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Introduction

The device of representing a predicate by a universal sentence1' gives rise

to logics of higher order. To represent an object constructed by a series of

certain steps, we usually use terms. To represent a predicate constructed by

a series of certain steps, we now use sentences in general. We can now

substitute special predicates represented by sentences for predicate variables

of a sentence just as we have been able to substitute special objects represented

by terms for object variables. It is remarkable that we can always distinguish

predicates from objects, proceeding in this way.

The logic proper for this kind of sentences would be a logic of higher

order. Two kinds of variables, object variables and predicate variables, both

admitting quantification would be used in the logic. In the present paper, I

will introduce a series of logics of this kind, which I call REINFORCED LOGICS.

The reinforced logic of a logic LX is denoted by LXR.

I will introduce a series of reinforced logics LXR in (l). Broadly speaking,

any reinforced logic can be regarded as a type-theoretical logic assuming only

two types and having the axiom of reducibility.2) The logic LKR must be

closely connected with Takeuti's GLC.3) The reinforced logic LOR would be

a basic logic for a series of logics LXR in similar manner as that LO is basic

for a series of logics such as LK, LJ, LM etc.4>

Received September 13, 1965.
1J This device has been one of the leading ideas of my preceeding work, Ono [1],

For example, u<.v can be regarded as a special case (u for #and vfory) of the universal
sentence (x){y)x<y. I represent the binary predicate " < " by the universal sentence
(x){y)x<y, so u<.υ can be expressed also by ((x){y)x<y){u, υ).

2> See Whitehead and Russell [1].
•> See Takeuti [1].
4> See Ono [2] and [3]. I regard the primitive logic LO basic because popular logics

such as the lower classical predicate logic LK, the intuitionistic predicate logic LJ,
Johansson's minimal predicate logic LM, etc. can be faithfully interpreted in it. As for
details, see Ono [2].
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16 KATUZI ONO

We can give a formalism for LOR similar to that for LO given in my

preceding paper.5) FLO refers to the formalism for LO and FLOR refers to

the new formalism for LOR which will be introduced in the present paper.

Formal material of FLOR are the same as that of FLO. Namely, only one

kind of variables together with the head- and tail-brackets and the comma are

used in FLOR.

FLOR is so designed that any sequence of variables can be regarded as

an index and any sequence of variables and brackets can be regarded as a

sentence as far as it contains at least one bracket. Most remarkable difference

between FLOR and FLO lies in interpretation of sentences. Formal exposition

of FLOR is given in (2).

In (3), I will mention my view about future developments and possible

applications of the reinforced logics.

(1) Informal description of reinforced logics

In this section, we describe reinforced logics by dealing with two kinds

of variables, object and predicate variables. The former are denoted by

small Latin letters and the latter are denoted by capital Latin letters. I use

also usual logical constants such as IMPLICATION, UNIVERSAL and EXIS-

TENTIAL QUANTIFICATIONS together with some other auxiliary meta-logical

symbols.

Any elementary sentence is a series of symbols of the form PIR, ...fT;x,... ,z)

in which any predicate variable can be replaced by any sentence.

P{R, . . . , T xf . . . , z) can be interpreted as the predicate P having R, . . . ,

T as parameters holds for x, . . . , z. Both series R, . . . , T and x, . . . , z

may be vacant. Any sentence whose elementary sub-sentences are all of the

form P( x, . . . , z) is called STANDARD. In the following, P( x, . . . , z)

is expressed simply as Pixy . . . , z) to harmonize with the usual expression.

Any sentence of the form ψR, 5, . . . , T x, y, . . . , z) i.e. any sentence

having free predicate variables R, S, . . . , T and free object variables x, y, . . . ,

z requires no explanation proper to the reinforced logics unless $ is a" sentence

of the forms (*«)© or (*£/)£. Here " (* )" stands for either "( )" or " ( 3 )".

In this case, $(/?, S, . . . , T xty, . . . , z) means €>*(#, S, . . . , T y,. . .,*)

5> Ono [1].
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REINFORCED LOGICS 17

in the former case and ©**(S, . . . , T I xty> . . . , z) in the latter case, where

©* and £>** are sentences obtained from © on replacing all the variables u or

U bound to the quantifying variable u or U standing at the top of (*&>€> or

(*£/)£> by x or R, respectively. Notice that it does not matter here whether

the quantifier at the top is universal or existential. In $( R, 5,. . .,T x, y,. . . , z),

any sentences SR, S, . . . , £ can be substituted for i?, S, . . . , 71, respectively.

