
JFP 31, e2, 42 pages, 2021. c© The Author(s), 2021. Published by Cambridge University Press 1
doi:10.1017/S0956796820000271

Not by equations alone: Reasoning with
extensible effects

O L E G K I S E L Y O V
Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan

(e-mail: oleg@okmij.org)

S H I N - C H E N G M U
Institute of Information Science, Academia Sinica, Taipei, Taiwan

(e-mail: scm@iis.sinica.edu.tw)

A M R S A B R Y
Department of Computer Science, Indiana University, Bloomington, IN, USA

(e-mail: sabry@indiana.edu)

Abstract

The challenge of reasoning about programs with (multiple) effects such as mutation, jumps, or IO
dates back to the inception of program semantics in the works of Strachey and Landin. Using monads
to represent individual effects and the associated equational laws to reason about them proved excep-
tionally effective. Even then it is not always clear what laws are to be associated with a monad—for a
good reason, as we show for non-determinism. Combining expressions using different effects brings
challenges not just for monads, which do not compose, but also for equational reasoning: the inter-
action of effects may invalidate their individual laws, as well as induce emerging properties that are
not apparent in the semantics of individual effects. Overall, the problems are judging the adequacy
of a law; determining if or when a law continues to hold upon addition of new effects; and obtaining
and easily verifying emergent laws.

We present a solution relying on the framework of (algebraic, extensible) effects, which already
proved itself for writing programs with multiple effects. Equipped with a fairly conventional deno-
tational semantics, this framework turns useful, as we demonstrate, also for reasoning about and
optimizing programs with multiple interacting effects. Unlike the conventional approach, equational
laws are not imposed on programs/effect handlers, but induced from them: our starting point hence
is a program (model), whose denotational semantics, besides being used directly, suggests and jus-
tifies equational laws and clarifies side conditions. The main technical result is the introduction of
the notion of equivalence modulo handlers (“modulo observation”) or a particular combination of
handlers—and proving it to be a congruence. It is hence usable for reasoning in any context, not just
evaluation contexts—provided particular conditions are met.

Concretely, we describe several realistic handlers for non-determinism and elucidate their laws
(some of which hold in the presence of any other effect). We demonstrate appropriate equational
laws of non-determinism in the presence of global state, which have been a challenge to state and
prove before.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271
https://orcid.org/0000-0002-2570-2186
mailto:oleg@okmij.org
https://orcid.org/0000-0002-4755-601X
mailto:scm@iis.sinica.edu.tw
https://orcid.org/0000-0002-1025-7331
mailto:sabry@indiana.edu
https://doi.org/10.1017/S0956796820000271

2 O. Kiselyov et al.

1 Introduction

Although the algebraic approach to effects was proposed back in 2003 (Plotkin & Power,
2003)—and the denotational one about a quarter century ago (Cartwright & Felleisen,
1994)—only recently it has entered the mainstream. There are implementations of
algebraic/extensible effects in almost every popular language, from C and JavaScript to
OCaml, Scala, Haskell, and Idris. There are full-fledged languages built around effects,
such as PureScript, Koka, Eff, Links, Fran(k), and Multicore OCaml. Algebraic/extensible
effects are being increasingly used in industry. At long last it is becoming clear that
algebraic/extensible effects deliver what monad transformers have struggled (Kiselyov
et al., 2013) to do: combine, in the same program, independently developed effectful
components.

In many presentations on the topic of effects, one sort of question comes over and
over again. Granting that algebraic/extensible effects may be useful in practice, how to
reason about them? For example, what sort of equational laws—program transformations/
optimizations— may be expected to hold? Our first motivation is therefore to understand
how do the laws established for one effect change when another effect is added.

1.1 Equational reasoning for effectful functional programs: A critical view

The second motivation for the present paper is dissatisfaction with the current state of
equational reasoning in functional programming with effects. To emphasize, there is no
denying of the deserving popularity of equational reasoning and its many successes. It is
enough to point out the exemplary (Gibbons & Hinze, 2011) for both points. Equational
reasoning seems like the only game in town as far as monadic programming is con-
cerned. Furthermore, the approach of algebraic effects (Plotkin & Power, 2003; Plotkin
& Pretnar, 2009; Pretnar, 2010) is also motivated by and based on equational reasoning.
The semantics of the effect operations is specified through an algebra: the handler deals
with an implementation that satisfies the algebraic identities and the requester relies on
such identities to reason about the client-side code.

Yet one cannot evade the questions:

1. Where do the equations—equalities on terms containing effectful operations—
come from? When one defines a new effect, as often recommended1, how does
one find out which equations it satisfies, or ought to?

