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Finding roots in Fpn with the successive resultants algorithm

Christophe Petit

Abstract

The problem of solving polynomial equations over finite fields has many applications in
cryptography and coding theory. In this paper, we consider polynomial equations over a
‘large’ finite field with a ‘small’ characteristic. We introduce a new algorithm for solving this
type of equations, called the successive resultants algorithm (SRA). SRA is radically different
from previous algorithms for this problem, yet it is conceptually simple. A straightforward
implementation using Magma was able to beat the built-in Roots function for some parameters.
These preliminary results encourage a more detailed study of SRA and its applications.
Moreover, we point out that an extension of SRA to the multivariate case would have an
important impact on the practical security of the elliptic curve discrete logarithm problem
in the small characteristic case.

Supplementary materials are available with this article.

1. Introduction

Let p be a ‘small’ prime number and let d and n be two natural numbers. Let Fpn be the
finite field with pn elements, and let f be a polynomial of degree d over Fpn . The root-finding
problem is the problem of computing one, several or all elements x ∈ Fpn such that

f(x) = 0.

This problem has many applications, in particular for the more general problem of factoring
f and its applications [18], but also in cryptography and in coding theory.

Many algorithms have been proposed to solve this problem. Most of them first reduce f
to a square-free and split polynomial, and then progressively factor this polynomial through
successive attempts [1, 4, 12, 16].

In this paper, we introduce the successive resultants algorithm (SRA), a new deterministic
algorithm to solve this problem. Our approach is conceptually simple, yet radically different
from previous ones. We show that SRA has an asymptotic complexity comparable to
Berlekamp’s well-known trace algorithm for large degree polynomials (d2 > n or d > n
depending on the type of polynomial arithmetic) and in all cases if certain field constants
used in the algorithm are precomputed. We also provide a straightforward implementation
using Magma [20] and we emphasize some parameter sets for which this implementation has
beaten Magma’s corresponding built-in Roots function.

Finally, we discuss open problems and a potential extension of our work. In particular, we
believe that our ideas constitute an important step towards a much more efficient resolution of
polynomial systems arising from a Weil descent in the multivariate case [11]. We stress that a
multivariate version of SRA would have a very strong impact on the practical security of the
elliptic curve discrete logarithm problem in the small characteristic case.
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1.1. Outline

This paper is organized as follows. In § 2 we review the basics of finite field arithmetic and
previous root-finding algorithms in Fpn . In §§ 3 and 4 we provide both a basic version of our
algorithm and an optimized version for fast arithmetic. We also analyse the complexity of our
algorithms in these sections. In § 5, we provide experimental timings obtained with a Magma
implementation of our algorithm. We conclude the paper and present interesting open problems
in § 6.

2. Preliminaries

2.1. Finite field and polynomial ring arithmetic

Let p be a ‘small’ prime number, let n be a positive integer, let Fpn be the finite field with pn

elements and let f be a univariate polynomial of degree d over Fpn . We also define s as the
number of solutions of f over Fpn .

We will suppose that p is small enough for us to treat it as a constant in our estimations.
Unless explicitly mentioned, we take an operation over Fp as a basic step in all our complexity
evaluations. We use both the ‘big O’ and ‘big O tilde’ notations in our estimations. Recall that
f is Õ(g) if and only if f is O(g logc(g)) for some constant c. Solving a linear system of size m
over Fp has a cost O(mω), where ω is the linear algebra constant. The best algorithms today
achieve ω as small as 2.3727 for generic systems [21].

We denote by a(n) and m(n) the cost of an addition and a multiplication over Fpn , and
by A(d) and M(d) the cost of an addition and a multiplication of two polynomials of degree
d over Fpn . We also denote by G(d) the cost of computing the greatest common divisor of
two polynomials of degree d over Fpn . We will consider both ‘classical’ and ‘fast’ polynomial
arithmetics in this paper.

Classical arithmetic is a reasonable choice today for small and medium parameter sizes for
which the overhead of fast arithmetic algorithms is significant. Using this type of arithmetic,
field additions and polynomial additions are respectively executed in O(n) and O(dn).
Polynomial multiplications are performed in a straightforward way with a quadratic cost with
respect to the degree. As a result, we have m(n) = O(n2) and M(d) = O(d2n2).

Using fast arithmetic, polynomial multiplications are performed in quasi-linear time with fast
Fourier transform based methods [14]. As a result, we have m(n) = Õ(n) and M(d) = Õ(dn).
Multiplications modulo a polynomial of degree d can be performed at essentially the same
cost. Field additions and polynomial additions are executed in O(n) and O(dn) as before. Fast
arithmetic is available today in the computer algebra system Magma [20].

