by
the proposed algorithm.

2. PRELIMINARIES

We recall that the uniform convexity of the Banach space B means that for any
given e > 0 there exists 6 > 0 such that V x,y 6 B, \\x\\ < 1, ||y|| ^ 1, ||x - y\\ = e

ensure the following inequality

\\x + y\\^ 2(1-6).

The function

SB(e) = inf{l - t±vl : \\x\\ = i, ||y|| = i, \\x _ j , | | = £}

is called the modulus of the convexity of the space B.
The uniform smoothness of the space B means that for any given e > 0, there exists

6 > 0 such that

!felJfcl
holds. The function

is called the modulus of the smoothness of the space B.
We remark that the space B is uniformly convex if and only if 6B (e) > 0 for all e > 0,

and it is uniformly smooth if and only if \\mt~1 ps(t) = 0. The following inequalities will
be used in the proof of our main result.

PROPOSITION 2 . 1 . ([1]) Let B be a uniformly smooth Banach space and J be
a normalised duality mapping from B to B*. Then, V x,y 6 B, we have

(ii) (x - y, J(x) - J{y)) ^ 2<PpB{A\\x - y\\/d), where d = ^ I N I 2 + \\y\\2)/2.

We next recall the following definitions.
DEFINITION 2.1: A mapping A : B -> B is said to be

(i) strongly accretive if there exists a constant 7 > 0 such that

(A(x) - A(y), J(x - y)) 2 7II* - v\\\ V x,y 6 B;
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(ii) Lipschitz continuous if there exists a positive constant ft such that

\\A(x) - A(y)\\ ^ 0\\x - y\\, Vx,yeB.

DEFINITION 2.2: A multivalued map 5 : 5 - 4 CB{B) is said to be H-Lipschitz
continuous if there exists a constant h > 0 such that

H(S(x),S(y))^h\\x-y\\,Wx,yeB.

where Ti{.,.) is the Hausdorff metric and CB(B) is the family of all nonempty closed
bounded subsets of B.

DEFINITION 2.3: ([3, 7]) Let B b e a real Banach space and fi a nonempty closed
convex subset of B. A mapping Qn : B -» fi is said to be

(i) retraction on Q if Qn = Qn;
(ii) nonexpansive retraction if in addition

\\Qnx-Qny\\^\\x-y\\, Vi , i /gB;

(iii) sunny retraction if V x £ B,

Qn(Qnx + t(x - Qa)) = Qnx, Vt6R.

The following characterisation of a sunny nonexpansive retraction mapping can be found
in [3, 7].

PROPOSITION 2 . 2 . Qa is a sunny nonexpansive retraction if and only if
V x € B and V y e 9,

(x - Qnx, J(Qnx - y)) ^ 0.

From the above Proposition 2.2, we have the following retraction shift equality.
PROPOSITION 2 . 3 . Let B be a Banach space, Q a nonempty closed and convex

subset of B and m : B —• B a mapping. Then V x G B, we have

x)X = m(x)

3. AN ITERATIVE ALGORITHM

In this section, we first derive some characterisations of solutions of generalised mixed
co-quasi-variational inequality problem.

We mention the following characterisation theorem for the solution of generalised
mixed co-quasi-variational inequality problem which can be easily proved by using Propo-
sition 2.2 and the argument of [8, Theorem 3.1] and [1, Theorem 8.1].

THEOREM 3 . 1 . Let B be a Banach space, f,g,p,G:B-*B single-valued map-
pings, M, S, T : B -* CB(B) mappings and K : B -> 2B multivalued mappings such that
V i e B , tK(x) iS a nonempty, closed and convex subset. Then the following statements
are equivalent:
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(i) The set of elements (x,u,v,w) such that x G B, u G M{x), v G S(x) and
w G T(x) is a solution of generalised mixed co-quasi-variational inequality
problem.

(ii) x e B, ue M(x), v G S(x), w G T(x) and

G(x) = QK(X) [G(X) - T(P(U) - (f{v) - g{w)))] for any r > 0.

