
THE SPECTRAL MATRIX AND GREEN'S 
FUNCTION FOR SINGULAR SELF-ADJOINT 
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1. Introduction. Let L denote the formal ordinary differential operator 

L = Po(d/dx)n + p^d/dx)*-1 + ...+pn, 

where we assume the pk are complex-valued functions with n-k continuous deri
vatives on an open real interval a < x < b (a = — œ, & = _|- oo, or both may 
occur), po(x) y£ 0 on a < x < b, and L coincides with its Lagrange adjoint L+ 

given by 

L+ = (-l)n(d/dxnPo • ) + {-\)n-\d/dx)n-\v •) + • • • + P.. 

The purpose of this paper is to prove the existence and uniqueness of Green's 
function for certain self-ad joint boundary value problems associated with L 
on (a, b) (Theorems 2 and 3 below), and to show how the existence and unique
ness of the spectral matrix occurring in the Parseval equality may be obtained 
from Green's function (Theorem 5 below). Further we prove the formula which 
gives the spectral matrix in terms of Green's function (Theorem 5). 

The case n = 2, pk real, was treated initially by Weyl (11). Later Titchmarsh 
(9 ) gave new proofs of the Weyl results using the residue calculus, and obtained 
a formula relating Green's function and the spectral matrix. Other proofs of the 
main results in this case have been given by Stone (8), Kodaira (2), Levinson 
(4), (5), and Yosida (12). Kodaira (3) extended Weyl's results to the case 
where n is even and the pk are real, using Hilbert space methods. Levitan (7) has 
considered this case also, and has shown the existence of at least one spectral 
matrix. It is not difficult to see that his proof carries over to the case of the L 
considered here. In (1) we proved, among other things, the uniqueness of the 
spectral matrix in two important cases. Another proof along the lines of (5) 
has recently been given by Levinson (6). Here we prove the existence and 
uniqueness of Green's function and the spectral matrix for these two cases by a 
simple limiting process on self-ad joint boundary value problems on finite sub-
intervals of (a, b). The formula relating Green's function to the spectral matrix 
reduces to that given by Kodaira (3) for the cases he considered. 

In §2 we state results we require concerning self-ad joint problems in the non-
singular case. Section 3 is first devoted to the proof of the compactness of the set 
of Green's functions {Gs\ associated with self-adjoint boundary value problems 
on closed bounded sub-intervals ô of (a, b). The essential idea of the proof 
(Lemma 3) is an outgrowth of our reading the paper by Titchmarsh (10) on 
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the Laplace operator in the plane. We then consider two cases: the first where no 
boundary conditions at a or b are required to obtain a self-adjoint boundary 
value problem ; the second where the end-point a is finite and (a, b) can be 
replaced by [a, b), and a self-adjoint boundary value problem results by imposing 
boundary conditions at a alone. For n = 2, pk real, the first case corresponds to 
the situation where L is of the limit point type at a and b, the second where L is 
of the limit circle type at a and limit point type at b. For our two cases we prove 
the existence and uniqueness of Green's function, and in §4 we do the same for 
the spectral matrix, and give the formula relating the two. 

2. The spectral matrix and Green's function in the non-singular case. In 
this section we collect together several well-known facts concerning self-adjoint 
boundary value problems on a closed bounded sub-interval ô — [à, b] of (a, b) 
and show how the spectral matrix is related to Green's function in this case. 

Let © denote the set of all complex-valued functions u of class 82(#, b) which 
have continuous derivatives up to order n — 1 on (a, b), u(n~1) is absolutely 
continuous on every closed sub-interval of (a, b), and Lu is of class 82(a, b). For 
functions u, v in 3) we have Green's formula 

(2.1) I {v Lu — uLv) = [uv](x) — [uv](y), 
*) y 

where a < y < x < b, and [uv](x) is the form in (u, u\ . . . , u{n~l)) and 
(v, v', . . . , v{n~l)) given by 

(2.2) W(x) = É S {-l)ju{k\x)(pn-mv)u){x). 
ra=l j+k=m—1 

We can write (2.2) as 
ra-l 

[uv](x) = S Bjk(x)ua\x)vu\x), 
j,Jc=0 

and it is readily seen that the matrix B(x) = (Bjk{x)) is non-singular; in fact 
its determinant is (po(x))n. From Green's formula one finds that 

[uv](x) = — [vu](x). 

Suppose 

(2.3) U,j(u) = E M8jk u^v (a) + N8jk «(*-1} (6) = 0 (J = 1, . . . , n), 

represent n homogeneous self-adjoint (relative to L) boundary conditions for 
functions u Ç 35 on the interval ô = [a, b]. Here M8jk and N$jk are complex con
stants, and the linearly independent conditions (2.3) are self-adjoint if and only 
if 

Mi B-l(a) Mb* = N8 B~l(b) iV5*, 

where M8, N8 are matrices with the elements M8jk, N8jk respectively, B~1 is the 
reciprocal of the matrix B of the form (2.2), and the asterisk indicates the con-
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jugate transposed matrix (cf. 1). As is known the self-adjoint boundary value 
problem 
(2.4) Lu = lu, USj(u) = 0 (J = 1, . . . , n), 

(/ a complex parameter) possesses a real discrete spectrum. Let {xsk} be a com
plete orthonormal set of eigenfunctions for this problem, and {\sk} the corre
sponding eigenvalues. 

