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ON THE ALMOST SURE CONVERGENCE OF A GENERAL

STOCHASTIC APPROXIMATION PROCEDURE

S.N. EVANS AND N.C. WEBER

A set of conditions for the almost sure convergence of a

stochastic iterative procedure is given. The conditions are

framed in terms of the behaviour of the random adjustment made at

the n-th step rather than in terms of some underlying regression

model.

1. Introduction

Iterative techniques for finding approximations to the roots, points

at which extrema occur, or maxima and minima of known functions have a

very long and extensive history. Stochastic approximation methods were

proposed as a means of solving such problems when we have only scant

information about the general nature of the function of interest and our

"observations" of the function are clouded by experimental noise or error.

Such procedures appear to have been first discussed in a paper by Hotelling

[7]. However the seminal papers in the area of stochastic approximation

are Robbins and Monro [JO], which discusses a stochastic approximation

technique for estimating the roots of a regression function, and Kiefer and

Wolfowitz [8], which is concerned with procedures for finding minima and
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maxima of regression functions.

The area of stochastic approximation developed rapidly following

these two papers and the reader is referred to Wasan [74] for a coverage

of the limit results and modifications to the basic schemes developed in

the eighteen years following the Eobbins and Monro paper. Wasan also

contains an extensive bibliography for this period. In recent years the

papers by Goodsell and Hanson [5], Ljung [9], Ruppert [7 7] and Solo [7 2]

have relaxed the conditions required for the convergence of stochastic

approximation procedures and widened the areas in which these iterative

estimation techniques can be applied.

In this note a general iterative procedure is given which contains

the A class of stochastic approximation methods proposed by Burkholder

[2]. The A class includes the Robbins-Monro procedures and Kiefer-

Wolfowitz procedures as well as extreme point estimation techniques like

those given by Friedman [4].

We will consider the strong convergence of this general procedure.

In contrast to the usual approach, our conditions for convergence

are not framed in terms of a fixed underlying regression function but

are written so that the emphasis is on the iterative procedure itself.

Thus the result here applies to a wide range of situations and, for example,

covers stochastic approximation techniques applied when the observed

process is based on a sequence of regression functions which are themselves

conyerging to some limiting function.

2. Notation and Result

Let {V } be a sequence of random variables defined on some

probability space (Q, F, P) and define an iterative scheme {X } by

first taking an initial random variable X defined on (Q, F, P) and
o

setting

We will be interested in the conditions on the variables {V }

that ensure the almost sure convergence of {X } .
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Define the o-fields F = a{XQ,X1,.., X }, n = 0. 1, . . . .

Let

and

Mn - « ^ » l ^ - i > n - l , 2, . . .

THEOREM. Under conditions (i) - (iv) below X converges to 0 with

probability one.

(i) For each e > 0 ,

P(\Xn\ > £j X Mn < 0 infinitely often) = 0 .

(ii) \M
n\

(1 + ^n^'1 "* ° a'lm08t surely

(Hi) There exists some ps 1 < p £ 2 such that

(iv) P(0 < Urn inf\xn\ < Urn sup\Xn\ < <°3 E ^ I M J < <•»; = 0 .

The above conditions are framed in terms of X and the conditional

expectation of the adjustment at time n, M . Each condition addresses

a separate feature of the process. Condition (i) states that if X is

away from 0 then X and the expectation of the 'correction term', given

the past history, have the same sign ensuring the correction term pushes

the {X } process towards 0

Condition (ii) ensures the regressed corrections are not too large

and so prevents wild oscillations in the {X } process. Dvoretzky [3]

gives an example based on the Robbins-Monro procedures, where M is a

polynomial in X , to show that a condition of this type is necessary.

Condition (iii) controls the oscillations caused by the noise term,

the V terms cannot vary too wildly, while condition (iv) ensures the

{X } process cannot get caught away from 0 . Condition (iv) states that

if the process is away from 0 then the regressed corrections are large

enough to force a return to zero, provided the adjustments are in the right
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direction.

If (a } is a sequence of positive constants converging to 0 as

n •> <"t writing V = a V , for some sequence of random variables ^J}

it is easy to see that the above formulation includes the A processes

introduced by Burkholder. If X = X - a V , n = 0, 1, ... and
Tl-rx rl rt fl

M = E{V \F . ) then condition (ii) may be written as
Yt YL rt~ ±.

(i i1) lim sup | A / | ( l + | x | ) ~ < " almost surely.

If for each e > 0 there i s some 6 > 0 , such that \X \ > e implies

\M I > 6 , then condition (iv) can be replaced by the much simpler

condi tion

The proof of the theorem essentially follows that given by Blum [7]

for the strong convergence of the Robbins-Monro method. The proof has to

be modified substantially because we do not insist on a fixed underlying

regression model to generate the V process. Before proving the theorem

we wil l establish the following Lemma.

