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TOPOLOGIES EXTENDING VALUATIONS 

THOMAS RIGO AND SETH WARNER 

Let K be a field complete for a proper valuation (absolute value) v. It is 
classic that a finite-dimensional i£-vector space E admits a unique Hausdorff 
topology making it a topological i^-vector space, and that that topology is the 
"cartesian product topology" in the sense that for any basis cu . . . , cn of E, 
(Xi, . . . , Xn) t—> YTt=i ^i°i is a topological isomorphism from Kn to E [1, Chap. I, 
§ 2, no. 3; 2, Chap. VI, § 5, no. 2]. It follows readily that any multilinear map
ping from Em to a Hausdorff topological i£-vector space is continuous. In 
particular, any multiplication on E making it a i£-algebra is continuous in 
both variables. If for some such multiplication E is a field extension of K, then 
by valuation theory the unique Hausdorff topology of E is given by a valuation 
(absolute value) extending v. 

Our purpose here is to determine what happens if £ is a simple algebraic 
extension of K but K is no longer assumed to be complete. More precisely, we 
shall determine all the ring topologies on a simple algebraic extension of K t h a t 
induce on K the topology defined by v (a ring topology is one making addition 
and multiplication continuous in both variables). 

If v is a valuation or an absolute value on a field K, we denote byJ?7"^ the 
topology on K defined by v, and by K~v the completion of K for J^~c. If each of 
v and w is either a valuation or an absolute value on K, we shall say v and w are 
independent \i3Tv ^ ^Tw. The Approximation Theorem, usually stated either 
for valuations or for absolute values, actually holds for a mixture [3, Theorem 
3.4, p. 292]: If for each k £ [1, #], vk is either a proper absolute value or a 
proper valuation on K, and if vt and Vj are independent whenever i ^ j , then 
the diagonal mapping x i—> (x, x, . . . , x) from K, equipped with supi^-^jJ7"^, 
into 1I5L1 K^k is a topological isomorphism onto a dense subfield, and conse
quently the completion of K for s u p i ^ ^ J ^ " ^ can be identified with II^= 1 K^k. 

If L is a finite-dimensional field extension of K and if v is a valuation (abso
lute value) on K, a sequence vi, . . . , vm of valuations (absolute values) on L is 
a complete family of independent valuations {absolute values) on L extending v 
if each vt is an extension of v, if v{ and Vj are independent whenever i 9^ j , and 
if for any valuation (absolute value) w on L extending v there exists i Ç [1, m] 
such that Tw =^vi. 

THEOREM 1. Lei K be afield and L a simple algebraic extension of K of degree n. 
Lei c G L be such that L = K[c], and let f be the minimal polynomial of c. Let v 
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be a proper valuation {absolute value) on K, and let D{f) be the set of all non-
constant monic divisors of fin KJX]. There is a bijection g ^ 3/~ Q from D(f) onto 
the set of all ring topologies on L inducing 3^~\ on K such that for all g,h 6 D(f), 
g\h if and only if S^Q Q^~h- Moreover, for each g Ç D{f), the completion U~g of L 
for ST Q is a finite-dimensional K^-algebra generated by 1 and c, and the minimal 
polynomial over K~v of c in L] is g. 

Proof. For each g £ D{f), let Ag be the i£>algebra K"v[X]/(g)f and let 
Cg = X + (g) G A0. Clearly Ag = K*v[cg], and the minimal polynomial over 
KÏ, of Cg is g. Since g|/in K"V[X], f{cg) = 0; b u t / i s a prime polynomial over K; 
hence / is the minimal polynomial of cg over K. Thus there is a unique K-
isomorphism ug from L onto K[cg] satisfying ug(c) — cg. We equip Ag with its 
unique Hausdorff topology making it a K1-topological algebra, and we define 
3?~g to be the (ring) topology on L making ug a topological i£-isomorphism from 
L onto K[cg], equipped with the topology it inherits from Ag. Clearly 3/~g in-
ducesJ?7"*, on K. Also, K[cg] is dense in Ag, so there is a unique topological iso
morphism tig from Ug, the completion of L for J7"' Q, onto Ag extending ug\ since 
Ug is a topological i£-isomorphism, clearly ug is a ^-isomorphism. Since 
u"g(c) = Cg, the minimal polynomial over K^ of c in lTg is g. 