Inference rules of LXR for the primitive logic or for any J or K-series

logics LX6) are the same as in LX except for quantifications. So, I will write

down only inference rules for quantifications.

(A) For any sentence φ, (x)^ holds if (x)^(u) holds for every object

variable u {i.e. V^!), and (Z)$ holds if (X)^(U ) holds for every predicate

variable U [i.e. V£/!).

(B) For any sentence φ, (x)ty implies (x)ty(u) for any variable u which

does not occur in φ as bound variables. For any sentence 5β, (Z)$ implies

(-X")Sβ(3l ) for any standard sentence7) 91 which has no free variables occur-

ring in % as bound variables.

The following inference rules are assumed only in the reinforced logic

LXR of a logic LX which admits existential quantifiers.

(C) For any sentence φ and any variable u, (3x)*${u) implies (3x)%

assuming that u does not occur as bound in %. For any sentence φ and

any standard^ sentence 9ί, (3X)$β(9ϊ; ) implies (3X)^, assuming that any free

variable occurring in 3ϊ does not occur in $ as bound.

6> I call LJ, LM, and the positive predicate logic LP altogether J-SERIES LOGICS.
LK, LN, and LQ obtained by fortifying LJ, LM, and LP by Peirce's rule ("(9l->$)-*9l
implies S2l") are called altogether K-series logics. See Ono [2].

7?,8) These restrictions are necessary for avoiding trivial paradoxes of Russell-type.
Namely, if we remove these restrictions in the modified logic LMR* of LMR, for example,
then we can prove in LMR* (but not in LMR)

from the easily provable sentence

C3Q)(X)(Q(X;)=7X(X;))((X)7X(X;)l).

Now, by assumption, we can take a Q satisfying (this can be done in LMR too)

so we can prove in LMR* (but not in LMR)

(X)[Q{X;) = yX[X\))(Q\) i.e. Q(Q) )=

which surely leads to contradiction in* the usual way.
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18 KATUZI ONO

II)) l ϊ \3#Πp Is assumed lor any sentence % we can take a new variable

u for which we can assume (3x)^(u) i.e. Bui (3x)s#(u). Similarly, if we

assume (3X)φ, we can take a new variable U for which (3X)fy{U',) can be

assumed i.e. 3U\ (3X)ψU;).

Before concluding the first part of this section, I would like to exhibit a

simple example proof in LOR, which can not be followed in LO.

Namely, we can define a = b in LOR by (P){P{a)-*P(b)). To prove sym-

metricity of the equality thus defined i.e. to prove R(b)-+R(a) for. every

predicate variable R by assuming (P)(P(a) -*P{b))> we have only to adopt the

sentence (x)(R(x) -*R{a)) in place of P. Because Pia)-*P(b) is standard, we

can prove R(b)~*R{a) in LOR.

Although it is very practical to use two kinds of letters distinctly for

expressing object variables and predicate variables, it is not necessary to do so.

Even when we denote object variables and predicate variables by the same

kind of letters, we can distinguish from the context whether a variable in a

sentence is an object variable or a predicate variable except for quantifying

variables.

Quantification itself can be easily interpreted so as to match with our

unification. For example, (u)^ can be interpreted as "For all objects u and

for all predicates u holds φ", i.e. (&)(t/)^* according to the original notation

denoting predicate variables by capital letters.

We have only to interpret substitutions such as (x)ξ>(u), which must be

originally a sentence of the form (x)$*(u) or (X)$**(U). For this purpose,

we had better adopt a new way of expressing propositions. As a typical form

of elementary sentences, we adopt now P(u, U; --- w, W : x, ~-,z), denoting

predicate variables by capital letters.

Accordingly, the same proposition is expressed as p(u> u - - - wf w: x, - - -, z)

if we denote object variables as well as predicate variables by small letters.