The inner product and norm in the space 82(<5) will be denoted by ( , )« 
and || \\s respectively, and thus if u, v Ç 35, 

(«,»)« = I uv, \\u\\8 = ( I \u\2) . 

In case of the interval (<2, b), the inner product and norm will be denoted by 
( , ) and || ||. For u, v G £2(ô) one has the Parseval equality 

(2.5) 

or in the case u = v, 

(2.6) 
OO 

ii II2 yr* i / \ i2 

IMI« = 2^ K^i Xôk)8\ . 

Let ŝ  = Sj(x, Ï) (J = 1, . . . , n) be a set of w linearly independent solutions of 
the equation Lu = /^, where / is a complex number, and to be definite, suppose 
that for some c, à < c < b, we have 

(2.7) * r i ; M ) = «,* (j,k = l , . . . , n ) , 

5Jfc being the Kronecker delta. Then the Sj are such that the functions s/*-1) 

(J, k = 1,. . . , n) are entire in /. In terms of such a linearly independent set we 
have 

n 

(2.8) Xôjc(x) = X) rôkjSj(x, \ik), 

where the rskj are complex constants. Placing (2.8) into (2.5) and (2.6) we can 
rewrite these in the forms 

(2.9) («, v)t = E fo/X) *«(X) <*P«#(X), 
v — oo j,k=l 

Joo W 

E *n(X) *»*(X) <W(X). 
-oo ^ , * = 1 

Here 
<t>ik (X) = («, ^(X))5, \l/5j(\) = (v,Sj(\))8, 

where sk(\) is sk considered as a function of x for the fixed real I = \. The matrix 
P8 = (pijk)j called the spectral matrix associated with the self-adjoint problem 
(2.4), consists of step functions with jumps at the eigenvalues \sk and possesses 
the properties: 
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(i) pa is hermitian, 
(ii) pa (A) = pa(X) — PÔ(M) is positive semi-definite if X > /* (A = Ou, X]) (we 

say ps is non-decreasing), 
(iii) the total variation of psjk is finite on every finite X-interval. 

In fact we have 

PôjkQ^ôp + 0 ) — psjicÇkôp — 0 ) = 2 ^ rSmjÛmk-

A 8m = = A 8p 

It is further assumed that ps(0) = 0 and p$(X + 0) = p«(X); this justifies the 
term "the" spectral matrix. 

We turn now to the relation between the spectral matrix ps and Green's 
function G s = Gs(x,y, I) for the problem (2.4). The latter function is a con
tinuous function defined on the square a < x, y < b with the properties: 

(i) dkGs/dxk (k = 0, 1, . . . , n — 2) exist, are continuous on the square 
a < x, y < b, and dîl~1Gs/dxn~1

1 dnGs/dxn are continuous on each of the triangles 
à < x < y < b and a < y < x < 5, 

<"> '^=ïi{'y + 0'y'l)-'d^1(-y-Q'y'l)=My)' a<y<~b, 

(iii) as a function of x, Gs satisfies the equation Lu = lu, iî x 5* y, 
(iv) as a function of x, Gs satisfies the boundary conditions 

UÔJ(U) = 0 (j = 1, . . . , n) for a < y < b. 

Further, since the problem (2.4) is self-adjoint, if 3 / ^ 0 (3 = imaginary part 
of) no function in £2(ô), except the zero function, satisfies Lu = lu and 
Uôj(u) = 0 ( i / = l , . . . , « ) . Hence the solution of the non-homogeneous problem 

Lu = lu+f, U5j(u) = 0 (j = 1, . . . , »), 

where / Ç £2(ô) (/ ^ 0), is given by 

u(x) = J G5(x, y, / ) / ( ? ) dy. 

Let ©a be the set of all u £ £2(5) for which w(ra_1) is absolutely continuous on 
8, Lu Ç 82(ô), and Usj(u) = 0, (j = 1, . . . , n). Then the operator Ls defined by 
L8u = Lu for u Ç S)5 is a self-adjoint operator in the Hilbert space £2 (ô), and 
the integral operator G&(t) defined for a l l / 6 £2(ô) by 

G, (/)/(*) = j G 4 ( * , y f / ) / ( y ) r f y 

is the resolvent of La, that is, G«(Z) = (Ls — / ) _ 1 . 
In the following it will be convenient to denote Gs, considered as a function of 

x (for fixed y and /) as Gs ( , yy /), and similarly when considered as a function 
of y alone (for fixed x and I) we denote it by G s (x, , I). Also we define H s by 

H 8 (x, y, I) = G s (x, y, I) - G5 (x, y, Ï). 