Suppose that J ^ , Q^h where g, h Ç D(f). Then the identity map from L, 
equipped with 3Th, to L, equipped with 3TQ, is a continuous i£-isomorphism 
and hence has an extension to a continuous X^-homomorphism w from L^ into 
LTg. Thus k, defined by k = Ug o w o uir1, is a continuous i^-homomorphism 
from Ah into Ag taking ch into Q . Consequently, as h(ch) = 0, 0 = k{h{ch)) = 
h(k(ch)) = h(cg), so the minimal polynomial g of cQ divides h. In particular, 
\l$~g = ^ , then g = h. 

Conversely, suppose that g\h. Then the canonical epimorphism from Ah = 
K"v[X]/{h) o n t o ^ = K*v\X]/{g) is i^-linear and hence continuous and takes 
ch into Cg] its restriction q to the subfield K[ch] of Ah is therefore a continuous 
isomorphism onto K[cg] satisfying q{ch) = cff. Hence % - 1 o q o uh is the identity 
map of L and is continuous from L, equipped with 3/~h, to L, equipped withJ^Y 
T h u s J \ C^"A . 

To complete the proof, it therefore suffices to show that if 3T is a ring 
topology on L inducing^~v on K, t h e n ^ = 3Tg for some g Ç D(f). As Ĵ ~ in
duces ĉ "t, on X, we may consider L", the completion of L for ^" , as a topologi
cal i^-algebra. As deg / = n, K~v + K^c + . . . + K*vc

n~l is a closed subspace 
of L* containing L and hence is all of L". Thus L» = XJ[c]. The minimal poly
nomial g of c in L" divides/ in K^[X] and hence belongs to D{f). Thus there is 
a unique iOlinear isomorphism from L" onto 4̂ff taking c into cQ, and that 
isomorphism is a topological isomorphism since both L" and ^ are finite-
dimensional; its restriction to L is clearly uQ, so $~ = ^"g. 

COROLLARY 1. Let pu . . . , pn be the prime factors of f in K~V[X], and let 
f = pitl . . . pn

tn. For each i £ [1, n\,^~vi is given by a valuation {absolute value) 
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Vt on L extending v. The valuations (absolute values) v\, . . . , vmform a complete 

family of independent valuations (absolute values) on L extending v, and 

m 

D tt[L;t:K;] = [L:K]. 

Proof. Clearly each APi is a field, and by valuat ion theory its unique Haus-
dorff topology making it a i^- topological vector space is given by a valuation 
(absolute value) Vi extending v. If g £ D(f) and g ^ pt for all i Ç [1, m], then 
the completion of L iox3/~ Q, being isomorphic to Ag, is not a field, so 3/ g is not 
given by a valuat ion (absolute value) . Therefore V\, . . . , vm is a complete family 
of independent valuat ions (absolute values) on L extending v, and 

m m 

[L:K]= deg/ = £ tt (degpt) = £ tt[Kt:K;]. 
z = l t=l 

COROLLARY 2. For each i £ [1, m], J7"^ = .^"Pt- C ^"Pl-2 C • • • d^piH, and 
the topologies^pik, where 1 ^ k ^ tu are precisely the ring topologies on L in
ducing^' v on K ihat are stronger than37~'vi but not stronger than^T'vjfor any j 9e i. 
Furthermore, if g Ç D(f) and if g = piSl . . . prn

Sm, then 3^'Q = supig*gm 3Tvisi} 

where3T\ = 3r
pio is the topology whose only open sets are L and 0. 

Proof. The s ta tement follows a t once from Theorem 1, since g ^-*3T Q is an 
isomorphism from D(f), equipped with the ordering |, to the set of ring topolo
gies on L inducing ^ o n K, equipped with the ordering CI. 

T H E O R E M 2. Let v be a proper valuation (absolute value) on a field K, let L be 
a finite-dimensional separable extension of K, and let v\, . . . , vm be a complete 
family of independent valuations (absolute values) on L extending v. There are 
precisely 2m — 1 ring topologies on L inducing3T v on K, namely, the topologies 
supkeM^~vkfor all nonempty subsets M of [1, m\. Also 

m 

[L:K]= D [L^-.Kl]. 
1 = 1 

Proof. By the theorem of the primitive element, L is a simple extension of K. 
In the terminology of Theorem 1 , / is a separable prime polynomial over K and 
hence is separable over K~v, so / is a product of dist inct prime polynomials of 
K^[X]. The assertions therefore follow from Theorem 1 and its corollaries. 

