

Winter Meeting, 8-9 December 2015, Roles of sleep and circadian rhythms in the origin and nutritional management of obesity and metabolic disease

Total (food and supplement) n-3 PUFA intake is associated with lower Coronary Heart Disease mortality, independently of fish intake

M.A.H. Lentjes¹, R.H. Keogh², A.A. Welch³, A.A. Mulligan¹, R.N. Luben¹ and K.T. Khaw⁴ ¹University of Cambridge, Department of Public Health & Primary Care, Cambridge CB1 8RN, ²London School of Hygiene and Tropical Medicine, London, ³University of East Anglia, Department of Population Health & Primary care, Norwich Medical School, Norwich NR4 7TJ and ⁴University of Cambridge, Clinical Gerontology Unit, Cambridge CB2 200

Fish contains essential polyunsaturated fatty acids (n-3 PUFA) which increase n-3 PUFA concentrations in the cardiac membrane and influence cardio electrophysiology, which might have antiarrhythmic effects and so lower risk of fatal CHD. (1,2) Clinical trials of n-3 PUFA supplements conducted in high risk populations show no significant benefit, (3) results from observational studies on fish intake show heterogeneous results. (4) N-3 PUFA containing supplements, mainly cod liver oil, are widely used in the UK and by 24 % in the Norfolk-based European Prospective Investigation into Cancer (EPIC-Norfolk). (5,6) We studied the association between n-3 PUFA Total Nutrient Intake (TNI, i.e. intake from foods and supplements), n-3 PUFA supplement use and fatal CHD in a general population-based cohort.

EPIC-Norfolk recruited men and women, between 39-79 y (N = 25,639) between 1993-1997. Anthropometry was measured. Participants completed a 7-day diet diary, from which n-3 PUFA TNI, energy intake and disaggregated food consumption were determined. Participants were classified into three groups: non-supplement users (NSU), supplement users without n-3 PUFA supplements (SU-n3) and supplement users with n-3 PUFA supplements (SU+n3). General questionnaires ascertained social class, education, smoking, physical activity, alcohol consumption and prevalent diseases. Analyses were based on n = 22,137 with complete data. After a median follow-up of 18 years, 1393 participants died from CHD (ICD 410-414/I20-25). Cox proportional hazards regression was used to analyse differences between supplement groups as well as quintiles (Q5 v Q1) of TNI intake.

SU + n3 (compared to NSU) were more likely to be women, >60 years, and to be non-smokers and alcohol consumers. They reported fewer higher educational qualifications and less physical activity, SU + n3 and SU-n3 had lower self-reported history of myocardial infarction, diabetes or stroke. Differences in median (Med) n-3 sourced intake are shown in the top half of the table. SU + n3 did not have lower risk of fatal CHD; however higher n-3 PUFA intake was associated with a 22 % lower risk of fatal CHD, after adjusting for fish consumption, indicating that other sources than fish are associated with fatal CHD.

	NSU 899/13,490	SU-n3 161/3288		SU + n3 333/5359		Q1 TNI	Q5 TNI	
Case/N (1393/22,137)						254/4428	290/4427	
Med TNI n-3 PUFA (g/d)	0.12	0.13		0.31		0.04	0.82	
Med Food n-3 PUFA (g/d)	0.12	0.13		0.14		0.04	0.66	
Med White fish (g/d)	20	19		21		0	31	
Med Oily fish (g/d)	3	7		7		0	15	
	Ref	HR	95 %CI	HR	95 %CI	Ref	HR	95 %CI
1: age/sex adjusted	1.00	0.88	0.74, 1.04	0.81	0.72, 0.92	1.00	0.79	0.67, 0.94
2: adjusted for*	1.00	1.01	0.85, 1.20	0.98	0.87, 1.12	1.00	0.95	0.80, 1.13
3: adjusted for* and fish	1.00	1.01	0.85, 1.20	0.98	0.86, 1.12	1.00	0.78	0.63, 0.99

sex, age, smoking, body mass index, alcohol, social class, education, season, physical activity, energy intake, fruit, vegetables, red meat, processed meat, white meat, prevalent diabetes/stroke/myocardial infarction.

Non-fish n-3 PUFA was negatively associated with fatal CHD. The negative confounding observed from fish might be explained by preparation methods⁽⁷⁾ or UK dietary patterns (fish 'n chips); alternatively, contamination of fish with methylmercury might play a role.⁽⁸⁾

- 1. London B et al. (2007) Circulation 116, e320-e335; 2.
- 2. Mozaffarian D et al. (2006) JAMA 296, 1885-1899; 3.
- Chowdhury R et al. (2014) Ann. Intern. Med. 160, 398-406; 4.
- Zheng J et al. (2012) Public Health Nutr. 15, 725–737; 5. Lentjes MAH et al. (2014) Nutrients 6, 4320–37; 6. Lentjes MAH et al. (2014) J. Hum. Nutr. Diet.; 7.
- Mozaffarian D et al. (2003) Circulation 107, 1372-1377; 8.
- Stern AH (2007) Environ. Health 6, 31.