We remark that the (n — 1) st derivative of H8 with respect to x is continuous 
at x = 3>. 
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LEMMA 1. If $176 0 then 

j | f (*, t, I) ffi (t, y, Ï) dt = ̂ pp (x, y, I), 
for j , k = 0, 1, . . . , n — 1. 

Proof. If $1 7̂  0, $m 7^ 0, then, as is known, 

(2.12) (m - /) J Ga(*, y, w) G5(/, x, Z) * = G5(x, 3/, m) - G8(y, x, Ï). 

This is the equation satisfied by the kernels of the resolvent operators G«(/), 
Gi(m). A proof results by applying Green's formula (2.1) to the functions 
u = Gt( , y, ni), v = G«( , x, I) on the intervals [a, y — 0], [y + 0, x — 0], 
[x + 0, b] and adding. Choosing m = / in (2.12) we have 

Ga(;y, x, Z) = GB(X, y, /), 

and as a consequence we have from (2.12) with m = Z, 

(2.13) 2i3Z J G5(x, /, I) Gt(t, y} Ï) dt = G5(x, y, /) - GB(x, y, Z), 

which is (2.11) for j = k = 0. Using the differentiability properties of Ga it is 
now obvious that (2.11) follows from (2.13), thus proving the lemma. 

LEMMA 2. The spectral matrix ps = (psjk) satisfies the identity 

(2,4) ^ifj^-^jh^cl), 
where $1 9^ 0, andj, k = 1, . . . , n. 

Proof. Since 

I>X8m = XîmXSm = ZX5m + O^Sm ~ I) X*m> 

we have 

or 

X8m(x) = (X«m - /) J G5(X, /, I) XSm(t) dt, 

XSm(y) = fam - I) J G«(/f y , I) X*m(0 * • 

It follows from this that 

x&(y) = i^m - D Jd 0 * (t, y, I) xUt) dt, 

for k = 0, 1, . . . , n — 1. Therefore the mth Fourier coefficient of d*Gs( , y, l)/dyk 

with respect to the set {x&m} is 

xS(y)/(Xh. - Î). 
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From the Parseval relation (2.5) applied to the functions u = dkG8( , y, ï)/dyk 

and v = dj Gs ( , x, l)/dyj we obtain 

X w «• *;> w *• '• » * - X & <•• <•() IT ft » • ; > ay v ' •" ' ay v ' ' "' j 5 a*' v ' ' '' ay 

= f x-Â (*) xS 

and in view of Lemma 1 there results 

dt 

(2 15) mif xàM.xûJj)_^ d^Hs ( , 
(2.15) 2KJ/2. |Xgw _ Z|2 - ^ ^ (*, J, /)• 

Using (2.8) we may write, for A = (/i, X], 

E xi2 (*) xS 00 = f' Z 4* (*, X) §f (y, X) dPht(\), 

and therefore (2.15) yields 

2*3* E 4* (*, x) s«ft) (y, X) |x - V dPSm(\) = l - r ^ l (*, y, /). 
»/-œp, 5=i Ox ay 

Setting x = y = c in this formula and recalling (2.7) we obtain (2.14), as 
desired. We are indebted to the referee for pointing out that Hs/2i$l is the 
reproducing kernel of the class of all functions satisfying the boundary conditions 
USJ(U) = 0 with a norm given by 

\\u\\2 = I \Lu — lu\2 dx. 

Formula (2.15) follows directly from this. The equation u = G&(l)(L — l)u 
expresses the reproducing property of Hs/2i$l in this class. 

3. Green's function for singular cases. Here we establish the existence and 
uniqueness of Green's functions for two self-adjoint boundary value problems 
on (a, ô). Indeed we show that these functions are the limit (uniform in any 
finite (x, yy /)-region, 3 / ^ 0) of Green's functions constructed for self-adjoint 
problems (2.4) on closed bounded sub-intervals ô of (a, ô). 

Let ô0 = [a0, bo] be any closed bounded interval interior to (a, b). Then, as is 
known, there exists a fundamental solution Ko = Ko(x, y) of the equation 
Lu = 0 on ôo. This function exists on the square a0 < xy y < ôo, and enjoys all 
the properties of a Green's function for Lu = 0 on ôo except that it need not 
satisfy a set of self-adjoint boundary conditions. (Green's function for Lu = 0 
on ôo need not exist, but a fundamental solution always exists.) In order to ex
hibit the special properties of a fundamental solution we give a construction for 
one such. Let s0j (j = 1, . . . , n) denote the set of n linearly independent solu
tions of Lu = 0 given by 

soj(x) = Sj(x, 0), 
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satisfying (2.7) with I = 0. Using Green's formula one finds that [s0j Sok](x) is a 
constant [SOJ Sok], independent of x. Let 5 denote the matrix with element 
[soj s ok] in the jth row and &th column. From the non-degeneracy of the form 
[#*/](#) and the linear independence of the s0j it follows that the matrix S is non-
singular. Moreover we have 5 is skew-hermitian, since 

[SOj S Ok] — ~~ [S0k Soj], 

Let 5"1 = (5"1) denote the inverse matrix to 5; it is also skew-hermitian. Define 
Ko by 

n 

(3.1) K0(x, y) = K0(y, x) = (§) X) SJ* s<>k(x) soj(y) (x > 30 • 
j,k=l 

It is an easy task to check that this function is a fundamental solution for 
Lu = 0 on any ô0 C (a, b), and we shall always mean by K0 this function which 
is defined on the whole square a < x, y < b. 

