Canad. J. Math. Vol. 51 (1), 1999 pp. 3-9

On a Conjecture of Goresky, Kottwitz and MacPherson

C. Allday and V. Puppe

Abstract. We settle a conjecture of Goresky, Kottwitz and MacPherson related to Koszul duality, *i.e.*, to the correspondence between differential graded modules over the exterior algebra and those over the symmetric algebra.

We show that a variant of Conjecture (13.9) in [GKM] holds whereas the original form of the conjecture does not. We assume that the reader is familiar with [GKM] and we apply the notation used therein.

We would like to thank Mark Goresky for comments and queries which helped to improve the presentation and the content of this note.

1 The Minimal Hirsch-Brown Model

We begin by recalling some results of [AP, Appendix B] concerning the so-called minimal Hirsch-Brown model of the Borel construction. We concentrate on the case where the connected, graded commutative algebra called *R* in [AP] is a polynomial ring *S* in finitely many variables ξ_i , i = 1, ..., r of even degrees $|\xi_i|$ over a field *k*.

Let $\tilde{K} = S \otimes K$ be a "twisted tensor product", *i.e.*, *K* here is a graded *k*-vector space and \tilde{K} a differential graded *S*-module, which is equal to $S \otimes K$ as an *S*-module (disregarding the differential); in other words, \tilde{K} is a differential graded *S*-module, which is free as an *S*-module (the differential on *S* is trivial). The *S*-linear differential δ of $S \otimes K$ induces a *k*-linear differential $\delta_1 = id_k \otimes_S \tilde{\delta}$ on *K*, where *k* is considered an *S*-module via the standard augmentation $\epsilon: S \to k$. The differential graded *S*-module ($\tilde{K}, \tilde{\delta}$) can be viewed as obtained from the differential graded *k*-module (K, δ_1) by "twisting" the differential of the usual tensor product $S \otimes K$ with respect to the "parameter space" *S* (*cf.* [AP]).

Proposition 1.1 Let $\tilde{f}: \tilde{K} \to \tilde{L}$ be a morphism of twisted tensor products. Assume that \tilde{K} and \tilde{L} are bounded from below. Then the following statements are equivalent:

- (\tilde{a}) \tilde{f} is a homotopy equivalence in the category δgS -Mod of differential graded S-modules
- (b) H(f) is an isomorphism
- (a) $f := id_k \otimes_S \tilde{f} : k \otimes_S (S \otimes K) \cong K \to L \cong k \otimes_S (S \otimes L)$ is a homotopy equivalence in the category δgk -Mod of differential graded k-modules
- (b) H(f) is an isomorphism.

For the proof of this proposition *cf.* [AP, (B.2)], in particular (B.2.1) and (B.2.2).

Received by the editors June 25, 1998.

AMS subject classification: Primary: 13D25, 18E30; secondary: 18G35, 55U15.

Keywords: Koszul duality, Hirsch-Brown model.

[©] Canadian Mathematical Society 1999.

Since the differential $\tilde{\delta}$ of a twisted tensor product $\tilde{K} = S \otimes K$ is S-linear, it is deter-

mined by the *k*-linear restriction $\tilde{\delta}|_K : K \cong 1 \otimes K \subset S \otimes K \to S \otimes K$. The map $\tilde{\delta}|_K$ corresponds to a family of *k*-linear maps $\{\delta_s : K^q \to K^{q+1-|s|}, s = \xi_1^{n_1} \cdots \xi_r^{n_r}, |s| = \sum_{i=1}^r n_i |\xi_i|\}, i.e., \tilde{\delta}(1 \otimes x) = \tilde{\delta}|_K(x) = \sum_s s \otimes \delta_s(x)$ for $x \in K$, where the sum is taken over the set $\mathcal{M}(S)$ of all monomials in *S*.