The greatest common divisor (gcd) of two polynomials of degree d can be computed in
O(d2) field operations using the Euclidean algorithm or Õ(d) field operations using a more
involved Schönhage-type algorithm [13, 15]. In our estimations, we will assume for simplicity
that the Euclidean algorithm is always used together with classical arithmetic and that fast
gcd algorithms are always used together with fast arithmetic. Table 1 summarizes the various
costs for ‘classical’ and ‘fast’ arithmetics with this convention.

Table 1. Costs of finite field and polynomial arithmetic.

a(n) m(n) A(d) M(d) G(d)

Classical O(n) O(n2) O(dn) O(d2n2) O(d2n2)

Fast O(n) Õ(n) O(dn) Õ(dn) Õ(dn)
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2.2. Finding roots in Fpn

Let f be a univariate polynomial over Fpn with degree d having exactly s distinct roots. The
problems of computing one, several or all roots of f have many applications in cryptography
and coding theory. Several algorithms have been proposed for this problem, with complexities
depending on the arithmetic type and on the parameters d and n.

In most root-finding algorithms, the polynomial f is assumed to be split and square-free (all
its irreducible factors are linear and distinct), hence s = d. Given an arbitrary polynomial f ,
its square-free split part is easily recovered through the gcd computation gcd(xp

n − x, f(x)),

after successively computing the polynomials xp
i

mod f(x) for i = 0, . . . , n− 1 with a square-
and-multiply algorithm. These computations require O(d2n) operations over Fn

p or O(d2n3)

operations over Fp using standard arithmetic, and only Õ(dn2) over Fp using fast arithmetic.
The simplest algorithms for the root-finding problem are variants of exhaustive search. A

better approach was proposed by Berlekamp et al. in [3]. This algorithm first constructs a

polynomial L such that L(x) =
∑d−1

i=0 Lix
pi

and f divides L. The computation of L only

requires computing xp
i

mod f(x) for i = 0, . . . , d − 1 and then solving a d × d linear system
over Fpn . Since L is a linear application over Fp, the algorithm of [3] then solves L with linear
algebra over Fp and tests each solution for f . The algorithm is still not very efficient in general
since L may have up to pd solutions in the worst case, and all these solutions are tested to
identify the roots of f .

The best known algorithm for computing all the roots is probably Berlekamp’s trace
algorithm (BTA) which was originally presented in his celebrated paper on the factorization
of polynomials [1]. This algorithm tries to factor a split square-free polynomial f as

f(x) =
∏
r∈Fp

gcd(f(x),Tr(αix)− r)

for some α ∈ Fpn with algebraic degree n and for various i ∈ {0, . . . , n − 1}. Each gcd

computation costs O(d2n3) or Õ(dn2) operations over Fp, using respectively classical or fast
arithmetics. It is known that at least one value of i leads to a non-trivial factorization [1] and
that testing O(log n) of them is required on average [10]. Once f is split into at least two
distinct factors, the process is then recursively applied to all these factors. Since the recursive
step has a cost larger than any linear function in d, we can in fact recover all the linear
factors of f using O(d2n3) or Õ(dn2) operations over Fp, depending on the arithmetic type
[17, Theorem 14.11].

Other splitting strategies are also possible. When p is odd, Rabin’s root-finding
algorithm [12] computes gcd(f(x), (x + δ)(p

n−1)/2 − 1) for a random δ ∈ Fpn . The total
complexity of this approach is similar to BTA.

Compared to BTA, the affine method of van Oorschot and Vanstone [16] first computes a
polynomial L as in [3]. The trace function used in BTA is generalized to other polynomials
B(x) that are also linear over Fp. The gcd between f and B is then computed in two steps
as gcd(f(x); gcd(L(x);B(x))). The affine method is more efficient than BTA when d < n
and standard arithmetic is used, since their respective costs are then equivalent to O(d2n)
and O(dn2) multiplications over Fpn [16]. However, with fast arithmetic, the computation

B(x) mod L(x) alone already requires Õ(dn2) following the method of [16], so the affine
method is at best as fast as BTA.

The modular Frobenius exponentiation x → xp
i

mod f(x) is a key ingredient of all the
methods described above. Von zur Gathen and Shoup [19] suggested using repeated modular
compositions and multipoint evaluation instead of the straightforward square-and-multiply
algorithm to perform these exponentiations. This idea led to the asymptotically fastest
polynomial factorization algorithms today. Kaltofen and Shoup [8] proposed an algorithm
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running in a time Õ(d1.815n2), though not completely practical since it relies on fast
matrix multiplication. By introducing new, asymptotically faster algorithms for the modular
composition problem, Kedlaya and Umans [9] derived a randomized algorithm to factor f
entirely in time Õ(d3/2n+ dn2).