LEMMA.. Under conditions (i) - (Hi) of the theorem^ {X }

converges almost surely to some random variable X .

Proof. wri te Xn+X =Xn-Zn-Mn

SO

n+1 j-X Q 1 j-1 3

Clearly {E . Z>, F } is a martingale. From Von Bahr and Esseen [I3]s
3~*- 3 ?*

I w i T) yi i 123

v—•*• 3 tj "^ 3

using C i i i ) . Thus for some p e (1,2] ,

sup E(\tn. Z. | P) < oo

and so by the martingale convergence theorem (see, for example, Hall and

Heyde [ 6 ] , p . 17), X, - 1^ 2 . and hence X + Z^_ M. converges
•L 3—1 3 w+x 3—1 3

almost sure ly to an in tegrab le random var iable as ft ** °°
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Next we show that

PUim X = ») = P(lim X = -°°) = 0 .n n

{X -s- »} c [{x ->- »} n lim inf {M > 0}] u
n n n

[lim inf {X > 1} n lim sup {M < 0}] .
n ri

P(iXn -*• »} n lim i n f {M > 0})

= 0 , CD

since X -. + I ._. M- converges almost surely. Further, if
?t+X Q — 1 J

o) e lim inf {X > 1} n lim sup {M < 0} then we can choose m. < m, < ...

such that M (u) < 0 and X (10) > 1 for all k . But this implies
K K

X- M_ < 0

and so from (i)

k k

Pdim inf {X > 1} n lim sup {Mn < 0}) = 0 . (2)

Thus from (1) and (2) we can conclude P(lim X = ») = 0 .

A similar argument shows that P(lim X = -00) = 0 .

We complete the proof that {X } converges almost surely, as in

Blum [I], by showing that for any a, b e JR , a < b

Pdim inf Xn < a < b < lim sup Xn) = 0 . (3)

By symmetry it suffices to consider the two cases

I 0 < a < lim inf X< a < b < lim sup Xn ,

and

II lim inf X < 0 < b < lim sup X

Case I. Using (i) and the result that {X , + £ . , M.} converges
7t"t"X J — A. J

almost surely, we can choose m > n sufficiently large so that

c < X < a , X > b and a<X.<.b,n<j<m; (5)

71 171 Q

and M. > 0 for n £ j £ m . (6)
3
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From (4) and (6) we have

X - X < (b-a)/3 - Y. M. < (b-a)/3m n ^3=^ j

but from (5), X - X > (b-a) and so we have a contradiction.
m n

Thus

P(0 < a < lim inf X < a < b < lim sup X ) = 0

Case II. Given b , choose 6 such that 0 < 6 < b/(3 + 2b) .

Again using (i), (ii) and the result that

{X + / •_, M.} converges almost surely, choose
fl+L J—J. Q

m > n su f f ic ien t ly large such tha t

in n

Xn < (b/3) , Xm > b and (b/3) <, X. < b , n < j < m ; (8)
M. > 0 , n < o < m ; (9)

0
and \M I ( 1 + | * I ) " 1 < 6 . (10)

From (7) , (9) and (10) ,

< (b/3) - Mn < (b/3) + 6(1 + \Xn\)

I f \Xn\ < (b/3) then

X - X < (b/3) + 6(1 + b/3) < (2b/3)m n

contradicting the construction in (8) .

I f X < -(b/3) then

so
again contradicting (8). Thus

< (b/3)

i (b/3)

+ 6(1

+ 6(1

Xm-

+

Xn

K

<

\)
- v
(2b/3)

Pdirn inf X < 0 < b < lim sup X^ = 0,

completing the proof of the lemma.
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Proof of the Theorem. From the lemma we have that X converges to

some random variable X almost surely. To conclude P{X = 0) = 1 i t

suffices to show that for any a, b e M with 0 < a < b or a < b < 0 ,

P(lim inf {X e [a,fc]}) = 0n

Suppose 0 < a < b . Fix n and consider the set 5 {X e La,bl) .

If (11 e n {X e[a,b]} then \X (u) \ > a , ntsn and so from (i) and (iv)m>n m m
riOO

L •-! M.(co) = °° , since M.(cu) > 0 for a l l but at most a finite number of
3 *• 3 3

j > n . But this implies

Xn+1(u) + n = 1 M.{u) •*• » as n -»• » ,

so P(m5n^m e La,bl}) = 0 as Xn+1 + ¥j=1 M. converges with probabilityM.

one. Thus for 0 < a < b

P(lim inf {Xn e La.bD) = 0 .

A similar argument handles the case a < b < 0 and completes the

proof.
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