The property $\tilde{\delta} \circ \tilde{\delta} \equiv 0$ corresponds to a family of relations

$$\sum_{s=s's''}\delta_{s'}\circ\delta_{s''}\equiv 0 \quad ext{for all } s\in \mathcal{M}(S),$$

where the sum for a fixed $s \in \mathcal{M}(S)$ is taken over all product decompositions of *s* into two factors, in particular

$$\delta_{1} \circ \delta_{1} \equiv \mathbf{0} \quad (\mathbf{1} \in \mathcal{M}(S))$$
$$\delta_{1} \circ \delta_{\xi_{i}} + \delta_{\xi_{i}} \circ \delta_{1} \equiv \mathbf{0} \quad (\xi_{i} \in \mathcal{M}(S))$$

Let *H*(*K*) denote the homology of *K* with respect to the differential $\delta_1 = id_k \otimes_S \tilde{\delta}$.

Proposition 1.2 Let $\tilde{K} = S \otimes K$ be a twisted tensor product, bounded from below. There exists a differential $\tilde{\delta}^H$ on $S \otimes H(K)$, which gives a twisted tensor product structure $S \otimes H(K)$, called minimal Hirsch-Brown model, such that $\mathrm{id}_k \otimes_S \tilde{\delta}^H \equiv 0$, and $S \otimes K$ and $S \otimes H(K)$ are homotopy equivalent in δgS -Mod. By these properties $S \otimes H(K)$ is uniquely determined up to isomorphism in δgS -Mod.

The differential $\tilde{\delta}^H$ can be given by

$$ilde{\delta}^{H}(1\otimes [x]) = \sum_{i=1}^{r} \xi_{i} \otimes [\delta_{\xi_{i}}(x)] + \sum_{\ell(s)\geq 2} s \otimes \delta_{s}^{H}[x]$$

where [] denotes the class in H(K) of a cycle in K with respect to the differential δ_1 ; $\ell(s)$ denotes the length of $s \in \mathcal{M}(S)$ as a product.

The proof of Proposition 1.2 is essentially given in [AP, pp. 451-454], in particular (B.2.4), Exercise (B.7).

The Exercise (B.7), *i.e.*, the uniqueness of the minimal Hirsch-Brown model up to isomorphism, is easily proved using the fact that the functor $k \otimes_S -: \delta gS$ -Mod $\rightarrow \delta gk$ -Mod preserves homotopies, and that a morphism $\tilde{f}: S \otimes K \to S \otimes L$ is an isomorphism if (and only if) $f := \operatorname{id}_k \otimes_S \tilde{f}: K \to L$ is an isomorphism (*cf.* [AP, (A.7.3)]). In [AP] the above expression for $\delta^H(1 \otimes [x])$ is verified only in case r = 1, but the argument for the general case is analogous.

Remark 1.3 The differential $\tilde{\delta}^H$ of $S \in H(K)$ corresponds to a family of "cohomology" operations"

$$\{\delta^H_s\colon H^q(K)\to H^{q+1-|s|}(K), s\in \mathcal{M}(S)\}.$$

The property $\tilde{\delta}^H \circ \tilde{\delta}^H \equiv 0$ corresponds to

$$\sum_{s=s's''}\delta^H_{s'}\circ\delta^H_{s''}=0\quad ext{for all }s\in\mathcal{M}(S).$$

Since $\delta_1^H \equiv 0$ one has in particular

$$\delta^{H}_{\xi_{i}} \circ \delta^{H}_{\xi_{i}} + \delta^{H}_{\xi_{i}} \circ \delta^{H}_{\xi_{i}} \equiv 0 \quad \text{for } i, j = 1 \dots r$$

Since the minimal Hirsch-Brown model is only unique up to isomorphism in δgS -Mod, the family of cohomology operations $\{\delta_s^H, s \in \mathcal{M}(S)\}$ is only unique up to the corresponding equivalence. Clearly H(K) together with $\{\delta_s^H, s \in \mathcal{M}(S)\}$ determine $S \otimes H(K)$ up to isomorphism in δgS -Mod and hence, by Proposition 1.2, $S \otimes K$ up to homotopy equivalence.