2. Most of the time the equations are given a priori, as a specification of an effectful
operation. How does one then verify, with as little hand waving as possible, that a
particular implementation (program) satisfies them?

3. In fact, how does one ensure that a set of equalities, taken as a specification, is
implementable? Is there a nontrivial model of the desired equational theory? This is
not an idle concern: we have seen first-hand postulating so many equations to make
the reasoning come through that the only model is trivial.

4. Even if the equational theory turns out to have a model, how practical is it?
A rich equational theory does little good if it exerts unrealistic demands on its
implementations. This turns out to be the case for non-determinism, as we discuss
below.

1 For example, in the tutorial http://okmij.org/ftp/Haskell/extensible/tutorial.html

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

http://okmij.org/ftp/Haskell/extensible/tutorial.html
https://doi.org/10.1017/S0956796820000271

Not by equations alone 3

5. How to realistically combine equational theories for several effects? Although there
exist theoretical approaches (Plotkin & Power, 2003; Hyland et al., 2006) how use-
ful are they in practice? That is, how to avoid ending up with an excessively weak,
and hence, useless combined theory?

1.2 Contributions

To emphasize, we do not reject equational reasoning. On the contrary, we want more equa-
tional laws—but worry about their adequacy. Therefore, we do not postulate laws and do
not take them as a specification for writing handlers, which may turn out useless. We start
with already proven useful handler implementations and ask what equations/properties
they provide/assure, what laws can be distilled from them. Thus, to us, the equational laws
come a posteriori rather than a priori—reminding one of ‘definability in a model’ in model
theory.

One can see the close parallel with Dijkstra’s and Harel-Pratt’s dueling approaches to
program correctness – the argument pursued in the late 1970s and early 1980s. Dijkstra
advocated a priori correctness: start from a specification, formulated around the notion of
a weakest precondition, and design the program that meets it. Harel and Pratt argued for, as
they put it, “a much healthier ‘bottom up approach”’. Their argument (cited from Armoni
& Ben-Ari (2009, §7.1)) strongly resonates with us:

“[F]irst defining the semantics objects (states and binary relations), and only then
introducing the logical language and assigning meaning. . . . At this point the truth of the
formulae of the logical language has already been determined (and in a plausible way!),

and the ‘axioms’ of Dijkstra’s definition can then be verified as mere theorems.”
Harel & Pratt (1978, p. 210)

We aspire to pursue the same approach, but for arbitrary algebraic effects. Our
contributions are twofold.

Theoretically, we introduce the notion of equational laws (term congruences) modulo a
particular handler or a combination of handlers. Such equivalence modulo (handler, obser-
vation) is often invoked, informally (e.g., Hinze (2000), Fischer et al. (2011)). To be useful,
e.g., to optimize within function bodies, it has to be a congruence, applicable within arbi-
trary contexts. That fact is difficult to prove, partly because it is generally not true. It
becomes true only under certain conditions. We state these conditions and demonstrate the
congruence.

Practically, we show which equational laws hold for frequently used handlers for non-
determinism (the List Monad, the Maybe Monad, the “once” observation, the general
depth-first search strategy handler), and determine if these laws continue to hold (uncon-
ditionally or under some conditions) when other effects, or just State, are added. In the
case non-determinism is combined with global state, we demonstrate why some “obvious”
(even to us, at some point) equivalences do not in fact hold, and nonobvious equivalences
that do (Lemma 12 and 13). In the Appendix, we show how to concretely use the derived
laws to reason about and optimize interesting programs with multiple effects.

Coming back to questions in §1.1, we answer Q1 and Q2 by computing denotations
of handlers and finding expressions whose denotations, in arbitrary evaluation contexts,

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

4 O. Kiselyov et al.

become equal when composed with the handler denotation. The other questions do not
even come up: we start with the handlers or a particular combination of them. Therefore,
we already have a practically useful model of the laws.

1.3 Paper structure

The next section tells the whole story, but on an exasperatingly simple example. It explains
the main theoretical contribution of the equivalence modulo handlers, and shows the easy-
to-understand proof that it is really an equivalence. One could potentially stop reading at
that point. Presumably, however, one is interested if this notion can be applied to realistic
and interesting examples—which is the topic of the rest of the paper.

We start §3 with a model of a realistic programming language— higher order calculus
with arbitrary effect operations and arbitrary ways of handling them—and describe its type
system and a fairly conventional denotational semantics. §3.4 introduces equational laws
that are valid for any interpretation of effects; §3.5 shows an example of such “free” laws
for non-determinism.