Any elementary sentence has the form p(u,r; --- w, t ' x,---fz) and every

variable in the sentence is distinguished by the scheme

P{O,P --- O, P : O, ---, O)

(O for object variables and P for predicate variables).

Object variables can be replaced by variables only, but predicate variables can
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REINFORCED LOGICS 19

be replaced by variables as well as by sentences.

Quantifying variables can be regarded as variables of both characters,

object-like as well as predicate-like. Namely,

(x)ί)(uf x vt § --- w, t : x , ---, z )

as well as

{3x)ϊ)(u, x v, § --- w, i : x , ---, z)

means ίf(v, % ', --- w,t : x, ---, z), where ψ is the sentence obtained from I)

on replacing every object variable x in ίj bound to the quantifying variable x

standing at the top of the sentence by u and every predicate variable x in ϊj

bound to the same quantifying variable x by r.

Any sentence § can be called STANDARD if and only if every sub-sentence

of § is a sentence of the form p('> x, . . . , z). Inference rules for quantifications

can be stated as follows:

(a) For any sentence p, (x)p holds if {x)p{u, u:) holds for every u {i.e.

Vul).

(b) For any standard*' sentence p, any variable u, and any sentence r,

including the case where r is expressed by a single variable, (x)p implies (x)p(u,x:)

as far as neither u nor any free variable in r occurs in p as bound variables.

(c) For any sentence p, any variable u, and any standard1^ sentence r,

including the case where r is expressed by a single variable, {3x)p(u> r :)

implies (3x)p as far as neither u nor any free variable in r occurs in p as bound

variables.

(d) If we assume (3x)p, we can take a new variable u for which {3x)p{ut u - )

can be assumed i.e. 3ul (Ξx)p{u, u:).

(2) Formalism FLOR for the reinforced primitive logic LOR

Symbols of FLOR are the same as that of FLO. Namely, only one class

of VARIABLES are used together with the HEAD- and TAIL-BRACKETS

("Γ and Ύ) and the COMMA. Any sequence of variables is called INDEX.

Any sequences of variables and brackets is called SENTENCE as far as it

contains at least one bracket. Any sequence of variables, brackets, and commas

is called PROOF as far as it contains at least one comma.

9)'10> Compare Foot-note 7) and 8).
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20 KATUZI ONO

Any proof p is divided into a sequence ] of indices and sentences by com-

mas just as in FLO, and we can normalize the proof by deleting some commas

and also some symbols at the top. We can define INTRODUCTORY INDICES

in the sequence |, and we can divide the sequence again by its introductory

indices into a sequence ί of LINES, each line beginning with an introductory

index except for the first line. We regard the first line as beginning with the

null-sequence introductory index. All these can be done just as in FLO.U)

Thus far, we can proceed in parallel with FLO. We have to change our

notions, however, concerning FREE and BOUND VARIABLES, because we

would like to introduce QUANTIFICATIONS with respect to predicate variables.

Also, we have to change our notion FORMAL EQUIVALENCE, because we

have taken

xί- - -lyzZ- - -][- - -] tί - -3 uvw,

for example, as

{χl—lyzZ—lZ—ltZ—lHuvw)

in FLO, but now in FLOR, we take it as

(xί- - -3) (y{zί- - •][- - -3) tZ- - -3) (uvw),

parentheses here being employed as auxiliary meta-logical symbols.

To explain more formally, we denote the i-th term (a symbol or a symbol

series) of a sequence α by Q/ and the sub-sequence from its i-th term to its j-th

term by α//.

Now, let § be a sentence as a sequence of symbols. Then, § is called

NORMAL if and only if the number of head-brackets in § is equal to the

number of tail-brackets in it and the number of head-brackets in §i, is no less

than the number of tail-brackets in §i, for every i. We can normalize any

sentence by adding some head-brackets at its top and some tail-brackets at its

end. In any normal sentence, any head- (tail-) bracket is coupled with a partner

tail- (head-) bracket, head-brackets always preceding their partner tail-brackets

in the sentence.

Any variable δ, in a sentence s is called HEAD-VARIABLE (or TAIL-

VARIABLE) if and only if it is immediately followed by a head- (tail-) bracket

11 > See Ono [1].
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REINFORCED LOGICS 21

in "3" skipping over variables. Thus far is quite the same as in FLO.

