Contents

	Prefe	ice		<i>page</i> xiii	
1	Intro	duction		1	
	1.1	Petrole	eum Recovery	3	
	1.2	6			
	1.3 Outline of the Book				
	1.4	The Fi	rst Encounter with MRST	14	
	Part	I Geo	logical Models and Grids	19	
2	Mod	eling Re	servoir Rocks	21	
	2.1	Forma	tion of Sedimentary Rocks	21	
	2.2	Creation of Crude Oil and Natural Gas			
	2.3	Multis	cale Modeling of Permeable Rocks	28	
		2.3.1	Geological Characterization	29	
		2.3.2	Representative Elementary Volumes	31	
		2.3.3	Microscopic Models: The Pore Scale	33	
		2.3.4	Mesoscopic Models	34	
	2.4	Model	ing Rock Properties	34	
		2.4.1	Porosity	35	
		2.4.2	Permeability	36	
		2.4.3	Other Parameters	38	
	2.5	Proper	ty Modeling in MRST	39	
		2.5.1	Homogeneous Models	40	
		2.5.2	Random and Lognormal Models	40	
		2.5.3	The 10th SPE Comparative Solution Project: Model 2	41	
		2.5.4	The Johansen Formation	44	
		2.5.5	SAIGUP: Shallow-Marine Reservoirs	46	
3	Grids in Subsurface Modeling			55	
	3.1 Structured Grids				
	3.2 Unstructured Grids			62	

v

Connerius

		3.2.1	Delaunay Tessellation	63
		3.2.2	Voronoi Diagrams	66
		3.2.3	General Tessellations	68
		3.2.4	Using an External Mesh Generator	69
	3.3	Stratig	graphic Grids	72
		3.3.1	Corner-Point Grids	73
		3.3.2	2.5D Unstructured Grids	85
	3.4	Grid S	tructure in MRST	88
	3.5	Examp	ples of More Complex Grids	96
		3.5.1	SAIGUP: Model of a Shallow-Marine Reservoir	97
		3.5.2	Composite Grids	101
		3.5.3	Control-Point and Boundary Conformal Grids	103
		3.5.4	Multiblock Grids	104
	Part	II Sin	gle-Phase Flow	111
4	Math	nematical	l Models for Single-Phase Flow	113
	4.1	Funda	mental Concept: Darcy's Law	113
	4.2	Genera	al Flow Equations for Single-Phase Flow	115
	4.3	Auxili	ary Conditions and Equations	120
		4.3.1	Boundary and Initial Conditions	120
		4.3.2	Injection and Production Wells	121
		4.3.3	Field Lines and Time-of-Flight	128
		4.3.4	Tracers and Volume Partitions	129
	4.4	4 Basic Finite-Volume Discretizations		131
		4.4.1	Two-Point Flux-Approximation	131
		4.4.2	Discrete div and grad Operators	135
		4.4.3	Time-of-Flight and Tracer	141
5	Inco	143		
	5.1	Basic	Data Structures in a Simulation Model	144
		5.1.1	Fluid Properties	144
		5.1.2	Reservoir States	145
		5.1.3	Fluid Sources	145
		5.1.4	Boundary Conditions	146
		5.1.5	Wells	147
	5.2	Incompressible Two-Point Pressure Solver		149
	5.3	Upwind Solver for Time-of-Flight and Tracer		153
	5.4	Simula	156	
		5.4.1	Quarter Five-Spot	157
		5.4.2	Boundary Conditions	160
		5.4.3	Structured versus Unstructured Stencils	165
		5.4.4	Using Peaceman Well Models	169