Our new algorithm has an asymptotic complexity O(n4+d2n3) with standard arithmetic and
Õ(n3 + dn2) with fast arithmetic, where the n4 and n3 terms are spent on computing certain
field constants. This asymptotic complexity is similar to BTA for large degree polynomials or
if the field constants are precomputed. Our experiments suggest that the new algorithm may
compete with those currently used in practice for some parameters.

3. The successive resultants algorithm

We now describe our new algorithm for solving polynomial equations over finite fields of small
characteristic.

3.1. A polynomial system

Let {v1, . . . , vn} be an arbitrary basis of Fpn over Fp. From this basis, we recursively define
n+ 1 functions L0, L1, . . . , Ln from Fpn to Fpn such that

L0(z) = z

L1(z) =
∏

i∈Fp
L0(z − iv1)

L2(z) =
∏

i∈Fp
L1(z − iv2)

. . .

Ln(z) =
∏

i∈Fp
Ln−1(z − ivn).

The functions Lj are examples of linearized polynomials as defined in [2, Chapter 11]. They
satisfy the following properties.

Lemma 1. (a) Each polynomial Li is split and its roots are all elements of the vector space
generated by {v1, . . . , vi}. In particular, we have Ln(z) = zp

n − z.
(b) We have Li(z) = Li−1(z)p − aiLi−1(z) where ai := (Li−1(vi))

p−1.
(c) If we identify Fpn with the vector space (Fp)n, then each Li is a p to 1 linear map of
Li−1(z) and a pi to 1 linear map of z.

Proof. Part (a) is clear by construction. We first prove part (b) for L1. We have zp − z =∏
i∈Fp

(z − i) by identification of the roots on both sides. Substituting x by z/v1, we deduce

zp − vp−11 z =
∏

i∈Fp
(z − iv1) = L1(z). From this equality, it is clear that L1 is a linear map

over Fp, and in particular L1(z− iv2) = L1(z)− iL1(v2) for all i ∈ Fp. Substituting z by Lj(z)
and v1 by Lj(vj+1), part (b) follows by induction. For part (c), notice that the kernel of the
linear map z →

∏
i∈Fp

(z − i) has size p.

We now consider the following polynomial system:
f(x1) = 0

xpj − ajxj = xj+1 j = 1, . . . , n− 1

xpn − anxn = 0

(3.1)

where the ai ∈ Fpn are defined as in Lemma 1. Any solution of this system provides us with a
root of f by the first equation, and the n last equations together imply that this root belongs
to Fpn .
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Lemma 2. Let (x1, x2, . . . , xn) be a solution of system (3.1). Then x1 ∈ Fpn is a solution
of f . Conversely, given a solution x1 ∈ Fpn of f , we can reconstruct a solution of system (3.1)
by setting x2 = xp1 − a1x1, etc.

Proof. By Lemma 1, the equations of system (3.1) imply xi = Li−1(x1), and in particular

xpn − anxn = xp
n

1 − x1 so x1 ∈ Fpn .

3.2. Solving system (3.1) with resultants

In order to solve system (3.1), we notice that it has a quasi-diagonal structure: the first
equation only depends on x1, each equation xpj − ajxj = xj+1 only depends on xj and xj+1,
and the last equation only depends on xn. Our new algorithm will exploit this structure to
solve system (3.1), hence the polynomial f .

In the first step of the algorithm, we successively compute f (1) = f, f (2), . . . , f (n) such that
f (j) has the same degree as f and only depends on the variable xj . Let fi be the coefficients

of f , such that f(x) =
∑d

i=0 fix
i. We compute f (2) as

f (2)(x2) = Resx1(f (1)(x1), x2 − (xp1 − a1x1))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 −a1 −x2 0 0 . . . 0

1 0 . . . 0 −a1 −x2 0 0 . . . 0

. . .

. . .

1 0 . . . 0 −a1 −x2 0

1 0 . . . 0 −a1 −x2

fd fd−1 fd−2 . . . fp+1 fp fp−1 . . . f2 f1 f0 0 . . . 0 0

fd fd−1 fd−2 . . . fp+1 fp fp−1 . . . f2 f1 f0 0 . . . 0

. . .

fd fd−1 fd−2 . . . fp+1 fp fp−1 . . . f2 f1 f0 0

fd fd−1 fd−2 . . . fp+1 fp fp−1 . . . f2 f1 f0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(3.2)

which is clearly a polynomial in x2 only. Its degree is exactly d since the variable x2 appears
exactly d times in the above determinant, in different rows and columns. We then successively
compute

f (j+1)(xj+1) = Resxj
(f (j)(xj), xj+1 − (xpj − ajxj))

for j = 2, . . . , n − 1, which all have degree d for the same reasons. A simple algorithm to
compute these resultants is provided in § 3.4 below.

In the second step of our algorithm, we successively recover values for xn, xn−1, . . . , x1. We
first compute

g(n)(xn) := gcd(f (n)(xn), xpn − anxn).

