ON THE TRANSITION PROBABILITY OF
A RENEWAL PROCESS

TAKEYUKI HIDA

J. L. Doob, D. Blackwell, W. Feller and other authors have obtained several
results concerning the renewal theorem. Especially Doob [1] has considered the
renewal process and has showed that it becomes a stationary Markov process
if we add a certain initial random variable to it. In the present note, we shall
study this stationary Markov process and try to determine its transition proba-
bility by virtue of a pair of partial differential equations.

The author would like to express his hearty thanks to prof. A. Amakusa
who has encouraged him with kind discussions throughout the course of pre-

paring the present note.

§1. Preliminary notions

Most of the results in this section will be obtained by referring to the
Doob’s paper [1].
Let Xow)”, Xsw), Xs{w), . . . be mutually independent non-negative random

variables with the common distribution function G(x) such that

’ (t)dt , if =0,
(1) P(Xiéx)=G(x)={s°g .
0 , if x<0,

i=0,23,....

Furthermore we assume that g(x) = 0 belongs to C'-class and X; has finite
mean and variance.

In the renewal theory, these {X;} (i =0, 2, 3, ...) denote the lifetimes of
individuals born successively and especially X, denotes the lifetime of the one

which survives at ¢=0.
Let x (for which G(x) <1) be the age of it at £=0. Then Xi=Xo—« is

Received February 27, 1956.
1) v is the probability parameter. We shall omit it unless we need it specially.
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the left-time for survival. The (conditional) distribution function of X; is ex-
pressible as

G(x+y)—G(x)

(2) Gx(y) = 1—@(;\7)

Here, it is noted that the initial age x is a random variable. If the distribution
of X, is determined by some ®@(x), the probability distribution #(y) of X; is

obtained immediately :

W) = P(X; 2 9) = [ Pl < X0 2 v +9/ X = 2)d0(x)

(3) © G(x+y) —G(x)
= {Jo 1-G(x)

l0

ao(x) , if y=0,

, if y<0.
Let #(t, w) be the number of sums

Xi(0), Xi(0) + Xs(0), . . ..

which are less than . Then the renewal process is defined by

t— {Xl(a))+ PR +th)(w)} , if n(t) > 0,

4 t,w)=
@ #(t0) {i—l-Xo(w) , if #(¢) = 0.

That is, it indicates the age of individual at time #. Doob [1] has proved that
x(#) process is a temporally homogeneous Markov process and its transition

probability is

Plx(h+s)=y/x(s) =x) = P(x(h) £y/%(0) =x) = P(h, %, y)

1 , if h+tx=£y,
(5) ¢ G(n) , if hEy<h+w
= Y
yo—(l—G(u))dqu(h——u) L if 0=y<h,
0 , if y<0or G(x)=1,

where U,(t) = E(n(t)/x(0) = x), and it can be written as
(6) Ui(t) = Go(t) + GoxH(t) and H(t) = G(1) + G (¢t) + G*(¢) + . . .7.

Now, if we restrict the initial distribution to

2 G¥* =G *xG and G** = G+ Gn-1%,
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(7) ¢(x)=%yo(1—6(u))du, where m=j:xdG(x),
then it is proved that E{U.(¢)} = —7% In this case the distribution function of
%(t) is
P((t) £ 3) = || Plx(t) % 5/2(0) = 2)d0(x)
V-t 1(° Gx+1) —G(x), 1
= , if t=y,
i du 1 (%, 1 .
SO(I—G(u)) m °~ﬁ§0\1-—G(x))dx=7—n»so(1—G(u))du , if £ >y,

which is equal to @(y) and is independent of . Therefore x(#) becomes a sta-
tionary Markov process.
Hereafter we shall deal with such a stationary renewal process. It is noted

that such a process is uniquely determined by the transition probability.

§ 2. Fundamental Differential Equations
We shall discuss only the case where G(x) < 1.

Taeorem 1. For every x(G(x) < 1),
(9) K(x) = lim-L P(z, x, 7)
40 T

exists aud satisfies the following three conditions:
1°) K(x) is differentiable and non-negative,
a
(10) 2°) ¢(a) =50K(x)dx < o for every a such that G(a) <1,

3°) lim¢(a) = oo.