Suppose 5i = [ai, b\] is any other closed bounded sub-interval of (a, b) con
taining bo properly. Let n be any real-valued function of class C°° on a < x < b 
such that fx(x) = 1 for x Ç ô0 and ju(x) = 0 when x is outside 

!(a0 + ai) < * < i(bo + bi). 
Then define J\ by 

Ji(x, y) = p(x) ix{y) Ko(x, y). 

Clearly Ji(x, y) = Ji(y, x). The basis for our results on Green's function is the 
following representation of G5 in terms of J\. 

LEMMA 3. IfàDfaD So then for x Ç 50, y 6 5, and 3 / 9^ 0, 

(3.2) Ga(*, y, V) = / i (x , 3O + f G«(/, y, Z){/7î(/f x) - L ^ ( / , x)} dt, 

wfeere L* denotes L applied to J\{ , x) for fixed x. 

Proof. The function u = G«( , ;y, /) — / i ( , y) for y Ç ô0 is in the set S)«, 
and hence w = Gô(l)(Lt — T)u. Using (Lt — l) G5 (Z, y, /) = 0 for t 9^ y, the 
symmetry Gs(x,y,l) = G«(y, a;, Z), and J i ( , y) = 0 for y outside di we see 
(3.2) results. 

Since Gs is unique it may seem a paradox that it can be expressed in terms 
of the function J\ which was defined by an almost arbitrary function /JL. This 
'dilemma" disappears when one observes that (3.2) may be written as 

(3 3) Gb^X':y' ^ = K^X' y^ + ) Ko("X} ^ l Gô^y y' ^ dt 

+ [(?,( ,y,l)Ko{ ,x)Ka0) - [G,( ,y,l)K0( ,*)](&<>), 

when x j Ç 50, and here the values of Ji , for x, y not on the square ao < x, y < &o 
do not enter at all. Now (3.3) results by splitting the integration range in (3.2) 
into the two ranges ô0 and ôi — ô0 and using Green's formula to evaluate the 
integral over 5i — ôo. On 50, of course LtJ\{f, x) — 0, x ^ t. 
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LEMMA 4. The set of functions {G5} is uniformly bounded and equicontinuous 
on every compact (x, y, I)-region where $1 ^ 0. 

Proof.1 From Lemma 3 we have, using the Schwarz inequality, if ô D <5i Z) &o 
and x, y Ç 50, 

(3.4) |G5(x, y,l)\<Mo+ \\G5( , y, l)\\ti\\ ï M , x) - Lt J,{ , x)| |5 l , 

where 

Mo = max \K0(x, y)\ (x, y£ô0). 

The uniform boundedness of the G§ for 8 D <5i on the square a0 < x, y < 60, and / 
ranging over some compact set A with 3>Z ̂  0 will follow from (3.4) once we 
have shown that \\G&( , y, I) \\s, is bounded uniformly for y Ç ô0, l Ç A. However 
this follows from the fact that the resolvent G8(1) is a bounded operator with 
bound not exceeding | 3 / | _ 1 , that is, if u = Gs(l)f, where /6 22(ô), then 

(3.5) \\u\\t < | 3 /h | | / [ | , . 

Applying this to u = G&( , y, I) — J \ ( , y) for y Ç 50 we see that 

(3.6) ||G,( , y , / ) | | « < | 3 / h l | i « ^ i ( ,y)-Ui( ,y)\\h+\\M ,y)ll*.. 

and this inequality implies the uniform boundedness of ||G«( , 3>, Oik for 
y 6 «0, / G A. 

From (3.2) it follows that2 

~dx (*' y' ^ = ~dx~ ^XJ y^ + J G'^' y' ^dx^1 ^l (*' X^ ~~ Lt^x & *)J dt' 

and using the same argument as above we see dG&/dx is uniformly bounded for 
#o < x, y < bo, l Ç A. The symmetry Gs(x, ^, /) = G«(;y, x, Z) implies the same 
for dGs/dy. From (2.12) we have 

dG C 

~~d~l (x' Jl ̂  = J Ga '̂ ̂  ̂  ^^ x' ^ *' 
and using the Schwarz inequality and (3.6) we find that dGs/dl is also uniformly 
bounded for a0 < x, y < &o, l G A. The uniform boundedness of all first partial 
derivatives of G s implies the equicontinuity of the set {Gs} thus completing the 
proof of the lemma. 