T H E O R E M 3. Let v be a proper valuation (absolute value) on a field K, and let L 
be a simple algebraic extension of K. Of all the ring topologies on L inducing 3^" v 

on K there is a strongest. Moreover, for any ring topology 3f on L inducing 3T X) 

on K, the following statements are equivalent: 
1°. There is a basic d, . . . , cn of the K-vector space L such that u: (Ai, . . . , Xn) 

*~* XTi=i ^ici is a topological isomorphism from Kn to L. 
2°. [L* : K~v] = [L : K], where L~ is the completion of Lfor3r. 
3°. -37~ is the strongest ring topology on L inducing37~v on K. 
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4°. For any basis d, . . . , cn of the K-vector space L, u: (\1} . . . , X„) i—• 

YTi=i XfC, is a topological isomorphism from Kn to L. 

Proof. We shall use the terminology of Theorem 1 and Corollary 1. Clearly 
3Tf is the strongest ring topology on L inducing STv on K. Assume 1°. Now 
u*: (Xi, . . . , Xn) —̂> 52^=] X76'7- is a multilinear and hence continuous function 
from the i£^-vector space (K~)n into the i£^-vector space L" . I t is the unique 
continuous extension of the topological isomorphism u and hence is itself a 
topological isomorphism. Therefore ci, . . . , cn is a basis of the ^ - v e c t o r space 
L\ and 2° holds. 

Let g G £>(/) be such tha t J?7" = TQ, and let g = pi1 • • . £m*w. Now \L" : i Q 
= deg g = 2Î7=i 5 f(deg gi), and [L : X] = deg / = £7=i **(deg £<)• Hence 2° 
holds if and only if st = t{ for all i £ [1, m], tha t is, if and only if g = / , or 
equivalently, if and only if 3° holds. 

Assume finally tha t 2° holds, and let Ci, . . . , cn be any basis of the i£-vector 
space L. Since K\c\ + . . . + K%cn is a closed dense subspace of the i ^ -vec to r 
space L" , Ci, . . . , cn is a set of generators of the i^^-vector space L" . By 2°, 
Ci, . . . , cn is a basis of the ^ - v e c t o r space L" . Thus 4° holds. 

Example. Let v be a proper valuation on a field i£ of prime characteristic p, 
let L = K[c] where c is radical over K, and let / = Xpn — a be the minimal 
polynomial of c over K. Let w be the largest integer such tha t K^ contains a 
pmth root b of a. Then / = (Xpn-m - bym G i Q X ] , and Xpn-m - & is irre
ducible over K~v. By Corollary 2, there are pm ring topologies on L inducing 
3~\ on i£, and they are totally ordered by inclusion. The weakest is the topology 
defined by the unique valuation w on L extending v, and tha t is the only 
topology whose completion is a field. The strongest of these topologies is the 
only one for which (Xi, . . . , \Q) —̂> 53*=i X*cf is a topological isomorphism from 
KQ to L for some (or any) basis Ci, . . . , cQ of the i£-vector space L (q = pn). 
The completion of L for each topology is a local algebra over K"v whose maxi
mal ideal is nil potent and whose residue field is the completion of L for w; 
the dimension of the maximal ideal (or its index of nilpotency) completely 
determines the topology. 

These theorems may be extended to the case where K is topologized by the 
supremum of finitely many valuation or absolute value topologies by vir tue of 
the following theorem. 

T H E O R E M 4. Let K be a topological field whose topology 3T$ = s u p i ^ ^ ^vk, 
where for each k £ [1, q], vk is either a proper valuation or a proper absolute value 
on Ky and vt and Vj are independent whenever i ^ j . Let L be an extension field of 
K, and let&~ be a ring topology on L inducing ST^ on K. There exists a sequence 
^ ~ i , • . • ,$~~q of ring topologies on L such that 3TK induces ^ vk on K for each 
k 6 [1, q] and 3^ = s u p i ^ ^ c ^ " * . 