G->®

Proof. We have

.1 1 Gle+x)-Gx) . glx)
m—Pex o)== "cw  ~1-G@’

from which all the statements of (10) follow immediately. Q.E.D.
This theorem shows that x(#) will have at least one jump point in the time
interval (¢, t+ ) with probability K(x) 7+ o0(c) when x(2) = x.

Now, from (5), we have for every ¢ >0
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liﬂr})P(x— e<x(t+r7)=x+e/x(t) =x)

(1) =11i?01{P(r, %, x+e)—Plr,x,x5—¢)}

. Gx+17)—-Gx) _
= lim {1- I:*c;(saﬁ} =1,

which proves the continuity (in probability) of x(#) at any ¢ and x.
The domains Dy, D; and D; in the 3-dimensional Euclidean (x, y, &) space

are defined as follows:

Di: %, h and y =0, h+x<y.

(12) D;: h and x =0, hsy< h+x.
D;: x =0, 0=y <h.
obP P and clid exist in each domain defined in (12).

THEOREM 2. Sh ox 5

Proof. First of all we consider %‘% In the domain D,, our assertion is

obvious. In the domain D, we have

{G(x+h+r) -G(x) _ G(x+h) ——G(x)} _8h+x)

1
fim-- 1-G@) i—Gw) - 1-G@)’

x>0 T
although lim must be taken as lim on the boundary where 2=0. Thus P is
T->0 10
differentiable with respect to 2 and

oP _ g(x+h)
o ~ 1-G(x) -

By the assumption that G(x) € C°, we can easily see by simple calcu-
lations that G.(h—y) and G.* H(h—y) also belong to C’class with respect to

h. Therefore, in the domain D;

Y
Ph, x,y)=j0— (1=G () dulGalh— 1) + Go* H(h— )}

is differentiable under the integral sign, which proves the existence of %
The care on the boundary must be also taken of in this case.

Concerning %—}J—;, the existence of it in every domain can be proved simi-

larly. And it is easy to see that %g exists except for the derivatives at y=12
and y=h +x. QE.D.
From two theorems stated above, we can derive the fundamental differential

equations. From the Chapman-Kolmogorov’s equation and (5) we have
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P(h+v, 5 9) = | Ple, 4 d2)P(h, &, 9)
(13) ]
=jop(r, %, d5)Ph, & 9) +4{1— Plt, x, 0)}+» P(h, t+ %, 9)

(z>0).

When 0 £y < h+x, from (13), we have

lim -2 {P(h+t, %, 9) - P(h, x, v)} = lim l.j Pz, %, &2)P(h, £, 9)
40 T 40 T Vo
1

T

P(r, x, 7).

lim (P, o+ %, 3) = PUb, %, )} = lim P(h, 4, )+
Noting that the first term is

lim '1’50 P, x, d¢)Pk, £, 3) = lim %;P(r, x, )Pk, 0r,y)  (0<08<1)

130 T

= K(x)P(h, 0, »),

we have

O %, 3) _ k(x)P(h, 0, y) + 2P 2 3) _ g(x)Ph, x, ).

As an additional fact, we have a trivial equation in the domain D;

oFP(h, x, ¥) _

37 0.

Writing these equations in the following form, we shall call them the first funda-

mental differential equations.

(14) aP(ighx,y) _ aP(hé;Cy_y)_:K(x){P( 50, 9)— Pk, 2, %)} in D, and D,
o PRI g in p,

Next we consider the following equation that corresponds to (13).
P, %,9) = | P(s, & 9) P =<, x, df) (x> 0)
-t
=50 Pl 6, ) P(h—7, %, d)+{1—-Ph—1, %, h=)}P(r, x+h—1, %)

(16) ¢
h-n -
=§, POEDPR-15d) + [ (P89 ~ PO, & )P~ 7, 5, d5)

+{1-Ph~<, % h—=o)}P(r, x+h—1, »).

When 0 = y < h, this implies
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%{P(h, %, 9)~Ph—c, %9}

i

1 Y= Y h-=
S S MR [ WOR (OO VR P
+ %P(r, xth—c, o) {1—Ph—1, % h=1)}
1 1
= L[ P, & 0)P(h=7, 5 d8) — AP =7, 5, 9) = Ph— 1, %, 3= 7))
y-1
1 (e 1
+ L P, &, P =, %, d8) + L Ple, 54+ h=7, {1~ Plh =1, % k=),
y
Letting © tend to 0, we have
oP(h, %, ) _ _ oP(h, %, %)

h
e +ij(5)P<h,x,ds)+K(x+h><1—P(h,x,_h)>.