Any- head-variable in § except those following just after a tail-bracket in "§"

is called QUANTIFYING VARIABLE. Any tail-variable in § following just

after a head-bracket in "[§" is called PREDICATE-VARIABLE. Any variable

which is neither quantifying variable nor predicate variable is called OBJECT-

VARIABLE.12'

To divide a normal sentence § into three blocks as shown in the preceeding

example, the FIRST BLOCK 3it is defined by that i is the smallest number

satisfying the following conditions- §,* is a tail-bracket, 3/+1 is not a head-

bracket, and δi, is a normal sentence. The SECOND BLOCK Zi+Uj is defined

by that §/ is the last tail-bracket in 3. The first block of any sentence can

never be void, while the second and third blocks may be void.

The second block is usually divided into its sub-blocks, each consisting of

an object variable at its top and a normal sentence following after it. Namely,

the first block of the sentence δ̂ +i.y is the (&+l)-th sub-block of the second

block of § assuming that the &-th sub-block of the second block of 3 ends with

As we wish that the range of any quantifying variable in a block or in a

sub-block should not extend over the end of the block or sub-block, I define

the notion "BOUND TO" as follows* Let 3, be a quantifying variable and §j

be a variable after 8/ (/</) in δ. Then, 8y is said to be BOUND TO 3/ if and

only if

1) §/• is not a quantifying variable and 3> is denoted by the same letter as

3/.

2) For any tail-bracket 8* in 8# {i<k<j)> the number of head-brackets in

8i.*+i really exceeds the number of tail-brackets in it.

3) No quantifying variable 3A in 3/y of the same letter as 3/ satisfies the

above condition for 8ι.

Any variable in β. sentence is called BOUND if and only if it is bound to

some quantifying variable in the sentence. Any variable in a sentence is called

FREE if and only if it is not BOUND.

12> In FLO, quantifying variables are dealt with as if they are object variables. In
FLOR, however, they are dealt with as if they are variables of both characters, object-
like as well as predicate-like. See Ono [1].
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22 KATUZI ONO

The following example would be a help to understand our rules. To make

comparison easier, I dealt with the same normal sentence in FLOR and in FLO.

Arrows show the BOUND-TO relation of variables. Single underline indicates

the second block of the whole sentence. Q, Pf and O under the variables

indicate that the variables just above them are quantifying variables, predicate

variables, or object variables, respectively.

I n F L O R : i ί ί l ΐ l ί

QQlQίPOTPOlOίPOXPOlOOlOQίPOlίPOlOίPOlOOO

F L O :

QQLQlPOTPOlQZPOlίPOlOOlQQlPOΈPOJiQlPOlOOO.

Now, I will define formally BRACKET-TRANSFORMATION, SUBSTITU-

TION, and FORMAL EQUIVALENCE of sentences as follows:

1) If α is a sentence, any one of VY"αT\ and "[α" can be transformed to

each other. If p is a predicate variable in a sentence apb, the sentence

"apl" can be transformed into "α[jflbf\ and vice versa. If α is a series of

quantifying variables and b is a non-void series of normal sentences of the

form C---]13), any sentence of the form "cαbb" can be transformed into the

sentence "c Cab] b" and vice versay unless b begins with a head-bracket. These

transformations are called BRACKET TRANSFORMATION.

2) Let I be a series of normal sentences of the form [---], and xaySb be a

normal sentence whose first block is xa and. whose second block has y$ as its

first sub-block. Then any sentence of the form "&xay$b}b" can be transformed

into "c[ίb]b" and vice versa, where f is the sentence obtained from α on replacing

every object variable x and every predicate variable xoί a bound to the quanti-

fying variable x standing at the top of xa by y and 3, respectively, assuming

that the variable y as well as any free variables in 3 do not occur in o as bound

13' Expressions of this kind sound surely ambiguous. To speak more exactly, we
should say that the sentence is of the form [---] and the brackets at both ends are,
coupled together.
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REINFORCED LOGICS 23

variables. These transformations are called SUBSTITUTIONS.

3) Two sentences are called FORMALLY EQUIVALENT if and only if the

one can be transformed into the other by a finite number of steps of BRACKET

TRANSFORMATIONS and SUBSTITUTIONS.