We can now apply the above results to obtain a variant of Conjecture (13.9) in [GKM]. Using the notation of [GKM], let $N \in D_+(\Lambda_{\bullet})$, where $D_+(\Lambda_{\bullet})$ is the derived (with respect to quasi-isomorphism) category of the homotopy category of differential graded Λ_{\bullet} -modules, which are bounded from below; Λ_{\bullet} is the exterior algebra on a graded vector space $P = \bigoplus_{i>0} P_i$ with $P_{2i} = 0$ for all j.

By the Koszul duality theorem (8.4) in [GKM] there are equivalences of categories $t: D_+(\Lambda_{\bullet}) \to D_+(S)$, $h: D_+(S) \to D_+(\Lambda_{\bullet})$ which are quasi-inverse to each other; $D_+(S)$ is the derived category of the homotopy category of differential graded *S*-modules, bounded from below.

In [GKM, (8.3)], t(N) is defined as a twisted tensor product $S \otimes N$ with differential

$$d(s\otimes n)=s\otimes d_Nn+\sum_{i=1}^r\xi_is\otimes\lambda_in$$

where $\lambda_1, \ldots, \lambda_r$ generate Λ_{\bullet} and ξ_1, \ldots, ξ_r generate *S*.

By Proposition 1.2, t(N) is equivalent to its minimal Hirsch-Brown model in δgS -Mod, which is in turn determined (up to isomorphism) by H(N) and the family $\{\delta_s^H, s \in \mathcal{M}(S)\}$; in particular, $t(N) \cong S \otimes H(N)$ in $D_+(S)$. The maps $\delta_{\xi_i}^H \colon H(N) \to H(N), i = 1, ..., r$ coincide with the action induced by $\lambda_i \colon N \to N$ in cohomology. Since *h* is quasi-inverse to *t*, one has $N \cong h \circ t(N)$ in $D_+(\Lambda_{\bullet})$. Hence one gets the following corollary.

Corollary 1.4 $N \in D_+(\Lambda_{\bullet})$ is determined by H(N) and $\{\delta_s^H, s \in \mathcal{M}(S)\}$.

Let $K_{+}^{fr}(S)$ denote the homotopy category of differential graded *S*-modules, which are bounded from below and free over *S*. Let M_1 and M_2 be objects in $K_{+}^{fr}(S)$. The group $\operatorname{Hom}_{D_+(S)}(M_1, M_2)$ is defined as the direct limit of the system { $\operatorname{Hom}_{K_+(S)}(M'_1, M_2)$; f: $M'_1 \to M_1$ quasi-isomorphism in $K_+(S)$ }. For any M'_1 in $K_+(S)$ the map Θ : $th(M'_1) \to M'_1$ (see [GKM, (16.6)]) is a quasi-isomorphism and $M''_1 := th(M'_1)$ is in $K_{+}^{fr}(S)$. Therefore the above limit can be restricted to the cofinal subsystem, where M'_1 is in $K_{+}^{fr}(S)$. By Proposition 1.1 any quasi-isomorphism in $K_{+}^{fr}(S)$ is an isomorphism in $K_+(S)$. Hence $\operatorname{Hom}_{K_+(S)}(M'_1, M_2) \cong \operatorname{Hom}_{K_+(S)}(M_1, M_2)$ and taking the direct limit gives:

$$\operatorname{Hom}_{K_{+}^{\operatorname{fr}}(S)}(M_{1}, M_{2}) \cong \operatorname{Hom}_{D_{+}(S)}(M_{1}M_{2}).$$

One therefore gets the following proposition.

Proposition 1.5 The canonical functor $i: K_{+}^{fr}(S) \to K_{+}(S)$ induces an equivalence of categories $\overline{i}: K_{+}^{fr}(S) \to D_{+}(S)$.