Thus we have

17) a—”(’gh"’ L2 af’(’gy"’” = —K(y)p(h, %, ) in Dy,

where p(h, %, y) is the density function in y of P(h, %, y). For the particular
choice ¥ =0 in (17), we have

(17 a@(;gho, ») 4 aﬁ(’gyo’y) = —K(y)p(h, 0, ), if 0=y<h.

And we have a trivial equation

(18) oP(h, x, ¥)

> =0 in D; and D..

(17") (instead of (17)) and (18) will be called the second fundamental differential

equations.

TueoreMm 3. The transition probability of the remewal process satisfies the

first and the second fundamental differential equations.

§3. Integrations of the fundamental differential equations-

We intend to integrate the fundamental, differential equations under the

following conditions :
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1°) P, x, 9) =0, if *jOK(t)dt-_- o or y =0,

2°) P(h, x, v) is an absolutely continuous distribution function in »

in each domain D,, D, and D; respectively,

(19) ¢
0 , if x <y,
30) P(O,x,.’)’)={ .
1 , if x=y,

4°) lim P(h, %, y) =lim P(h, 0, »).
230 yth

h+x>yz=h

For this purpose, we further assume the conditions:
1°) K(x) is non-negative and belongs to C'-class,

X
(20) 2°) il_)rg 0K(t)dt= SR

3°) 0<j:°t2d(1 — exp( —jK(t)dt)}< 00,

Now the integration is performed in each of the domain D;, D, and D;.

Case 1. In the domain D;. In this case P depends neither y nor & by

virtue of (15) and (18). Hence we may write
(21) P(h, %, y) = P(0, %, y) = 1.
The last equality is implied by (19) 3°) since x < y.

Case II. In the domain D,;. From (18) we see that P is independent of y.
Being reduced to the Case I, it is proved that P(%, 0, y) = 1.

Therefore we may write (14) in the following form

oP(h, x,y) _ oP(h, % y)

!
(14") o E

=K(x){1— P(h, % y)}.

Solving the characteristic equation

dh _ dx _ 4P
1~ -1 Kx)1-P)y
we have
[ Xx+h=«a

1 (1- P)exp( — ij(t)dt) =4,

where « and § are constants. Let g(x) be an arbitrary function. Then the
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solution of (14') may be written as
X
(1— P)exp( —-5 K(t)dt) =g(x+h),
that is,
X
(22) P, x, 3) =1-exp (| K(t)dt) - glx+h).

We can determine the explicit form of g(x) by virtue of the boundary con-
dition (19) 3°):

X
PO, x, y) =1—exp (5 K(t)dt)g(x) =0.
Hence we have
x+h

(23) P(h, x,3) =1~exp(~ |  K(t)db).

Cose III. In the domain D;. First we must find the functional form of

P(R, 0, v) in this domain. Solving the characteristic equation of (17')

dh _dy . dp
1 1 -K(y)p’
we have
h—y=a

Y
p exp (| K(han =5,
where « and § are constants. Let f be an arbitrary function. Then we have
Y
(1, 0, 9) = exp ( —fo KWBab)f(h—y).

Because of the probabilistic interpretation, (k) must be non-negative for # >0
and f(h) =0 for 7 < 0. Therefore we have

y
(24) P, 0, ») =LE(u)f(h—u)du,
(- ("kwan , it wso,
where E(n) = P j" ) 1 “
1 , if 2 <0.

Letting y increase to 4, P(h, 0, y) tends to
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h
(25) jo,E(mf(h — w)du

which is equal to 1~ E(h), the limiting value of (23), by virtue of the conti-
I
nuity assumption (19) 4°). Let F(&) be gof( u)du. Then (25) becomes

F(h) = (1= E)=F(n).
As this is equal to 1 — E(h), we have
F(h)=1-E) + (1-E) = F(h).
By induction, for any positive integer », we have
F(h) =1-=Eh)+ 1 —-E** () + ...+ (1 -E)""*F(h).