Certain important conclusions may now be drawn from Lemmas 3 and 4. 
Firstly, an application of the Ascoli lemma together with Lemma 4 proves that 
there exists a sequence of intervals bm C (#> b) (m — 1, 2, . . .), 5m —> (a, 6), 
such that the corresponding Green's functions Gm = G&m tend uniformly, on any 
compact subset of a < x, y < b, $1 > 0 (or $ / < 0), to a limit function G. This 
G is defined for a < x, y < &, 3 / 3^ 0, and, being the uniform limit of continuous 
functions, is continuous. Since the Gm are analytic in / for $1 > 0 (or 3 / < 0), 

Str ic t ly speaking our proof is given for the cases « ^ 2, but a slight modification shows the 

validity for n = 1; cf. (3.7) and (3.8) below. If n = 1, equicontinuity holds for x?^y. 
2This relation must be modified in case n = 1, cf. footnote 1. 
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the same holds for G. The relation Gm(x, y, I) = Gm(y, x, Ï) implies that 
G(x,y,l) = G(y ,x, Ï). 

From (3.2) we have, if a0 < x, y < bo, 3 / 9e 0, 50 C 5i C 5, 

(3.7) £ ^ (*, y, I) = S (*, y) + J Gt{t, y, l)£f{lJi{t, x) - Lj[(f, x)\dt, 

(j = 0, 1, . . . , n - 1). 

Recall that since dn~lGs/dxnr~l and dn~1K0/dxn~1 have the same discontinuity at 
x — y, their difference is continuous there. Moreover, from (3.7), if x ^ y, 

dnGs dnK0 lG,(x,y,l) 
(3.8) W {X' y ' l ) = - ^ - (*' y) + —p&T 

+ J Gi(t,y,l)-^n{lJl{t,x)-T771(t,x)}dt. 

Observing (3.2) with 8 = Sm, and letting m —» oo, we obtain 

G(x, y, I) = Ko(x, y) + f G(/, y, Z) j / J ^ , x) - Z T M * . *) ! dt, 

and therefore the partial derivatives d^/dx1 exist and 

^ 7 (*, y, I) = ~^f (x, y) + J G(t, y, I) -^j{lJi(f, x) - LtJi(f, x)} dt, 
dxJ ox 9jtl 

0* = 0, 1 , . . . , » - 1; ao<x,y<b0; 3 / 3*0 ) , 

(3.9) dnG , n d"BTo , x , / G ^ j s J ) 
Txt (*, y, /) = - ^ - (x, y) + - ^ y -

+ Js G(t, y, I) jji{lJi(t, x) - TJld, x) }dt {x^ y). 

From (3.9) we infer that as a function of x, G satisfies Lu = lu, provided x ^ y. 
(This may perhaps be seen better by observing the relation (3.3) with G$ 
replaced by G.) Further, dn~lG/dxn~l has the same jump at x — y as dn~1KQ/dxn~1

y 

namely, 

—liy + 0,y,l)--^(y-0,y,l)=¥;i-y 

Since the right sides of (3.7) and (3.8) with 8 = 8m tend (as m —> oo ) to the right 
sides of the corresponding formulas in (3.9) we see that 

(3-10) 0 s - 0 tf-0,1....,«). 
uniformly on any compact (x, y, I) region where $1 9^ 0, and provided x 9e y 
when j = n — 1, n. The relations G5(x, y, 1) = G&(y, x, I) and G(x, 3;, Z) = G(y, x, Î) 
imply that 

d G m d G / « n i \ 

WW 0 = 0,1,...,»), 
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under the same conditions that (3.10) is valid. Returning to (3.7), (3.8), and 
(3.9) it is easy to see that the mixed derivatives dj+kG/dx3 dyk (j , k — 0, 1, . . . , 
n — 1) all exist, and 

O &m O Lr / ' L A I i \ 

W W 0 . * - o , i , . . . , » - i ) , 
uniformly on any compact (#, y, /) region where $1 T^ 0 and x 7* y if j or k is 
n - 1. 

It follows from (3.6) that there exists a constant c\ (depending on 80 and 5i 
only) such that 

||G«( , 3 ' , / ) | | a < c 1 | 3 / h ( 2 | / | + l) (y€ 5o). 

But \\Gs( j , Z)||a < ||G«( , y, /)||« for 5 C 5, and letting first Ô -> (a, ft) 
through the sequence 5m and then 5 —» (a, ft) we infer, for any fixed (y, /)» 
3 / 5* 0, that G( ,yj)e Z2(a, à). This implies that for fixed (*, /), 3 / s* 0» 
G(x, , /) € 82(a, ft). I f / 6 %2(a, b) then the integral 

b 

G(x, t, I) fit) dt (a < x < ft, 3 / ^ 0), x 
converges absolutely (and uniformly for x in any finite sub-interval of (a, ft)), 
defines a function v, and using the properties developed above for G it is not 
difficult to see that v has continuous derivatives up to order n — 1, vin~l) is 
absolutely continuous on every closed sub-interval of (a, ft), and 

Lv = Iv+f. 