vi

			Contents	vii
6	Cons	sistent Di	iscretizations on Polyhedral Grids	174
	6.1	The T	PFA Method Is Not Consistent	174
	6.2	The M	lixed Finite-Element Method	177
		6.2.1	Continuous Formulation	178
		6.2.2	Discrete Formulation	180
		6.2.3	Hybrid Formulation	182
	6.3	Finite-	Volume Methods on Mixed Hybrid Form	185
	6.4	The M	limetic Method	188
	6.5	Monot	tonicity	197
	6.6	Discus	ssion	199
7	Com	Compressible Flow and Rapid Prototyping		
	7.1	Implic	tit Discretization	202
	7.2	A Sim	ulator Based on Automatic Differentiation	204
		7.2.1	Model Setup and Initial State	205
		7.2.2	Discrete Operators and Equations	206
		7.2.3	Well Model	208
		7.2.4	The Simulation Loop	209
	7.3	Pressu	re-Dependent Viscosity	213
	7.4	Non-N	Jewtonian Fluid	215
	7.5	Therm	al Effects	220
	Part	III M	ultiphase Flow	229
8	Mathematical Models for Multiphase Flow			231
	8.1	New P	Physical Properties and Phenomena	232
		8.1.1	Saturation	232
		8.1.2	Wettability	234
		8.1.3	Capillary Pressure	235
		8.1.4	Relative Permeability	239
	8.2	Flow H	Equations for Multiphase Flow	243
		8.2.1	Single-Component Phases	244
		8.2.2	Multicomponent Phases	245
		8.2.3	Black-Oil Models	246
	8.3	Model	Reformulations for Immiscible Two-Phase Flow	248
		8.3.1	Pressure Formulation	248
		8.3.2	Fractional-Flow Formulation in Phase Pressure	249
		8.3.3	Fractional-Flow Formulation in Global Pressure	254
		8.3.4	Fractional-Flow Formulation in Phase Potential	255
		8.3.5	Richards' Equation	256
	8.4	The B	uckley–Leverett Theory of 1D Displacements	258
		8.4.1	Horizontal Displacement	258
		8.4.2	Gravity Segregation	264
		8.4.3	Front Tracking: Semi-Analytical Solutions	266

viii		Contents	
9	Discr	retizing Hyperbolic Transport Equations	272
	9.1	A New Solution Concept: Entropy-Weak Solutions	272
	9.2	Conservative Finite-Volume Methods	274
	9.3	Centered versus Upwind Schemes	275
		9.3.1 Centered Schemes	275
		9.3.2 Upwind or Godunov Schemes	277
		9.3.3 Comparison of Centered and Upwind Schemes	279
		9.3.4 Implicit Schemes	283
	9.4	Discretization on Unstructured Polyhedral Grids	286
10	Solve	ers for Incompressible Immiscible Flow	289
	10.1	Fluid Objects for Multiphase Flow	290
	10.2	Sequential Solution Procedures	292
		10.2.1 Pressure Solvers	293
		10.2.2 Saturation Solvers	294
	10.3	Simulation Examples	297
		10.3.1 Buckley–Leverett Displacement	298
		10.3.2 Inverted Gravity Column	301
		10.3.3 Homogeneous Quarter Five-Spot	303
		10.3.4 Heterogeneous Quarter Five-Spot: Viscous Fingering	307
		10.3.5 Buoyant Migration of CO ₂ in a Sloping Sandbox	311
		10.3.6 Water Coning and Gravity Override	313
		10.3.7 The Effect of Capillary Forces – Capillary Fringe	319
		10.3.8 Norne: Simplified Simulation of a Real-Field Model	323
	10.4	Numerical Errors	326
		10.4.1 Splitting Errors	326
		10.4.2 Grid Orientation Errors	330
11	Com	pressible Multiphase Flow	337
	11.1	Industry-Standard Simulation	337
	11.2	Two-Phase Flow without Mass Transfer	342
	11.3	Three-Phase Relative Permeabilities	348
		11.3.1 Relative Permeability Models from ECLIPSE 100	349
		11.3.2 Evaluating Relative Permeabilities in MRST	353
		11.3.3 The SPE 1, SPE 3, and SPE 9 Benchmark Cases	355
		11.3.4 A Simple Three-Phase Simulator	358
	11.4	PVT Behavior of Petroleum Fluids	359
		11.4.1 Phase Diagrams	360
		11.4.2 Reservoir Types and Their Phase Behavior during Recovery	364
		11.4.3 PVT and Fluid Properties in Black-Oil Models	370
	11.5	Phase Behavior in ECLIPSE Input Decks	379
	11.6	The Black-Oil Equations	388