Any normal sentence 3 is called STANDARD if and only if every sequence

of symbols between any coupled head- and tail-brackets in "[8]" is a sentence

of the form αbc, α and c being series of variables and b being a series of sentences

of the form [---].

Now, let p be any proof arranged in a series of LINES, each line beginning

with an introductory index except for the first line. Each introductory index

is followed by a single comma or double commas according as it refers to

sentences of assertion character or of assumption character. We attach the

null series index followed by a single comma to the first line. We assume a

certain order between letters for variables. For any index o of the length n,

the class of all the indices of the form aul (i<n), I standing before 0/+1 with

respect to the order of letters, called GROUND14' of α. Also, the class of all

the indices of the form al is called FRAME-WORKlδ) of α.

Each line can be considered as consisting of three parts, an introductory

index at its top, a series of sentences coming next to it, and lastly a series of

indices which we call REFERENCE INDICES.

Any proof $ is called VALID in FLOR if and only if it satisfies the following

conditions

1) Lines are arranged in the lexicographic order of their introductory indices

with respect to the order of letters.

2) Any line having an introductory index α followed by double commas

has no reference indices at its end, and the frame-work of α is vacant.

3) Every reference indices in any line beginning with an introductory index

α followed by a single comma and having vacant frame-work is an index in

the ground of α. For any sentence § in the line, such reference indices c, . . . ,

e, and ] can be found out in the line that: firstly, & standard16* sentence p rt

is in the line beginning with ί, I being. a series of variables, p, . . . , r, and

t being normal sentences of the form [- - -], and § is formally equivalent to a

14>'15> See Ono [1] and [3]. Ground of α has been originally called BASIS of a in [3].
16 Compare Foot-notes 7), 8), 9) and 10).
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24 KATUZI ONO

normal sentence of the form #», tj being a series of normal sentences of the

form zL- - -], no free variable of t) occurring in ip - r as bound variable secondly

any one of #>9, . . . , £rt) is formally equivalent to a sentence in some line

beginning with one of c, . . . , c.

4) Reference indices of any line beginning with an introductory index α

having non-void frame-work are two indices ah and ak (possibly coincide) such

that ah is the only introductory index in the frame-work of α which is followed

by double commas. In the line beginning with α lies only one sentence which

is formally equivalent to a sentence of the form ιp rί, £ being a series of

variables of the length n and p, . . . , r, and i being normal sentences of the

form [---]. The series of sentences in the line beginning with ah are sentences

of the form £pt), - . . , OT, where t) is a series of symbols of the form hLhl * * *

BnDn] for series 3 of mutually distinct n variables which do not occur in any

sentence in the lines bsg inning with α or with an index belonging to the

ground of α. In the line beginning with ak, lies a sentence formally equivalent

to the sentence gty.

Essentially, the logic FLOR introduced in this way can be regarded as a

formalism for LOR, although I do not go through detailed discussion on the

matter.

(3) Concluding remarks

In the future development of reinforced logics, one of the most important

tasks must be to prove the conjecture that the reinforced logic LXR for any

J- or K-series logic LX can be faithfully interpreted in the reinforced primitive

logic LOR. Although this conjecture is highly plausible, it is not trivial at

all. In fact, it is not clear at present even how to define FAITHFUL INTER-

PRETATION of a logic in a reinforced logic.

Most remarkable merit of reinforced logics would be that the word "FINITE

STEPS OF" can be taken up into our vocabulary, which is so familiar in

mathematical reasoning. For example, to express that y can be attained by

stepping forward from x in a finite number of steps of procedure from u to v

satisfying the relation R(u> v), we have only to take up the expression

(P)({u) (v) (R(uf v) -> (P(u) ->P(v))) -* (P(x)

Needless to say, reasonings of this kind are essentially the same as reasonings
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REINFORCED LOGICS 25

employing complete induction.

As for the restriction that some inference rules can be used only for

sentences being equivalent to some standard sentences, we have no need to

worry about much. I dare not say that reinforced logics can cover such

extensive theories as set or class theories. However, I believe, the logics can

be recognized very useful for establishing popular mathematical theories such

as number theory or even analysis.
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