A NECESSARY AND SUFFICIENT CONDITION FOR SIMULTANEOUS DIAGONALIZATION OF TWO HERMITIAN MATRICES AND ITS APPLICATION

by YIK-HOI AU-YEUNG \dagger

(Received 4 February, 1969)

1. Introduction and statement of the theorems. We denote by F the field R of real numbers, the field C of complex numbers, or the skew field H of real quaternions, and by F^{n} an n dimensional left vector space over F. If A is a matrix with elements in F, we denote by A^{*} its conjugate transpose. In all three cases of F, an $n \times n$ matrix A is said to be hermitian if $A=A^{*}$, and we say that two $n \times n$ hermitian matrices A and B with elements in F can be diagonalized simultaneously if there exists a non singular matrix U with elements in F such that $U A U^{*}$ and $U B U^{*}$ are diagonal matrices. We shall regard a vector $u \in F^{n}$ as a $1 \times n$ matrix and identify a 1×1 matrix with its single element, and we shall denote by diag $\left\{A_{1}, \ldots, A_{m}\right\}$ a diagonal block matrix with the square matrices A_{1}, \ldots, A_{m} lying on its diagonal.

Let $A=\operatorname{diag}\left\{A_{1}, \ldots, A_{m}\right\}$ and $B=\operatorname{diag}\left\{B_{1}, \ldots, B_{m}\right\}$ be any two hermitian block matrices such that, for each $k=1, \ldots, m, A_{k}$ and B_{k} are of the same size. Then it is obvious that, if each pair A_{k} and B_{k} can be diagonalized simultaneously, so also can the pair A and B. Whether the converse is true or not is not at all obvious. In this note the author gives a simple proof of the converse (Theorem 2) by first proving the following theorem on a necessary and sufficient condition for simultaneous diagonalization of two hermitian matrices.

Theorem 1. Let A and B be two $n \times n$ hermitian matrices with elements in F. Then A and B can be diagonalized simultaneously if and only if there exists a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of F^{n} such that, for each $i=1, \ldots, n$, the two vectors $u_{i} A$ and $u_{i} B$ are linearly dependent over R.

Theorem 2. Let $A=\operatorname{diag}\left\{A_{1}, \ldots, A_{m}\right\}$ and $B=\operatorname{diag}\left\{B_{1}, \ldots, B_{m}\right\}$ be two hermitian diagonal block matrices with elements in F such that, for each $k=1, \ldots, m, A_{k}$ and B_{k} are of the same size. If A and B can be diagonalized simultaneously, then so also can the pair A_{k} and B_{k} for each k.

A theorem similar to Theorem 1, on the simultaneous diagonalization of two nondegenerate symmetric bilinear forms over a field of characteristic not equal to 2 , has been established by M. J. Wonenburger [3, Theorem 1, p. 617].
2. Proof of Theorem 1. Suppose that A and B can be diagonalized simultaneously. Then there exists a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ such that $u_{i} A u_{j}^{*}=u_{i} B u_{j}^{*}=0$ for all $i \neq j(i, j=1, \ldots, n)$. Now, for each fixed i, if $u_{i} A u_{i}^{*}=u_{i} B u_{i}^{*}=0$, then $u_{i} A=0=u_{i} B$, while if $u_{i} A u_{i}^{*}$ and $u_{i} B u_{i}^{*}$ are not both zero, then $\left(u_{i} B u_{i}^{*}\right) u_{i} A-\left(u_{i} A u_{i}^{*}\right) u_{i} B=0$. Hence in both cases $u_{i} A$ and $u_{i} B$ are linearly dependent over R.
\dagger The author wishes to thank Professor Y. C. Wong for his advice during the preparation of this note.