Let $H^{\text{fr}}_+(S)$ denote the homotopy category of differential graded *S*-modules, which are bounded from below, free over *S* and minimal in the sense that $\mathrm{id}_k \otimes_S d_M \equiv 0$ for *M* in $H^{\text{fr}}_+(S)$. Then Proposition 1.2 implies that the canonical functor $m: H^{\text{fr}}_+(S) \to K^{\text{fr}}_+(S)$ is an equivalence. As a consequence one has

Corollary 1.6 All functors in the following diagram are equivalences of triangulated categories.

$$\begin{array}{cccc} D_+(\Lambda_{\bullet}) & \stackrel{t'}{\longrightarrow} & K^{\mathrm{fr}}_+(S) & \stackrel{\bar{\imath}}{\longrightarrow} & D_+(S) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\$$

with $\overline{i}t' = t$.

Remark 1.7 Koszul duality can be viewed as an algebraic analogue of the following topological situation (*cf. e.g.* [tD, I.8], in particular (8.18)). Let hGTop be the homotopy category of *G*-spaces and *G*-maps, *G* a topological group, hG^{fr} Top the full subcategory, whose objects are numerable free *G*-spaces; let hTop_{BG} the homotopy category of spaces and maps over BG and hFib_{BG} the full subcategory of numerable fibre bundles over BG. Let *i*: hG^{fr} Top \rightarrow hGTop and *j*: hFib_{BG} \rightarrow hTop_{BG} be the canonical inclusion functors. Define *t'*: hGTop \rightarrow hFib_{BG} by the Borel construction, *i.e.*, *t'*(*X*) := {*X*×_{*G*} EG \rightarrow BG}, and *h'*: hTop_{BG} \rightarrow hG^{fr} Top by *h'*({*Y* \rightarrow BG}) := *Y*×_{BG} EG, *i.e.*, the total space of the principal *G*-bundle, classified by {*Y* \rightarrow BG}.

The composition $h' \circ j \circ t'$: hGTop \rightarrow hG^{fr} Top is equivalent to fr: hGTop \rightarrow hG^{fr} Top, where fr(X) := $X \times EG$ (with diagonal *G*-action), since

 $(X \times_G \operatorname{EG}) \times_{\operatorname{BG}} \operatorname{EG} \cong X \times \operatorname{EG}$ as *G*-spaces $([x, e], ge) \to (gx, ge), \quad ([x, e], e) \leftarrow (x, e).$

Since fr \circ *i* is equivalent to the identity (for $X \in hG^{fr}$ Top, $pr: X \times EG \to X$, $(x, e) \to x$ is an isomorphism in hG^{fr} Top) one gets that $h' \circ j \circ t' \circ i$ is equivalent to the identity on hG^{fr} Top. In a similar way one gets that $t' \circ i \circ h' \circ j$ is equivalent to the identity on $hFib_{BG}$. (Note that $\{Y \to BG\} \in hFib_{BG}$ is isomorphic to $\{(Y \times_{BG} EG) \times_G EG \to BG\}$ in $hFib_{BG}$: The *G*-map $(y, e) \to (y, e, e)$ from $(Y \times_{BG} EG)$ to $(Y \times_{BG} EG) \times EG$ induces a homotopy equivalence on the quotients,

$$Y \cong (Y \times_{BG} EG)/G \to (Y \times_{BG} EG) \times_G EG,$$
$$y \leftarrow [y, e] \to [(y, e), e]$$

which is a map over BG; and since $\{Y \rightarrow BG\}$ and $\{(Y \times_{BG} EG) \times_G EG \rightarrow BG\}$ fulfil the homotopy lifting property this map is even a homotopy equivalence over BG.)

If DGTop denotes the "derived" category of hGTop, obtained by inverting morphisms $\alpha: X_1 \to X_2$ such that $(h' \circ j \circ t')(\alpha)$ are isomorphisms in hG^{fr} Top (which is equivalent

to α being the equivalence class of a *G*-map that is a homotopy equivalence in Top), then *i* induces an equivalence of categories \bar{i} : $h\bar{G}^{fr}$ Top \rightarrow DGTop.