Combining Proposition 2.3 and Theorem 3.1, we obtain the following result.

THEOREM 3 . 2 . Let B be a real Banach space, X a nonempty, closed and con-
vex subset of B. Let f,g,p,m,G : B -> B be single-valued mappings, and M,S,T : B
-¥ CB(B) mappings and K : B —> 2B multivalued mappings such that V x
e B, K{x) = m(x) + X. Then the set of elements (x,u,v,w) such that x € B, u
€ M(x), v G S(x) and w € T(x) is a solution of generalised mixed co-quasi-variational
inequality problem if and only if

x = x- G{x) + m(x) + Qx \G(X) -r(p(u) - (f(v) - g{w))^j - m{x)], for any T > 0.

To compute the approximate solutions of generalised mixed co-quasi-variational in-
equality problem, we propose the following iterative algorithm.

ALGORITHM 3.1. Let K(x) — m(x) + X, where A" is a nonempty, closed and convex
subset of B and T > 0 be fixed. Let f,g,p,m,G:B->Bbe single-valued mappings and
S,M,T : B -t CB(B) be multivalued mappings. For given u0 € M(x0), v0 £ S(x0) and
w0 € T(x0), let

xi = x0- G(x0) + m{x0) + Qx \G(x0) - T(P(U0) - (f{v0) - g(wo))j -

Since u0 G M(x0) G CB(B), v0 G S(x0) G CB(B), w0 G T(x0) G CB(B), by Nadler
[12], there exist uy G M(xx), vx G S{x{), wx G T(xx) such that

||«o - wi|| < (1 + l)H{M{x0),

Let

x2=xi- G(xi) + m{xi) + Qx [G(XI) - T(J>{UX) -

By induction, we can obtain the sequences {xn}, {un}, {vn} and {wn} as

(3.1) xn+1 =xn- G{xn) + m(xn) + Qx [G(xB) -r{p{un) - (/(«„) -g(wn))} - m(xn)],
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un e M{xn), | K - un + 1 | | ^ (1 + (n + I)"1) H(M{xn), M{xn+l)),

vneS(xn), | |wB-t;B + 1 | | < ( l + ^ + l)-1) H(S(xn),S(xn+1)),

wneT(xn), \\wn-wn+l\\ ^ ( l + ^ + l)"1) n{T(xn),T(xn+l)),

n = 0,1,2,3,....

Finally, we prove that the approximate solutions obtained by Algorithm 3.1 converge
to the exact solution of generalised mixed co-quasi-variational inequality problem. We
also prove the existence of a solution of generalised mixed co-quasi-variational inequality
problem.

THEOREM 3 . 3 . Let B be a real uniformly smooth Banach space with the module
of smoothness rs(£) ^ Dt2 for some D > 0. Let X be a nonempty, closed and convex
subset of B, f,g,p,m,G : B -> B single-valued mappings and M,S,T : B -4 CB(B)
and K : B —> 2B multivalued mappings such that V x € B, K(x) = m(x) + X. Suppose
that the following conditions are satisfied:

(i) / , g and p are Lipschitz continuous with corresponding constants £, r and

a, respectively.

(ii) G is both strongly accretive with constant 7 and Lipschitz continuous with

constant 8.

(iii) M, 5, T are 'H-Lipschitz continuous with corresponding constants s, h and

d, respectively.

(iv) m is Lipschitz continuous with constant 9.

(v) 0 < 2(1 - 27 + 64D62)1'2 + 26 + rus +[l + r(^h - rd)] < 1.

Then there exists a set of elements (x, u, v, w) such that x € B, u e M(x), v e S(x) and

w G T(x) which is a solution of generalised mixed co-quasi-variational inequality problem

and xn -> x, un -»• u, vn -n>, wn -> w as n -> 00, where {xn}, {un}, {vn} and {wn} are

the sequences obtained by Algorithm (3.1).