By construction, g(n) is a polynomial of degree at most p, dividing xpn−anxn. If this polynomial
is a non-zero constant, then f has no solution over Fpn . Otherwise, it follows from Lemma 1(c)
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that g(n) is split. Its roots x̂n correspond to the values of the variable xn in the solutions of
system (3.1). For each of these x̂n values, we then compute

g(n−1)(xn−1) := gcd(f (n−1)(xn−1), x̂n − (xpn−1 − an−1xn−1)). (3.3)

By construction, g(n−1) is a polynomial of degree at most p, dividing x̂n−(xpn−1−an−1xn−1). If
this polynomial is a constant, then there is no solution. Otherwise, it follows from Lemma 1(c)
that g(n−1) is split. We compute the factorization of g(n−1) using any classical root-finding
algorithm, or any dedicated root-finding algorithm for the linear polynomial x̂n − (xpn−1 −
an−1xn−1) followed by a small exhaustive search. The roots of g(n−1) correspond to the values
of the variables xn−1 in the solutions of system (3.1). Proceeding recursively, we finally obtain
all x1 values that satisfy the equation f (1)(x1) = 0. The whole algorithm is deterministic if
no probabilistic algorithm is used for the resultant computation and small degree root-finding
routines.

3.3. Example

We provide a small example of SRA execution when p = 2, n = 5 and d = 6. Let α be a root
of t5 + t2 + 1 over F25 . Let vi := αi−1, i = 1, . . . , 5. The precomputation step of SRA leads to
a1 = 1, a2 = α19, a3 = α6, a4 = α4 and a5 = α2.

Now let f(x) := x5 + α20x4 + α27x3 + α4x2 + α14x + α9. In the first step of SRA, we
successively compute

f (1)(x1) = x51 + α20x41 + α27x31 + α4x21 + α14x1 + α9,

f (2)(x2) = x52 + α28x42 + α23x32 + α4x22 + α12x2 + α19,

f (3)(x3) = x53 + αx43 + α23x33 + α23x23 + x3,

f (4)(x4) = x54 + α4x44 + α7x34 + α11x24,

f (5)(x5) = x55 + αx35.

In the second step of SRA, we then compute

g(5)(x5) = gcd(f (5)(x5), x25 + a5x5) = x5,

g(4)(x4) = gcd(f (5)(x5), x24 + a4x4) = x24 + α4x4 = x4(x4 + α4).

The root x̂4 = α4 leads to

g(3)(x3) = gcd(f (3)(x3), x̂4 + x23 + a3x3) = x3 + α3,

g(2)(x2) = gcd(f (2)(x2), x̂3 + x22 + a2x2) = x2 + α,

g(1)(x1) = gcd(f (1)(x1), x̂2 + x21 + a1x1) = x1 + α3.

The root x̂4 = 0 leads to

g(3)(x3) = gcd(f (3)(x3), x̂4 + x23 + a3x3) = x23 + α6x3 = x3(x3 + α6).

The root x̂3 = 0 leads to

g(2)(x2) = gcd(f (2)(x2), x̂3 + x22 + a2x2) = x2 + α19,

g(1)(x1) = gcd(f (1)(x1), x̂2 + x21 + a1x1) = x1 + α18.

The root x̂3 = α6 leads to

g(2)(x2) = gcd(f (2)(x2), x̂3 + x22 + a2x2) = x2 + α30,

g(1)(x1) = gcd(f (1)(x1), x̂2 + x21 + a1x1) = x1 + α19.

The solution set of f is therefore {α3, α18, α19}. For this example, the computation of this
set required 5 resultants, 10 gcds and the factorizations of 2 (linear over F2) polynomials of
degree 2.
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3.4. Computing the resultants

Resultants are the basic operations in the first step of SRA algorithm. Under simple row
manipulations, we have

f (2)(x2) = Resx1
(f (1)(x1), x2 − (xp1 − a1x1))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 −a1 −x2 0 0 . . . 0

1 0 . . . 0 −a1 −x2 0 0 . . . 0

. . .

. . .

1 0 . . . 0 −a1 −x2 0

1 0 . . . 0 −a1 −x2

Fp−1,p−1 . . . Fp−1,2 Fp−1,1 Fp−1,0

Fp−2,p−1 . . . Fp−2,2 Fp−2,1 Fp−2,0

. . .

F1,p−1 . . . F1,2 F1,1 F1,0

F0,p−1 . . . F0,2 F0,1 F0,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Fp−1,p−1 . . . Fp−1,2 Fp−1,1 Fp−1,0

Fp−2,p−1 . . . Fp−2,2 Fp−2,1 Fp−2,0

. . .