This convolution can be defined since 1-— E(%) is a distribution function and
F(h) is monotone non-decreasing function vanishing for 7 < 0.
Now, 1 - E(x) is a distribution function with finite variance by the as-

sumption (20) 3°). Therefore we have

(1-E)**F(h) >0 (n—- «) for every h 0.

It is well known that the series >, (1 — E)"*(h) converges. Hence we have

n=1

(26) F(h) = S1(1 = EY*(h).

n=1

Therefore we obtain

27) P, 0,9) = | = Bw)duF(h — ).
0

X
Using this, we can find the solution of (14). Let Z=-exp( —joK(t)dt) + P.
Then, by a simple calculation, (14) becomes

oZ _ oZ

(14,) ”'a—h— W = —E'(x)P(h, 0, y)

The characteristic curve is given by
£t= —~s+a, h=s-+0,

S 3%
Z= jﬂ— E(=o+ a)jo — E(w)dyFo+b—wids +c,

where s is a parameter and a, b and ¢ are constants. It is noted thiatc y 15 cou-

3) To prove it, it suffices to show that (1 — E)"*(k) >0 (- ). If we apply the
law of large numbers to the independent non-negative random variables which have the
common distribution function 1 — E(x), we can easily prove the convergence,
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sidered as a constant there. Hence we may determine the initial curve on the

boundary line ¥ =0, z = y in the (x, &) plane as follows:
Y
£=0,h=t+y,  Z=P( 0,3 =] ~EwdFy+t-u),

where ¢ is a parameter. The integral surface of (14') in question is given by
x=2x(s,t) = —s, h="h(s, t)=s+t+y,

"y "y
7= Z(S, t) = jjj‘ E’( - a)E(u)duF(o—!— t+y - u)do' + fo - E(u)duF(y +t— u)
0
Eliminating the parameters, we have
Y =X Y
Z:j‘ j E(—-0)E(u)duFlo+h+x— u)da—i—j - E(u)duF(h+x—u)
00 0
Y X "y
= - [ [ R BWaFh+ v -0-wds+ | - B dFh+5-w).
Thus we obtain

1P
" P, 2, 9) = gt ), §, = B dFh+ 5 -0 ) dB(o)

+ [ - EwdF -0},

There remains only to show that P(h, x, y) given by (21), (23) and (28)
is certainly a transition probability of the renewal process considered at the
begining. For this purpose, it is sufficient to show that P(h, x, v) given by
(21), (23) and (28) is the same as the one given by (15). In the domain D,
and D., our assertion is clear, if we let 1 — E(x) and F(x) correspond to G(x)

and H(x) respectively. Let us compare two density functions with respect to
v in the domain D;. Noting that

r—%@){jj{mx +h=$) - G(x) |dH(s) |

(Gx* H) () =
1 h
- 1"’?@(75”0 Glx+h~s)dH(s) ~ GH(D)},

we have the density function of (5)

— h-y
(29) T8 Gt hmy = 9B (s + G b h- ).

On the other hand, the density function of (28) is
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(30) g&l{fo F(x+1 -y o)dE(s) + F(h+x-)|.

By replacing E(x) and F(x) by 1—-G(x) and H(x) respectively, (30) can be
written in the form

1—-G(y) { _ x+h-y
1-G(x)

0
G/Ci+h=y =S H(s)ds = Shc'(x St h—y—s)H(s)ds
-y

. -y
+H’(h+x—y)} =%Tg£(2%{ , G(x+h—y—s)H(s)ds +G'(x + h—y)},

which is identical with (29). Thus we can conclude that the assertion stated

above holds.

Furthermore we can prove, putting ¥y =% in (28), the existence of 1hlI¢n 71%—
o

P(h, x, h). This is just the K(x) obtained in Theorem 1. And it is obvious
that the function P(h, x, y) defined by (21), (23) and (28) satisfies the differ-
ential equation (14), (15), (17) and (18). Summing up we have

THEOREM 4. The transition probability of the renewal process is completely

determined by the first and the second fundamental differential equations.

From this theorem, we may conclude that the stationary renewal process
is uniquely determined by the first and the second fundamental differential
equations since even the initial distribution can be determined uniquely by such

a distribution function

0(x) = %soexp( - fo K(t)dt)du,
where m:S:xd(l—exp( —5 K(t)dt)}.
0
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