To prove the sufficiency of the condition, suppose that there exists a basis $X=\left\{u_{1}, \ldots, u_{n}\right\}$ of F^{n} such that, for each $i=1, \ldots, n, u_{i} A$ and $u_{i} B$ are linearly dependent over R. Then, for each i, there exist $\alpha_{i}, \beta_{i} \in R$, not both zero, such that

$$
\alpha_{i} u_{i} A+\beta_{i} u_{i} B=0
$$

Now in the set $X=\left\{u_{1}, \ldots, u_{n}\right\}$ we define a relation \sim by setting $u_{i} \sim u_{j}$ if $\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}=0$. Obviously this is an equivalence relation. Let

$$
X=X_{1} \cup X_{2} \cup \ldots \cup X_{m}
$$

be the partition defined by this relation. Then, for each $k=1, \ldots, m$, there exist $a_{k}, b_{k} \in R$, not both zero, such that

$$
\begin{align*}
& a_{k} u A+b_{k} u B=0, \text { for all } u \in X_{k} ; \tag{1}\\
& a_{k} b_{l}-a_{1} b_{k} \neq 0, \text { for all } \tag{2}\\
& k \neq l(k, l=1, \ldots, m) .
\end{align*}
$$

From these two properties and $\left(u A v^{*}\right)^{*}=v A u^{*}$, it follows immediately that

$$
\begin{equation*}
u A v^{*}=u B v^{*}=0, \text { for all } u \in X_{k} \text { and } v \in X_{i} \text { with } k \neq l . \tag{3}
\end{equation*}
$$

Without loss of generality we may assume that $u_{1}, \ldots, u_{n_{1}} \in X_{1}, u_{n_{1}+1}, \ldots, u_{n_{1}+n_{2}} \in X_{2}, \ldots$, $u_{n_{1}+n_{2}+\cdots+n_{m-1}+1}, \ldots, u_{n} \in X_{m}$. Let U be the matrix whose elements in ith row are the components of u_{i}. Then U is non singular and, by (3), we have

$$
\begin{aligned}
& U A U^{*}=\operatorname{diag}\left\{A_{1}, \ldots, A_{m}\right\}, \\
& U B U^{*}=\operatorname{diag}\left\{B_{1}, \ldots, B_{m}\right\},
\end{aligned}
$$

where A_{k} and B_{k} are hermitian matrices of size n_{k} and, by (1), we have

$$
a_{k} u A v+b_{k} u B v=0 \text { for all } u, v \in X_{k}
$$

Hence

$$
a_{k} A_{k}+b_{k} B_{k}=0 \text { for each } k=1, \ldots, m
$$

Since any hermitian matrix can be diagonalized (for $F=R$ or C, this is well-known; for $F=H$, see [1] or [2]) and a_{k}, b_{k} are not both zero, A_{k} and B_{k} can be diagonalized simultaneously for each k. Hence A and B can be diagonalized simultaneously.
3. Proof of Theorem 2. It suffices to prove the theorem for $m=2$. Let $A=\operatorname{diag}\left\{A_{1}, A_{2}\right\}$ and $B=\operatorname{diag}\left\{B_{1}, B_{2}\right\}$, where A_{1} and B_{1} are of size n_{1} and A_{2} and B_{2} are of size n_{2}, and let $n=n_{1}+n_{2}$. If A and B can be diagonalized simultaneously, then, by Theorem 1, there exists a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of F^{n} such that, for each $i=1, \ldots, n, u_{i} A$ and $u_{i} B$ are linearly dependent over R.

Let $u_{i}=\left(x_{i}, y_{i}\right)$, where $x_{i} \in F^{n_{1}}$ and $y_{i} \in F^{n_{2}}$. Then ($x_{i} A_{1}, y_{i} A_{2}$) and ($x_{i} B_{1}, y_{i} B_{2}$) are linearly dependent over R for each i. Hence $x_{i} A_{1}$ and $x_{i} B_{1}$ are linearly dependent over R for each i. Since $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of F^{n}, there exists $\left\{x_{i_{1}}, \ldots, x_{i_{1}}\right\}$ which forms a basis of $F^{n_{1}}$. By Theorem 1, A_{1} and B_{1} can be diagonalized simultaneously. Similarly, A_{2} and B_{2} can be diagonalized simultaneously. This completes the proof.

REFERENCES

1. J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 1-14.
2. H. C. Lee, Eigenvalues and canonical forms of matrices with 'quaternion coefficients, Proc. Roy. Irish Acad. Sect. A 52 (1949), 253-260.
3. M. J. Wonenburger, Simultaneous diagonalization of symmetric bilinear forms, J. Math. Mech. 15 (1966), 617-622.

University of Hong Kong