F1,p−1 . . . F1,2 F1,1 F1,0

F0,p−1 . . . F0,2 F0,1 F0,0

∣∣∣∣∣∣∣∣∣∣∣∣∣
where the Fj,i satisfy

p−1∑
i=0

Fj,i(x2)xi1 = xj1f(x1) mod (x2 − (xp1 − a1x1)).

In particular, p degFj,i + i 6 d+ j. The resultant can therefore be computed as follows:
(1) Reduce the last row of (3.2) by the first d rows to obtain the coefficients F0,i. This

amounts to computing

h(x1, x2) :=

p−1∑
i=0

F0,i(x2)xi1 = f(x1) mod (xp1 − a1x1 − x2). (3.4)

(2) Shift these coefficients to the left and further reduce by the first d rows to obtain all
coefficients Fi,j . This amounts to successively computing

p−1∑
i=0

Fj,i(x2)xi1 = xj1h(x1, x2) mod (xp1 − a1x1 − x2)

= x1(xj−11 h(x1, x2)) mod (xp1 − a1x1 − x2)

=

p−1∑
i=1

Fj−1,i−1(x2)xi1 + Fj−1,p−1(x2)(a1x1 + x2).

(3) Compute the last determinant with a few multiplications of polynomials with degrees
smaller than d.

https://doi.org/10.1112/S1461157014000138 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000138


210 c. petit

3.5. Complexity analysis

The complexity of SRA can be analyzed as follows. First, we note that all the values ai of
Lemma 1 can be (pre)computed at a total cost of O(n2) operations over Fpn , that is, O(n4)

operations over Fp using classical arithmetic or Õ(n3) operations over Fp using fast arithmetic.
Next we evaluate the cost of the resultant algorithm of § 3.4. The last row can be

computed with O(d) elementary row reduction steps, each one involving O(p · (d/p)) = O(d)
multiplications over Fpn . All the other polynomials Fi,j can then be computed using O(d)
operations over Fpn . Finally, the last determinant requires O(p3) multiplications of polynomials
of degrees at most d over Fpn . Computing one resultant therefore costs O(d2n2) operations over

Fp using standard arithmetic and Õ(d2n) operations over Fp using fast arithmetic. Completing
the first step of SRA costs n resultants, that is, O(d2n3) operations over Fp using standard

arithmetic and Õ(d2n2) operations over Fp using fast arithmetic.
In the second step of SRA, we compute several gcds between a polynomial of degree d and a

polynomial of degree p over Fpn . This requires O(d) operations over Fpn for each gcd. We also
need to factor all the polynomials g(j) that have degree greater than 1. Since each polynomial
g(j) has degree at most p, each factorization costs O(n3) operations with classical arithmetic or
Õ(n2) operations with fast arithmetic, using a classical equal-degree factorization algorithm
such as the Berlekamp trace algorithm [1] or Cantor–Zassenhaus algorithm [4]. Note that
these algorithms are only applied here on polynomials with degree smaller than p = O(1).
Alternatively, we can also factor the polynomials x̂j − (xpj−1 − aj−1xj−1) using linear algebra

over Fp, and test each solution in g(j−1)(xj−1).
The number of times these two operations will be repeated in the second step of SRA

depends on the number of solutions for each of x1, x2, . . . , xn. By the properties of resultants,
any solution for xi leads to at least one solution for all xj , j 6 i. If f has exactly s 6 d
roots, then these roots are solutions for x1, but several of these solutions may ‘merge’ into
common solutions for x2, x3, etc., and xn can of course take at most p values. In any case, at
most ns polynomials g(j) will be computed, and at most s/2 of them will need to be factored.
The second step of our algorithm can therefore be completed with O(dn3s+ n3s) = O(dn3s)
operations over Fp using classical arithmetic and Õ(dn2s+n2s) = Õ(dn2s) operations over Fp

using fast arithmetic. Note that the complexity of the second step is identical if f has more
than s roots, but we are only interested in computing s of them.

The total complexity of SRA is thereforeO(d2n3+n4) using classical arithmetic and Õ(d2n2+
n3) using fast arithmetic. When only classical arithmetic is available, this complexity is similar
to BTA if d2 > n or if the field constants ai in Lemma 1 are precomputed.

4. Fast SRA

When fast polynomial arithmetic is available, the basic SRA algorithm presented above does
not compete with BTA. To compete again with BTA in this context, we introduce two
new algorithms to carry out the first and second steps of SRA. The first algorithm simply
uses the linearity of the Frobenius endomorphism. The second uses multipoint evaluation of
polynomials, hence it crucially relies on fast polynomial arithmetic.

4.1. Improved resultant algorithm

The first step of the basic SRA algorithm consists in computing n resultants using the algorithm
of § 3.4. The most expensive part of this algorithm is the computation of the polynomial

h(x1, x2) := f(x1) mod (xp1 − a1x1 − x2)
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in a straightforward way. We now present an alternative algorithm taking advantage of the
linearity of the Frobenius.