PROOF: By the iterative scheme 3.1 and Proposition 2.3, we have

||Zfi+i - xn\\ = \\xn - G(xn) + m{xn) + Qx ]G{xn) - T\p(un) - (f{vn)

(3.2) -ff

-Qx

^ ||xn - xn_! - (G(xB) - £(*„_!)) I + 2||m(a;n) - m(xn^)\\

+||xn -xn-i - (G(xn) -G(sB_i))| | +r||p(un) -p(un_x

+||a;n - xn-i + r(f{vn) - /(wn_i)) - r(g{wn) - g{wn-i)

= 2 | k - xn_x - (G(arB) - G(xn_:)) II + 2||m(iB) - m(a:B_,)||
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- xn-x + T(f(vn) - f(vn^))

-r{g(wn)- s(™n-

By Proposition 2.1, we have (see, for example, the proof of [2, Theorem 3])

(3.3) \\xn - xn_! - (G(xn) - £(*„_!)) ||2 < (1 - 27 + 64D<52)||zn - xn^\\2.

It is clear that

(3.4) ||m(zn) - mO^-OH ^ e\\xn - xn^\\.

Since M, S and T are %-Lipschitz continuous, and / , g and p are Lipschitz continuous,

we have

(3.5) ||p(wn) - p ( u n _ ! ) j | ^ a\\un - un_!|| ^<

(3-6) \\f(vn) - /K-Oll ^ elK - ^n-l|| < ^ ( l + i ) | | l n - In-ill,

(3.7) \\g{wn) - g{wn-i)\\ ^ r\\wn - tUn-xll ^ rd(\ + - ) ||xn - a ^ H .

From (3.6)-(3.7), it follows that

| i n - xn-i + T(f(vn) - / K - i ) ) - r(g{wn) - ff(tun_i)) ||

(3.8) ^ \\xn - xn^\\ + r\\f(vn) - /K_i)|| - r\\g(wn) - g(wn-i)\\

^ 11a;n - xn_!|| + r£h(l + l/n)\\xn - zn_i|| - rrd(l + l/n)||arn -

- [1 + r(l + l/n){£h - rd)} \\xn - x ^ l

Combining (3.2)-(3.5) and (3.8), it follows that

- !„
where tn = 2(1 - 27 + 64D62)1'2 + 29 + ras(l + (1/n)) + [l + T(1 + l/n)(f/i - rd)].

Let t = 2(1 - 27 + 64DS2)1'2 + 26 + ras + [l + r(^h - rd)]. Then tn -¥ t as n -^ 00.
It follows from (w) that t < 1. Hence in < 1 for n sufficiently large. Consequently {xn}
is a Cauchy sequence in B. Since B is complete, we can let i n -4 1 G B. Now we prove
that un -»• u 6 M(x), un ->• v 6 5(i) and u>n —̂  u; € T(x). In fact, it follows from
Algorithm 3.1 that

11 11 <- '- l'

UUn-Un-iH S

|u;n - twn_i |

-)h\\xn - In-iH,
n/

https://doi.org/10.1017/S0004972700035772 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035772


14 R. Ahmad, Q.H. Ansari and S.S. Irfan [8]

which implies that {«„}, {vn} and {wn} are also Cauchy sequences in B. Again, since B

is complete, we can let un —> u, vn —> v, wn -> w as n —> oo. Since Qx,G, f,g,p, M, S, T

and m are continuous in B, we have

x = x- G{x) + m(x)+Qx[G(x) -r(p{u) - (f(v)-g(w))} - m(z)].

Further, we have

d(v,S(x))=ini{\\v-y\\:y€S(x)}

^\\v-vn\\+d(vn,S{x))

^\\v-vn\\+n(S(xn),S(x))

^ \\v — vn\\ + h\\xn — x\\ —> 0 as n —¥ oo.

Hence v 6 S(x). Similarly we can prove that u € M(x), w G T(x). The result then
follows from Theorem 3.2. D

REMARK 3.1. As a special case of Algorithm 3.1, we can easily derive an iterative algo-

rithm, similar to the algorithm proposed in [2], for finding the approximation solutions

of problem (1.1).
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