			Contents	ix
		11.6.1	The Water Component	389
		11.6.2	The Oil Component	390
		11.6.3	The Gas Component	392
		11.6.4	Appearance and Disappearance of Phases	392
	11.7	Well M	odels	394
		11.7.1	Inflow-Performance Relationships	394
		11.7.2	Multisegment Wells	395
	11.8	Black-O	Dil Simulation with MRST	399
		11.8.1	Simulating the SPE 1 Benchmark Case	399
		11.8.2	Comparison against a Commercial Simulator	405
		11.8.3	Limitations and Potential Pitfalls	406
12	The AD-OO Framework for Reservoir Simulation			413
	12.1	Overvie	ew of the Simulator Framework	414
	12.2	Model 1	Hierarchy	420
		12.2.1	PhysicalModel – Generic Physical Models	422
		12.2.2	ReservoirModel – Basic Reservoir Models	426
		12.2.3	Black-Oil Models	430
		12.2.4	Models of Wells and Production Facilities	433
	12.3	Solving	the Discrete Model Equations	434
		12.3.1	Assembly of Linearized Systems	434
		12.3.2	Nonlinear Solvers	436
		12.3.3	Selection of Time-Steps	439
		12.3.4	Linear Solvers	440
	12.4	Simulat	tion Examples	449
		12.4.1	Depletion of a Closed/Open Compartment	449
		12.4.2	An Undersaturated Sector Model	451
		12.4.3	SPE 1 Instrumented with Inflow Valves	455
		12.4.4	The SPE 9 Benchmark Case	460
	12.5	Improv	ing Convergence and Reducing Runtime	470
	Part	IV Res	servoir Engineering Workflows	475
13	Flow Diagnostics			
	13.1	Flow Pa	atterns and Volumetric Connections	478
		13.1.1	Volumetric Partitions	479
		13.1.2	Time-of-Flight Per Partition Region: Improved Accuracy	482
		13.1.3	Well Allocation Factors	482
	13.2	Measur	es of Dynamic Heterogeneity	483
		13.2.1	Flow and Storage Capacity	483
		13.2.2	Lorenz Coefficient and Sweep Efficiency	486
	13.3	Resider	nce-Time Distributions	489
	13.4	Case St	udies	495

		13.4.1	Tarbert Formation: Volumetric Connections	495
		13.4.2	Heterogeneity and Optimized Well Placement	501
	13.5	Interact	tive Flow Diagnostics Tools	505
		13.5.1	Synthetic 2D Example: Improving Areal Sweep	510
		13.5.2	SAIGUP: Flow Patterns and Volumetric Connections	514
14	Grid	Coarseni	ng	518
	14.1	Grid Pa	artitions	518
		14.1.1	Uniform Partitions	519
		14.1.2	Connected Partitions	520
		14.1.3	Composite Partitions	522
	14.2	Coarse	Grid Representation in MRST	524
		14.2.1	Subdivision of Coarse Faces	526
	14.3	Partitio	ning Stratigraphic Grids	529
		14.3.1	The Johansen Aquifer	529
		14.3.2	The SAIGUP Model	532
		14.3.3	Near Well Refinement for CaseB4	536
	14.4	More A	Advanced Coarsening Methods	540
	14.5	A Gene	eral Framework for Agglomerating Cells	541
		14.5.1	Creating Initial Partitions	541
		14.5.2	Connectivity Checks and Repair Algorithms	542
		14.5.3	Indicator Functions	544
		14.5.4	Merge Blocks	545
		14.5.5	Refine Blocks	547
		14.5.6	Examples	550
	14.6	Multile	vel Hierarchical Coarsening	553
	14.7	Genera	l Advice and Simple Guidelines	556
15	Upsca	aling Pet	rophysical Properties	558
	15.1	Upscali	ing for Reservoir Simulation	559
	15.2	Upscali	ing Additive Properties	561
	15.3	Upscali	ing Absolute Permeability	563
		15.3.1	Averaging Methods	564
		15.3.2	Flow-Based Upscaling	569
	15.4	Upscaling Transmissibility		575
	15.5	Global and Local–Global Upscaling		578
	15.6	Upscali	ing Examples	580
		15.6.1	Flow Diagnostics Quality Measure	581
		15.6.2	A Model with Two Facies	581
		15.6.3	SPE 10 with Six Wells	585
		15.6.4	Complete Workflow Example	589
		15.6.5	General Advice and Simple Guidelines	595

Contents

	Contents			
Appendix	The	MATLAB Reservoir Simulation Toolbox	597	
A.1	Getting	g Started with the Software	598	
	A.1.1	Core Functionality and Add-on Modules	598	
	A.1.2	Downloading and Installing	601	
	A.1.3	Exploring Functionality and Getting Help	602	
	A.1.4	Release Policy and Version Numbers	606	
	A.1.5	Software Requirements and Backward Compatibility	606	
	A.1.6	Terms of Usage	608	
A.2	Public Data Sets and Test Cases		609	
A.3	More About Modules and Advanced Functionality		610	
	A.3.1	Operating the Module System	611	
	A.3.2	What Characterizes a Module?	612	
	A.3.3	List of Modules	613	
A.4	Rapid Prototyping Using MATLAB and MRST		620	
A.5	Autom	atic Differentiation in MRST	623	
Refer	References			
Index	Index			
Usage	Usage of MRST Functions			