Let k := blogp dc and let hk(x1, x2) := f(x1). The alternative algorithm first computes ap
i

1

for i = 0, . . . , k − 1 in time Õ(n logp d). It then successively computes

hi(x1, x
pi

2 ) := hi+1(x1, x
pi+1

2 ) mod (xp
i+1

1 − ap
i

1 x
pi

1 − x
pi

2 ) (4.1)

for i = k − 1, . . . , 0. We observe that

hi(x1, x
pi

2 ) = f(x1) mod (xp1 − a1x1 − x2)p
i

so, in particular, h(x1, x2) = h0(x1, x2).

The polynomial hi(x1, x
pi

2 ) has degree at most pi+1 in x1 and at most pk−i in xp
i

2 . Each

reduction step (4.1) involves reducing at most (p − 1)pi+1 terms cj(x
pi

2 ) · xj1 where cj are

polynomials of degree pk−i, so it takes Õ(dn). There are logp d steps so the total cost of

computing h(x1, x2) is also Õ(dn). Using fast polynomial multiplication to compute the
determinant as in § 3.4, each resultant in the first step of SRA can be computed using only
Õ(dn) operations over Fp.

As a consequence, the first step of SRA can be performed in time Õ(dn2) operations using
fast arithmetic.

4.2. Simultaneous evaluation of gj for all x̂j+1

The second step of SRA requires the evaluation of

g(j−1)(xj−1) := gcd(f (j−1)(xj−1), x̂j − (xpj−1 − aj−1xj−1))

for all solutions x̂j , and for j = n− 1, . . . , 2. We notice that unless

f (j−1)(xj−1) = 0 mod (x̂j − (xpj−1 − aj−1xj−1)),

we have

g(j−1)(xj−1) = gcd(f (j−1)(xj−1) mod (x̂j − (xpj−1 − aj−1xj−1)), x̂j − (xpj−1 − aj−1xj−1)).

Moreover, all the polynomials

f (j−1)(xj−1) mod (xj − (xpj−1 − aj−1xj−1)) =

p−1∑
i=0

F
(j−1)
0,i (xj)x

i
j−1

are computed in the first step of SRA.

Using a multipoint evaluation algorithm, each polynomial F
(j−1)
0,i (xj) (with degree smaller

than d) can be evaluated at the at most s 6 d solutions x̂j in time Õ(dn). Once these values
have been computed, each final gcd is performed on two polynomials of degrees smaller than
p = O(1), hence it only requires O(1) operations over Fpn . The total cost of computing the

polynomial gj−1(xj−1) for all solutions x̂j is therefore Õ(dn) instead of Õ(dns), and the cost

of the second step of SRA decreases from Õ(dn2s) to Õ(dn2) using this algorithm.

4.3. Complexity of fast SRA

Using the algorithms of §§ 4.1 and 4.2, the cost of SRA with fast arithmetic can be reduced
to Õ(dn2 + n3), where the n3 term comes from the (pre)computation of the ai in Lemma 1.
Possibly up to logarithmic factors, this complexity is similar to BTA if d > n or if the field
constants ai are precomputed.
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5. Proof-of-concept implementation results

As a proof of concept, we implemented both the basic and fast versions of SRA in Magma [20].
We chose Magma for its simplicity of use and because it provides many of the subroutines that
we need in our algorithm. We point out that Magma claims to have efficient fast algorithmic
routines. The code of the basic version (provided as supplementary material with the online
version of this paper) is only a few lines. To implement multipoint evaluation in fast SRA, we
followed the description of [5]. We stress that we did not put any effort into optimizing either
the basic or the fast SRA implementations. On the contrary, when a generic Magma function
was available for a specific task, we always used this function, even if the particular inputs
used in our algorithms could open the way to more efficient implementations. In particular,
we did not implement straightforward simplifications when p = 2.

5.1. Experiments

We tested our implementation against the Magma Roots function for p ∈ {2, 3, 5, 7, 11, 13, 17},
for n = 2en and d = 2ed with ed, en ∈ {2, . . . , 12}, and for three types of polynomials:

– Random polynomials: polynomials of degree d over Fpn with randomly chosen coefficients.
– Random polynomials with a single root: to generate these polynomials, we chose random

polynomials as above and we used Magma functions to test whether they had a single
root or not.

– Split polynomials: polynomials f(x) :=
∏d

i=1(x− xi) for xi randomly chosen in Fpn .
For every polynomial, we recorded the time needed by the Magma Roots function as well as
the precomputing time and the time for the first and second steps of both basic SRA and
fast SRA. All timings recorded were real time (seconds). We repeated every experiment 10
times and we averaged computation times over these 10 experiments. All experiments were
performed on an Intel Xeon CPU X5500 processor running at 2.67 GHz, with 24 GB RAM.