For example, to prove the existence and continuity of v', one first shows by 
means of (3.5) applied to u = (d/dx)(Gs(x, , /) — J\{x, )) that ||dG(x, , l)/dx\\ 
is bounded for fixed /, 3 / 9^ 0, uniformly for x on any finite sub-interval of 
(a, ft). Thus the integral 

dG (x,t,l)f(t)dt I dx 

converges uniformly for x on any finite sub-interval ot (a, ft), and hence repre
sents a continuous function on (a, ft) which is easily verified to be v'. 

From (3.5) for 8 = ôm we obtain, letting m —•> oo f 

IN < isr1 II/II. 
and since Z,z> = to + / , we have also 

||i*|| < (i + \i\/W\)\\fl 
In short v belongs to the class of functions 35 defined at the beginning of §2, 
and Lv — to + / . We summarize our information concerning G in the following 
statement. 

THEOREM 1. Let G be the limit of any convergent sequence {Gm} of the set {Gs} 
of Green's functions associated with given self-adjoint boundary value problems 
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Lu = lu, Uijiu) = 0 (j = 1 , . . . , n), 

on closed bounded sub-intervals ô of (a,b). Then G is continuous for a < x, y < b, 
analytic in I for $1 > 0 (and 3 / < 0), and possesses the properties : 

(i) dkG/dxk (k = 0, 1,. . . , n — 2) &m/, are continuous on a < x, y < b, and 
dn~~1G/dxn~1

t d
nG/dxn are continuous on each of the regions x < y and y < x, 

(ii) ^ (y + 0, y, 1) - - ^ (y - 0, y, /) = ^ y , a < y < b, 

(iii) as a function of x, G satisfies Lu = lu if x 9e y, 

uniformly on any compact (x, y, I) region where $1 y^ 0, and x 9^ y if j or kis n — 1, 

(v) G(x,y, I) = G(y,x,l), 

(vi) G(x, , /) <E 22(a, 6) (a < x < b). 

If f (z 22(a,b) the function v defined by 

v(x) = ^G(x,t,l)f(t)dt (3/^0), 

w aw element of 35 and 

We do not call G a Green's function yet for we have not considered the 
question of boundary conditions on (a, b). Here we shall consider two cases, 
which reduce to the most important ones when n = 2, and show how G may 
then be considered as a Green's function. 

For Case I we assume that there are no functions u Ç 3) other than u = 0 
satisfying Lu = iw or Lu = —iu. Then the problem 

(3.11) Lu = lu («Ç 35), 

is a self-adjoint boundary value problem on (a, 6)—with no boundary conditions 
required other than u Ç 3). Another way of putting this is the following: the 
operator T defined in the Hilbert space £2(a, b) with domain 35 by 

Tu = Lu («Ç 35), 

is self-ad joint. For the cases treated by Weyl, Case I corresponds to the situ
ation where L is of the limit point type at a and b. It is known that if $1 > 0 
(3^ < 0) the number of solutions u Ç 35 of Lu — lu is equal to the number of 
solutions of Lu = iu (Lu — —iu), and therefore in Case I the equation Lu = lu 
has no solutions u Ç 35 other than the zero function for any / for which $1 ^ 0. 

THEOREM 2. /w Case l, G is unique, and indeed 

(3.12) Gi^G (*-»(a ,6)) , 

https://doi.org/10.4153/CJM-1954-019-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-019-4


180 E. A. CODDINGTON 

uniformly on any compact (x, y, I) region where 3 / ^ 0, independent of the choice of 
the self-adjoint boundary conditions on <5. (G is called Green1 s function for (3.11) in 
Case I.) 

Proof. Let G° be any other function having the same properties as the G of 
Theorem 1. Then from Theorem 1 the function v° given by 

v*(x) = f G°(x, t, l)f(t) dt (3 / ^ 0), 

exists for a n y / 6 82(a, b), and 

Lv° = lv°+f. 
Thus 

L(y° - v) = Z(v° - w), 

and this implies, in Case I, that v° = v. One readily infers from this, and the 
symmetry of G and G°, that G = G°. This proves the uniqueness of G, and that 
every convergent sequence of {Gs} tends to G, thus giving (3.12). 

Before going to Case II we interpret our results in terms of the operator T. 
Let G (I) denote the operator with domain £2(a, b) defined by 

G(l)f(x)= fbG(x,t,l)f(t)dt. 
*J a 

It is an integral operator of Carleman type, and 

(3.13) G{1) = (T - l)-\ 

Indeed Theorem 1 shows that G(l)f Ç 35 for every/ Ç 22(a,6), and (L- / )G( / ) /= / . 
Conversely, let « G 35, and put (L — /)# = / . Then clearly w = u — G(l)f is 
in 3), and (L - l)w = (Z, - /)« - (L - Z)G(/)/ = / - / = 0. Thus w = 0, or 
w = G(Z)/, and thereby G(l)(L — l)u = w, proving (3.13). 