Similarly, if DTop_{BC} denotes the "derived" category of hTop_{BC} obtained by inverting morphisms (over BG) $\beta: Y_1 \to Y_2$ such that $(t' \circ i \circ h')(\beta)$ are isomorphisms in hFib_{BG} (which is equivalent to β being the equivalence class of a map over BG that is a homotopy equivalence in Top), then *j* induces an equivalence of categories \bar{j} : hFib_{BG} \rightarrow DTop_{BG}.

Altogether one has the following diagram

The functors \bar{i} , \bar{j} are equivalences; $h' \circ j \circ t' \circ i$ and $t' \circ i \circ h' \circ j$ are equivalent to the respective identity functors: so $(t' \circ i)$ and $(h' \circ j)$ are quasi-inverse equivalences, which induce quasi-inverse equivalences

 $t: \text{ DGTop} \to \text{DTop}_{BG} \text{ and } h: \text{ DTop}_{BG} \to \text{DGTop}$.

Work of Eilenberg-Moore and many other mathematicians is concerned with translating the above (and more general topological) situation into an algebraic set up which can be related to Koszul duality (cf. [McC, Chapters 7 and 8] for a comprehensive presentation of this translation and for detailed references).

2 Examples

For $N \in D_+(\Lambda_{\bullet})$ a family of "higher cohomology operations" $\{\lambda_s\}$ on $H^*(N)$ is defined in [GKM, Section 13]. They can be considered as the differentials which start at $E_n^{0,*}$ in the spectral sequence which converges to $H^*(tN)$ having $E_2^{*,*} \cong S \otimes H^*(N)$. This spectral sequence can be obtained by filtering $tN = S \otimes N$ according to degree in *S*, *i.e.*, $\mathcal{F}^p(tN)$ is generated by elements $s \otimes n \in S \otimes N$ with $|s| \geq p$. Since $S \otimes N$ is homotopy equivalent to $S \otimes H(N)$ one obtains the same spectral sequence by filtering the latter complex in an analogous way.

Proposition 2.1

- (a) The family {δ_s^H, s ∈ M(S)} determines the family {λ_s}.
 (b) {δ_s^H, s ∈ M(S)} is trivial if and only if {λ_s} is trivial.

Proof Part (a) is immediate since $\{\delta_s^H, s \in \mathcal{M}(S)\}$ determines the differential in $S \otimes H(N)$. For part (b) let

$$ilde{\delta}^{H}ig(1\otimes [\pmb{x}]ig) = \sum_{|\pmb{s}|=\gamma} \pmb{s}\otimes \delta^{H}_{\pmb{s}}ig([\pmb{x}]ig) + \sum_{|\pmb{s}|>\gamma} \pmb{s}\otimes \delta^{H}_{\pmb{s}}ig([\pmb{x}]ig)$$

for $[x] \in H(K)$. Then

$$d_n(1 \otimes [\mathbf{x}]) = \begin{cases} 0 & \text{for } n < \gamma \\ \sum_{|s|=\gamma} [s \otimes \delta_s^H([\mathbf{x}])] & \text{for } n = \gamma, \end{cases}$$

with $1 \otimes [x] \in E_{\gamma}^{o,*} \subseteq \cdots \subseteq E_2^{o,*}$, where $[s \otimes \delta_s^H([x])]$ denotes the equivalence class in $E_{\gamma}^{*,*}$, *i.e.*, $\lambda_s([\mathbf{x}]) = [\delta_s^H([\mathbf{x}])]$ for $|\mathbf{s}| = \gamma$, where $[\delta_s^H([\mathbf{x}])]$ denotes the equivalence class in the appropriate quotient of H(N), dividing out the indeterminancy of the cohomology operation. Hence part (b) follows.