5.2. Selected results

With the exception of very small d values, the precomputation part of SRA always involved a
small or negligible cost compared to the first and second steps of the algorithm. For random
polynomials and polynomials with only one root, we observed that the first part of our
algorithm was by far the most time-consuming. For split polynomials, the first and second
parts tended to be more balanced.

Figures 1 and 2 show log–log graphs of the timings obtained for p = 2 and split polynomials,
respectively, as a function of n for various d and as a function of d for various n. We observed
that the Roots function generally performed significantly better, and the two variants of SRA
generally had similar timings. The timing evolutions with n are similar for the three algorithms,
but both versions of SRA seem less efficient than Roots as d increases.

For larger p values, the gap between Roots and SRA in terms of performance is considerably
reduced or completely disappears, suggesting that even a slightly optimized version of basic
SRA could become competitive with respect to Roots. Table 2 reports some parameters and
timing results for which either basic SRA or fast SRA was the most efficient algorithm to
compute roots. All these parameters involve split polynomials.

We believe that the relatively poor performance of both SRA implementations with respect
to Roots for p = 2 is due to a default of optimizations to this case in our implementations with
respect to Magma’s Roots function. The advantage of fast SRA over basic SRA will probably
become more obvious for larger parameter sizes.
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Figure 1. log2 of computing times (in seconds) for Magma Roots function, basic SRA, fast SRA and their main component parts. The graphs display
the curves for several d values.
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Figure 2. log2 of computing times (in seconds) for Magma Roots function, basic SRA, fast SRA and their main component parts. The graphs display
the curves for several n values.
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Table 2. Timings for selected parameters. The average total time needed by the full basic and fast
SRA is provided as a quotient with respect to the average time needed by Roots; the other timings
are given in seconds. bSRA = basic SRA, fSRA = fast SRA, p = precomputation, f = first step,
s = second step, t = total.