For Case II we consider a half-closed interval [a, b)> where a is finite. We 
assume that the coefficients pk in L are of class Cn~k on [a, 6), and po(x) ^ Oon 
[a, 6). Let 3) now represent those w Ç S2([a, 5)) with continuous derivatives up to 
order w - 1 on [a, 6), w(n_1) absolutely continuous on every closed sub-interval 
of [a, b) of the form [a, 5], a < 5 < 6, and Lw Ç 22([a, b)). Suppose 

(3.14) Uj(u) = Î : M,* w(A"1}(a) = 0 (j = 1, . . . , o>), 

is a set of co linearly independent boundary conditions for functions u £ 35. In 
Case II we assume that the problem for wÇ S , 

(3.15) Lu = lu, Uj(u) = 0 0" = 1, . . . , co), 

is a self-adjoint boundary value problem on [a, b). In other words 

(Lu, v) = (u, Lv) 

holds for every w , ^ S which satisfy the boundary conditions (3.14), and there 
are no functions u Ç 35 (other than u — 0) satisfying (3.14) and Lw = iu or 
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Lu = —iu. The latter statement is true if and only if there are nowÇ S) satis
fying (3.14) (other than the zero function) and Lu = lu for any / for which 
3 / 7* 0. In a previous work (1) we have shown that Case II can only arise when 
n = 2co. In the situation treated by Weyl (n — 2) Case II occurs when L is of 
the limit circle type at a and limit point type at b. 

Let 2)° denote the set of all u Ç £) satisfying the boundary conditions (3.14). 
Then to say that the problem (3.15) is self-adjoint is equivalent to saying that 
the operator T° defined in 22([a, b)) by 

T°u = Lu («6 S)°), 

is a self-ad joint operator. 
In Case II we consider closed bounded sub-intervals 5 of [a, b) of the form 

ô = [a, b], a < b < b, and add to the set (3.14) any n — co = co linearly inde
pendent boundary conditions Usieiu) = 0 such that the combined set 

(3.16) Uj(u) = 0, U*k(u) = 0 (j, k = 1, . . . , co), 

is a self-adjoint set on 8. Let G& represent Green's function for 3 / 5* 0 of the 
self-adjoint problem 

Lu = luj Uj(u) — 0, Uik(u) = 0 (j, & = 1, . . . , w). 

Then it is clear that Lemma 4 and Theorem 1 remain valid for the set {G$}. If G 
is the limit of any convergent sequence {Gm} of {G&\, then since every G5 (con
sidered as a function of x) satisfies the conditions Uj(u) = 0 (J = 1, . . . , co) for 
fixed y, a < y < 5, we have that G, as a function of x, satisfies Uj(u) = 0 
( j = 1, . . ., co) each fixed y, a < y < b. We infer from this that if/G ?2([a, b)) 
the function 

„(*) = j G(x, t, l)f(t) dt (3 / 9± 0), 

satisfies the boundary conditions Uj(u) = 0 (j = 1, . . . , co). From these con
siderations it is easy to show, just as in Theorem 2, that every convergent 
sequence of {G&} must tend to the same limit, and hence Gt —» G as 8 — [a, b] 
—• [a, b), i.e., as 5 —> 5. Moreover G is unique; it is the only G with the properties 
listed in Theorem 1 which satisfies the conditions Uj(u) = 0 (j = 1, . . . , co). 

THEOREM 3. In Case II G is unique, and G s —> G, as b —» 6, uniformly on any 
compact (x, y, /) region where 3 / F^ 0, independent of the choice of the boundary 
conditions Usk(u) = 0 (& = 1, . . . , co) on 8. (In Case II G is called Green's 
function for the problem (3.15)). 

In terms of the operator T° defined above, we have shown that the operator 
G (I) defined by 

G(!)f(x) = j'ax, t, I) f{t) dt ( / € S 2 ( k b))), 

is an integral operator of Carleman type, and 

G(l) = (T° - l)-K 
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4. The spectral matrix for singular cases. We are now in a position to 
exploit the relation (2.14) in Lemma 2, which connects the spectral matrix p« 
with Green's function G&. For brevity we put 

P*j*(l) = 3 ^ 7 3 ^ = 1 (c, c, I) ( j , * = 1, . . . , ») , 

where we recall 

Also we write 

where 

Hi(x, y, I) = G six, y, I) — G5(x, y> Ï). 

^+k~2ff 
PjkQ) = ^ F T ^ - J F T (C, C, I) (j, k = 1, . . . , »), 

H(x, y, 1) = G(x, y, I) - G(x, y, I), 

and G is the limit of any convergent sequence {Gm) of the set {G$}. 

THEOREM 4. Let {Gm} be any convergent sequence of the set {Gs}, and let the 
corresponding spectral matrices be pm — (pmjk). Then there exists an hermitian, non-
decreasing matrix p = (pjk) whose elements are of bounded variation on every 
finite \~interval, such that if A = (/z, X] is a finite interval whose end-points are 
continuity points for pjk, then 

pmjk (A) - > pjk (A) ( w —> oo ) . 