Remarks 2.2

- (a) With the notation of Proposition 2.1, if $\delta_s^H([\mathbf{x}]) \neq 0$ but $[\delta_s^H([\mathbf{x}])] = 0$ then an operation $\lambda_{s'}$ with |s'| > |s| may be defined on [x], but may not be determined solely by $\tilde{\delta}^H(1 \otimes [x])$; the values of $\tilde{\delta}^H$ on other elements could play a role.
- (b) It follows from [CS] that in case r = 1, *i.e.*, $\Lambda_{\bullet} = \Lambda(\lambda_1)$, $|\lambda_1| = 1$, all differentials in the above spectral sequence are determined by those starting from $E_n^{o,*}$, but this does not hold for r > 1.

Example 2.3 Let r = 2, $S = Q[\xi_1, \xi_2]$, $H \neq Q$ -vector space with basis $\{a, b, u, v\}$; |a| = 2, |b| = 4, |u| = |v| = 5. We define two differentials on $S \otimes H$, *i.e.*, two objects $M_1, M_2 \in M_1$ $D_+(S)$, such that the respective cohomology modules are not isomorphic, but the "higher cohomology operations" in the sense of [GKM, (13.8), (13.9)] coincide. Since, by Koszul duality, $M_i \in D_+(S)$ can be considered as $t(N_i)$ for $N_i \in D_+(\Lambda_{\bullet})$ and $H(N_i) = H$, this shows that N_i is not determined by the Λ_{\bullet} -module $H(N_i)$ and the collection of higher cohomology operations, in particular, Conjecture (13.9) in its original form, which states that the triangulated category $D_{+}(\Lambda_{\bullet})$ is equivalent to the category of graded Λ_{\bullet} -modules together with the collection of higher cohomology operations, does not hold.

The non-zero terms of the differential $\tilde{\delta}|_{H}$ are given by:

- (1) $\tilde{\delta}(1 \otimes u) = \xi_1 \otimes b; \tilde{\delta}(1 \otimes v) = \xi_2 \otimes b$ for M_1 (2) $\tilde{\delta}(1 \otimes u) = \xi_1 \otimes b + \xi_1^2 \otimes a; \tilde{\delta}(1 \otimes v) = \xi_2 \otimes b + \xi_2^2 \otimes a$ for M_2 .

 $H^*(M_1)$ and $H^*(M_2)$ are not isomorphic as graded S-modules, in particular M_1 and M_2 are not isomorphic in δgS -Mod. The differentials in the two spectral sequences which start from $E_n^{v,*}$ coincide, *i.e.*, the only non-zero differentials of this kind are $d_2(1 \otimes u) = \xi_1 \otimes b$ and $d_2(1 \otimes v) = \xi_2 \otimes b$ in both cases. But for M_2 there is another non-zero differential, namely $d_4([\xi_2 \otimes u - \xi_1 \otimes v]) = [\xi_1^2 \xi_2 \otimes a - \xi_1 \xi_2^2 \otimes a]$. Note that while $M_1 = t(H)$ for an appropriate action of Λ_{\bullet} on *H*, it is not possible to get M_2 as t(H) for *H* equipped with a graded Λ_{\bullet} -module structure.

Remark 2.4 In view of Corollary 1.6, the Conjecture (13.9) in [GKM] could be rephrased in the following way. Let SP^0 be the category which has as objects, graded k-vector spaces bounded from below, together with the operations in the sense of [GKM, (13.8) (13.9)] and as morphisms, degree preserving homomorphisms of graded k-vector spaces, which commute with the operations. Then the conjecture is equivalent to the statement: The functor σ : $K^{\text{fr}}_{+}(S) \to SP^{\circ}$, which assigns to each differential graded free *S*-module, $S \otimes N$, the $E_2^{0,*}$ -term of the spectral sequence obtained from the degree filtration on S, together with the differentials starting from $E_n^{o,*}$, considered as higher cohomology operations on $E_2^{0,*} \cong H^*(N)$, is an equivalence of triangulated categories.