p n d Type Roots bSRAt fSRAt bSRAp bSRAf bSRAs fSRAp fSRAf fSRAs

5 32 128 Split 1.17 0.91 1.33 0.01 0.64 0.42 0.01 0.63 0.93

5 64 64 Split 1.85 0.83 1.22 0.02 0.83 0.68 0.02 0.83 1.40

5 128 32 Split 3.39 1.00 1.33 0.11 1.71 1.56 0.11 1.62 2.76

5 256 32 Split 25.08 0.92 1.10 0.67 11.45 11.03 0.68 10.57 16.37

5 128 64 Split 10.99 0.83 1.02 0.11 4.79 4.23 0.11 4.43 6.67

5 64 128 Split 5.93 0.79 1.05 0.02 2.65 1.98 0.02 2.73 3.45

5 32 256 Split 3.78 0.95 1.17 0.01 2.25 1.32 0.00 2.18 2.22

5 64 256 Split 19.60 0.82 0.99 0.02 9.66 6.46 0.02 9.93 9.41

5 128 128 Split 35.58 0.81 0.94 0.11 15.76 13.00 0.11 15.23 18.17

5 256 64 Split 80.28 0.80 0.90 0.69 32.82 30.59 0.69 28.56 42.79

5 256 128 Split 257.45 0.78 0.82 0.67 106.21 93.30 0.68 94.05 116.64

5 128 256 Split 112.35 0.88 0.93 0.11 55.75 43.00 0.11 55.04 49.66

5 64 512 Split 62.00 0.94 1.01 0.02 36.09 22.31 0.02 37.52 25.21

7 8 256 Split 0.56 0.97 1.14 0.00 0.36 0.18 0.00 0.28 0.36

7 128 128 Split 105.48 0.94 0.97 0.30 54.84 44.03 0.30 47.60 54.82

11 8 256 Split 0.67 0.97 1.35 0.00 0.42 0.23 0.00 0.34 0.56

11 8 512 Split 2.22 0.99 1.08 0.00 1.50 0.69 0.00 1.14 1.26

13 4 512 Split 0.13 0.95 2.18 0.00 0.06 0.06 0.00 0.08 0.21

13 4 1024 Split 0.42 0.91 1.56 0.00 0.23 0.16 0.00 0.29 0.37

13 32 256 Split 11.17 0.91 1.22 0.01 5.90 4.25 0.01 5.70 7.87

13 4 2048 Split 1.39 0.96 1.53 0.00 0.91 0.43 0.00 1.42 0.71

13 32 512 Split 36.04 0.90 1.09 0.01 19.37 13.01 0.01 18.80 20.55

13 64 256 Split 65.39 0.97 1.14 0.06 36.27 27.12 0.06 33.56 41.24

13 128 256 Split 473.03 0.95 1.06 0.36 254.74 193.41 0.36 224.49 275.74

13 64 512 Split 208.16 0.97 1.07 0.06 116.97 84.03 0.06 109.83 113.69

13 128 512 Split 1470.15 0.94 1.00 0.36 791.85 587.40 0.36 712.66 759.20

17 32 256 Split 14.91 0.88 1.28 0.01 7.72 5.45 0.01 7.88 11.26

17 32 512 Split 47.08 0.81 1.11 0.01 22.72 15.26 0.01 23.38 28.74

17 64 256 Split 88.08 0.87 1.20 0.06 45.13 31.81 0.06 47.40 58.11

17 128 256 Split 585.80 0.99 1.22 0.32 339.87 238.68 0.32 326.88 385.81

17 64 512 Split 277.01 0.77 1.06 0.06 125.70 88.81 0.05 135.35 156.97

17 32 1024 Split 148.99 0.83 1.05 0.01 75.58 47.98 0.01 78.30 78.74

17 64 1024 Split 868.82 0.77 1.00 0.06 393.51 275.06 0.06 438.24 433.83

17 128 512 Split 1838.89 0.88 1.08 0.33 943.57 682.31 0.32 923.52 1057.06

5 256 256 Split 805.93 0.86 0.85 0.68 377.99 314.11 0.68 347.00 335.68

5 256 512 Split 2856.05 1.01 0.95 0.81 1587.23 1284.40 0.80 1615.68 1105.31

7 8 512 Split 1.86 1.02 0.97 0.00 1.36 0.54 0.00 0.98 0.82

7 8 1024 Split 5.99 1.17 0.93 0.00 5.32 1.71 0.00 3.66 1.92

7 128 256 Split 329.42 1.00 0.97 0.31 186.53 142.08 0.30 165.90 153.01
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6. Conclusion and open problems

In this paper we have presented the successive resultants algorithm (SRA), a new algorithm
for finding roots in extension fields Fpn with a small characteristic. The preliminary analysis
conducted here suggests that SRA has an asymptotic complexity similar to Berlekamp’s well-
known trace algorithm for ‘large’ polynomials (d2 > n with classical arithmetic, d > n
with fast arithmetic) in general, and for any parameters if certain field constants used
in SRA are precomputed. Preliminary performance results obtained with a straightforward
Magma implementation suggest that SRA could also become competitive with currently used
algorithms in practice.

We leave a more thorough comparison analysis of our algorithm, including logarithmic factors
and dependency in p, to future work. We also leave as an open problem the development of
an optimized implementation of SRA together with parameters of practical interest for which
SRA would consistently perform better than previous algorithms. On the algorithmic side, we
believe that efficiency improvements can be achieved in SRA through a careful choice of the
basis used in Lemma 1.

Our algorithm is radically different from previous ones. While traditional root-finding
algorithms have used various strategies to separate the root set, SRA first ‘merges’ the roots
together using successive resultants with the polynomials xj+1 − (xpj − ajxj), and it then
progressively separates them using gcds and root-finding algorithms on polynomials of small
degrees only. It would be interesting to explore alternative merging strategies, in other words
to take successive resultants with polynomials xj+1− L̃j(xj) where the functions L̃j would be
other non-injective functions. An alternative multipoint evaluation method could then be used
instead of the dedicated Frobenius approach of § 4.1 to preserve the resultant computation
complexity with fast arithmetic†.

To conclude this paper, we would like to mention a very interesting and important open
problem. This problem is the extension of our work to solve multivariate polynomials
f(x1, . . . , xm) = 0 under linear constraints xi ∈ Vi, where Vi ⊂ Fpn are vector spaces of
dimension n′ ≈ n/m over Fp. This problem is of great interest in cryptography, to the
factorization problem in SL(2,F2n) and to various discrete logarithm problems in small
characteristic [6, 7, 11]. Following the same reasoning as in § 3.1, we can write a polynomial
system 

f(x1,1, . . . , xm,1) = 0

xpij − aijxij = xi,j+1 i = 1, . . . ,m; j = 1, . . . , n′ − 1

xpi,n′ − ai,n′xi,n′ = 0 i = 1, . . . ,m

(6.1)

which includes the linear constraints and has a ‘block diagonal’ structure. This system can
clearly be solved by construction of new polynomials f (i1,...,im) where the variables are
successively replaced with resultants as well. However, we have not been able to design an
algorithm that does not increase the degree of the new polynomials, and we could therefore
not provide any good complexity bound. Nevertheless, we believe that this approach is very
promising. Besides proving Petit and Quisquater’s conjecture to some extent [11], it may also
lead to huge practical improvements on the cryptanalysis of ECDLP in characteristic 2 if the
time and memory required to solve a multivariate polynomial with linear constraints were
significantly decreased.
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