Proof. Let K" be the completion of K forj^o, L" the completion of L forJ^~, 
^ A the topology of L" . By the Approximation Theorem there is an orthogonal 
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sequence (ek)i^k^q of idempotents whose sum is 1 such that each K*ek is a 
(complete) field and the topology of its dense subfield Kek is the imaged v ke k of 

3Tvh under the isomorphism x i—> xek from K to Kek. For each k £ [1, q] \et3r
k 

be the topology on L such that its i m a g e ^ ^ under the isomorphism x i—> #0* 
from L to Le/: is the topology induced on Lek by J7"". ThenJ^"* induces^"»*, on 
X. Let LQ = L^i + • • • + Le<z, a subring of L" that contains L. Since the pro
jection x i—> xe* from L0 to Lek is continuous for each k £ [1, g], L0 is the 
topological direct sum of Leu • • • , £e<z- Thus the sets [/l^i + . . . + Uqeq form 
a fundamental system of neighborhoods of zero in L0, where for each k £ [1,2], 
Uk runs through all neighborhoods of zero for ^ k. But L C\ (Uiei + • • • + 
UqeQ) = Z7i H . . . H Uq. T h u s 5 " = s u p ^ ^ , . 

In the remaining two theorems, K is a topological field whose topology3^Q is 
as described in the statement of Theorem 4. 

THEOREM 5. Let L be a finite-dimensional separable extension of K, and for 
each k £ [ 1 , q] let vkiu • • • > ^,/«ao ^ a complete family of independent valuations 
{absolute values) on L extending vk. There are precisely I Ï L i (2m{k) — 1) ring 
topologies on L extending^0, namely, the topologies supi^^ff ( s u p ^ ^ ^ ^ , ; ) as 
Mk runs through all nonempty finite subsets of [I, m(k)] for each k £ [1, q\. 

Proof. The assertions follow from Theorems 2 and 4, together with the obser
vation that if 

sup I sup^"V .) = sup I s u p ^ . . , 

then the completions 

rî (n L \ \ and n (n *<:t.) 
of L for those two topologies are topologically isomorphic, from which it follows 
readily that Mk = N* for all k £ [1, g]. 

THEOREM 6. Le/ Lbea simple algebraic extension of K. Of all the ring topologies 
on L inducing^o on K, there is a strongest. Moreover, for any ring topology 3T 
on L inducing3? o on K, statements 1°, 3°, and 4° of Theorem 3 are equivalent. 

Proof. The first assertion follows from Theorems 3 and 4. By Theorem 4, 
\et3~ = supi^tgff Ĵ jfc, where eachJ^""* induces ,3Tvk on K. Let L" be the com
pletion of L forjJ7", K" the closure of i£ in L". By the Approximation Theorem, 
there is an orthogonal sequence (ek)^k^q of idempotents in K* whose sum is 1 
such that each K"ek is the completion of Kek for the topologyS~vkek. Assume 1°. 
As the projection x i—> xek is a continuous, open mapping from L" onto L"ek 

and also from K" onto K*ek, the mapping (A^-, . . . , \nek) \—» Y?i=i ^iciek is also 
a topological isomorphism from (K"ek)

n onto L"efc and hence its restriction to 
(Kek)

n is a topological isomorphism onto Lek. Since the topology of Kek is given 
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by a valuation (absolute value), 3/~kek is the strongest ring topology on Lek 

inducing $~vkek on Kek by Theorem 3. Hence each 3Tk is the strongest ring 
topology on L inducing$~vk on K, so 3° holds by Theorem 4. If 3° holds, then 
e a c h ^ ^ is the strongest ring topology on L inducing^7"^. on K, so by Theorem 
3, u is a topological isomorphism when K is equipped w i t h j ^ and L withJ^"*; 
but then u is also a topological isomorphism when K is equipped w i t h ^ o = 
supi^^ff^flA a n d L withJ^" = supi^^^^A;. 

REFERENCES 

1. N. Bourbaki, Espaces vectoriels topologiques, Ch. I-11, 2d ed. (Hermann, Paris, 1966). 
2. • Algèbre commutative, Ch. V-VI (Hermann, Paris, 1964). 
3. Applications of model theory to algebra, analysis, and probability, ed. W. A. J. Luxemburg 

(New York, 1969). 

Indiana University-Pur due University at Indianapolis, 
Indianapolis, Indiana 46205; 
Duke University, 
Durham, North Carolina 27706 

https://doi.org/10.4153/CJM-1978-015-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-015-6