Example 2.3 shows that the conjecture fails for r > 1 already because $\sigma(S \otimes N)$ does not completely determine the spectral sequence (nor the cohomology $H^*(S \otimes N)$). For

r = 1, though, it is true that $\sigma(S \otimes N)$ determines $S \otimes N$ (up to isomorphism in $K_{+}^{fr}(S)$). In fact, in this case:

- (i) $\sigma(S \otimes N)$ determines the spectral sequence completely (*cf.* Remark 2.2(b)),
- (ii) there is no extension problem in calculating $H^*(S \otimes N)$, as an *S*-module, from the E_{∞} -term of the spectral sequence,
- (iii) $H^*(S \otimes N)$ determines $S \otimes N$ up to homotopy equivalence of differential graded *S*-modules, *i.e.*, up to isomorphism in $K_+^{\text{fr}}(S)$, since—for r = 1—*S* is a PID.

Yet Conjecture (13.9) in its original form fails even in case r = 1: The functor σ is not faithful (for any $r \ge 1$) (s. Example 2.5 below).

Example 2.5 Let N_1 and N_2 be differential graded Λ_{\bullet} -modules generated, as *k*-vector spaces, by $n_1, |n_1| = 0$, and $n_2, |n_2| = 2$, respectively. (Hence the Λ_{\bullet} -structures and the differentials on N_1 and N_2 are trivial.) Then $t(N_1) = S \otimes N_1$ and $t(N_2) = S \otimes N_2$ have trivial differentials, too. So $\sigma(t(N_1)) = N_1$ and $\sigma(t(N_2)) = N_2$, and the cohomology operations are trivial. Already for degree reasons there is only the trivial morphism from $\sigma(t(N_2))$ to $\sigma(t(N_1))$ in SP°. But $n_2 \mapsto \xi \otimes n_1$ extends to a morphism $f: t(N_2) \to t(N_1)$, which is non trivial in $K_+^{\text{fr}}(S)$. Hence σ is not faithful. Note that although there is only the trivial morphism from N_2 to N_1 in the homotopy category $K_+(\Lambda_{\bullet})$, there are non trivial morphisms in the derived category $D_+(\Lambda_{\bullet})$:

$$N_2 \xrightarrow{\Phi_2} ht(N_2) = \operatorname{Hom}_k(\Lambda_{\bullet}, S \otimes N_2) \xrightarrow{h(f)} \operatorname{Hom}_k(\Lambda_{\bullet}, S \otimes N_1) = ht(N_1) \xleftarrow{\Phi_1} N_1$$

where $\Phi_i := \Phi(N_i)$, i = 0, 1 (s. [GKM, (16.2)], are morphisms in $K_+(\Lambda_{\bullet})$. These morphisms induce isomorphisms in homology (s. [GKM, (16.2) (b)], *i.e.*, they become isomorphisms in the derived category $D_+(\Lambda_{\bullet})$.

Of course, there are similar examples for r > 1.

References

- [AP] C. Allday and V. Puppe, Cohomological Methods in Transformation Groups. Cambridge University Press, Cambridge, 1993.
- [CS] T. Chang and T. Skjelbred, The topological Schur lemma and related results. Ann. Math. 100(1974), 307– 321.
- [tD] T. tom Dieck, Transformation Groups. de Gruyter Stud. Math. 8, de Gruyter, Berlin-New York, 1987.
- [GKM] M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131 (1998), 25–84.
- [McC] J. McCleary, User's Guide to Spectral Sequences. Math. Lecture Ser. 12, Publish or Perish, Wilmington, 1985.

Department of Mathematics	Fakultät für Mathematik und Informatik
University of Hawaii	Universität Konstanz
Honolulu, Hawaii 96822	D-78457 Konstanz
USA	Germany
email: chris@math.hawaii.edu	email: Volker.Puppe@uni-konstanz.de