Further y if Gm—> G, then in terms of Pjk constructed above, 

(4.1) pjk(A) = — lim P^(cr + ie) da. 
ATM e^+0 t//i 

Proof. Using the results developed in §3 the proof reduces to the argument 
given by Levinson (4) in the case n = 2, pk real. From (2.14) we have 

(4.2) 2*3/ P j ^ - ^ % 1 = PmjlQ) (3/ * 0), 

and for / = i, 

/, Q\ P M dpmjj{\) P°° dpmjj{\) _ Pmjj(i) 
(4-3) J ^ ï T x 5 - < J_œ î T F " ~~2T~ ' 
since pmjj is non-decreasing. The right side of (4.3) is bounded uniformly in m 
since by Theorem 1 (iv) Pmjj —» Pjj uniformly on any compact subset A of 
3 / > 0 (or $1 < 0). Therefore, from (4.3), there exists a constant C not depend
ing on m such that 

£ dpmjjW < C(l + M) |Pm,;(X)l < C(l + X2). 

But |pm#;(A)|2 < pmjj(A) pmkk(A), and hence the total variation of the p.mjk on 
any finite X-interval is bounded independent of m. By the Helly selection theorem 
there exists a subsequence of the matrices pm = (pmjk) tending to a limit matrix 
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p, which is hermitian, non-decreasing, and of bounded variation on every finite 
X-interval. 

From (4.2) we readily infer that 

dpjk (X) 

£ | X - 7 | 2 

converges absolutely. If 3 / ^ 0, 3/° ^ 0, then the integral 

J_œ V|x~- i\2 " |x - / ° | 7 rfpmi*( 

ugh the subsequence, to 

(4-4) J_œ Vpr=i? " W^T^i dpm*{x) 

tends, as m —> oo through the subsequence, to 

But (4.4) is just 

•* m jk 

2i$l 2i3/° ' 

which, by Theorem 1 (iv), tends to 

~2i$l 2i$l° ' 

Therefore we see that 

2*3/ J_œ |X - l\2 

is a constant independent of / for $1 7^ 0. The relation (4.1) now follows readily 
from this. Indeed 

lim Cpjk(a + ie) da = 2i lim f ( f °° T^^T^) d° 
«^+0 Jn C->+0 */ju \ «/-co V*' ~~* °"J T" € / 

= 2,' f lim [ tan" 1 ( ^ ) - tan"1 ( ^ ) ] <*P,*M 

= 2Tri (p#(X) — PjkW), 

provided X, /* are points of continuity for pjk. This proves (4.1). 
It is now clear from the relation (4.1) that every convergent subsequence 

of {pmjk(à)} must tend to the same limit, and therefore pmjk(A)—* pJk(A) if 
the end-points of A are continuity points of pjk. This completes the proof of 
Theorem 4. 

For Cases I and II we showed that G s —> G as ô —> (a, b) (5 = [a, b] —> [a, b) in 
Case II), and from Theorem 4 it is obvious that the corresponding spectral 
matrices p$ = (psjk) satisfy p«(A) —» p(A), if the end-points of A are continuity 
points of p. Further relation (4.1) holds. 

THEOREM 5. In Case I or II there exists an hermitian, non-decreasing matrix 
P — (pjk) whose elements are of bounded variation on every finite \-interval, and 
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which is essentially unique, in the sense that if A = (/*, X] is a finite interval whose 
end-points are continuity points for pjk then 

Pôjic(à) —> p#(A) (<5 —> (a, b) in Case I, 
ô —> [a, &) in Case II) . 

Further 

P#(A) = ---: lim P^(<r + it) da, 

awd G w Green's function for Case I or Case II. 

In Case I or II we call p the spectral matrix. If p is any limit matrix given by 
Theorem 4 there always exists a Parseval equality and expansion theorem valid 
for functions u Ç £2(a, 6). The proof given by Levinson (4) can be carried over 
to this case; cf. also Levitan (7). Let <j> = (<j>i, . . . , 0W), \p = (\f/i, . . . , \pn) be 
vector functions of X, and introduce the inner product 

«'-oo * ,**=! - o o .?',£= 

Since p is non-decreasing, (<f>, </>) ^ 0 and we can define a norm || ||* by 
11*11* = (0, «)*. Let £* be the Hilbert space of all <j> such that ||0||* < oo. 

THEOREM 6. Let p be any limit matrix given by Theorem 4. If u£ 22(a,b) the 
vector <j> = ((f) j) where 

<t>jW = I Sj(x, X) u(x) dx, 
*) a 

converges in norm in §*, and 

H l̂l = ||w|| (Parseval equality)-

In terms of this 0, 
/»co n 

u(x) — I S ^(x , X) <fo(X) dpjk(\) (Expansion theorem) 
J - c o ^,*=1 

w^ere /&e integral converges in norm in %2(a, b). 

The convergence of <j> in norm in §* is meant in the sense that the vector 
</>a = (<l>8j), where 

4>ijW — I s^(x, X) u(x) dx, 

converges strongly in §* to <t> when ô —> (a, 5). Similarly the expansion theorem 
is meant in the sense that 

x X) s,(x, X) </>*(X) dp#(X) 

converges strongly in ?2(a, b) to w as A —» (— oo, oo). 
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