The central §4 introduces the notion of equivalence modulo handler, and proves, under
some conditions, that it is context compatible and is hence a congruence. The following
§5 gives an example, the familiar Get-Put laws of state, but in a more general form—
which hold only modulo (the commonly used) state effect handler. The Appendix shows
the proof, and also the practical use to justify an implementation of a scanl list operation
as a state-mutating foldr.

Handlers for non-determinism are introduced in §6. We clearly see which handlers
validate which of the commonly considered so-called semi-lattice laws (idempotence,
commutativity, and associativity), and what is the price to pay for supporting all of the
semi-lattice laws. One of the surprising results is the proof that a handler that always picks
the first choice satisfies (Idem) and (Assoc) (but not (Comm))—in the presence of any other
effect.

Finally, §7 combines non-determinism and state, which can be done in two ways. §7.1
explores the laws that arise from one combination, so-called “local state”. §7.2 describes
the challenges and successes of reasoning with non-determinism and global state.

The Appendix gives detailed derivations and practical examples, taken from the project
of deriving efficient n-queens solvers.

As an overarching notational convention, we use sans-serif—as in let x=get in x+ 1
and foldl (�x.�y.x+ y) 0—to talk about programs/terms; we use the symbol ≡ (possi-
bly adorned with subscripts) to talk about term equivalences, as defined in §3 and §4.
Term denotations are written in the mathematical font— e.g., E(Get, �, λx. V(x+ 1)) and
foldl (λxy. x+ y) 0—with the ordinary (mathematical) = to equate denotations.

The present paper is of theoretical nature, and our calculus of algebraic effects and
handlers was developed as an abstraction of real implementations for ease of reasoning.
Yet we have implemented the calculus itself, by embedding it into OCaml in the tagless-
final style. The code is available at http://okmij.org/ftp/Computation/
eff-calculus.ml. We have used the implementation to run all the examples in the paper;
the equational laws discussed in the paper are not only proven but also tested.

We assume a small familiarity with the denotational semantics, at least at the level of
Winskel (1993).

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

http://okmij.org/ftp/Computation/eff-calculus.ml
http://okmij.org/ftp/Computation/eff-calculus.ml
https://doi.org/10.1017/S0956796820000271

Not by equations alone 5

2 Preview

This section introduces all the ideas and tells the whole story, but on an exceedingly simple
example. The rest of the paper re-tells the story in a quite more complicated way—but also
with quite more interesting and realistic examples.

2.1 Handling variables

To show the intuition for our approach we use an analogy between variables and effect
operations.2

Let us consider the trivial calculus with integer constants i ∈N, variables x ∈V and
addition. A naïve semantics that maps terms to N has the obvious trouble with open terms
like x + 1: a variable has no definite mapping to an integer.

The common solution to deal with variables is to generalize the semantics so that
terms denote maps from an environment to N. The environment (denoted ρ) is a variable
assignment, giving a meaning to each variable:

[[i]]env = λρ. i
[[x]]env = λρ. ρ(x)

[[e1 + e2]]env = λρ. [[e1]]env ρ + [[e2]]env ρ

This approach has become standard for a reason. One should however beware of its
hardwired assumption that the meaning of a variable depends solely on its name. Such
semantics therefore becomes inadequate if we want to use the calculus to model a (mod-
ern) computational system where accessing variables may take drastically different amount
of time which we want to account for, may fail, or depend on access history or external
factors. An alternative—general and compositional—approach has been developed in the
Vienna school and culminated in the work of Cartwright & Felleisen (1994). The key
idea is to disentangle the action of asking for the value of a variable from the action of
answering with the value. The denotation of a variable simply asks the question and this
question propagates until it encounters an appropriate handler. The handler, being an inde-
pendent entity, may use other parameters (elapsed time, internal counters, etc.) to respond
appropriately.

Formally, we use a more sophisticated semantic domain that can represent simple values
(natural numbers) as well as collections of questions and answers. Such a domain, call it D,
is the set of well-founded infinitely branching trees of finite height. It can be concretely
defined by the following (OCaml) inductive data type declaration

type d = V of int | E of var * (int → d),

(where var is the type of variable names V), or, mathematically, as the minimal3 solution
to the following domain equation

D=N+ (V×DN).

2 This is not a mere simile: it can be traced to Reynolds’ Idealized Algol (Reynolds, 1981) and explored in more
detail by Kiselyov (2017).

3 In the sense of possessing the minimal invariant property (Pitts, 1996).

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

6 O. Kiselyov et al.

The pair V×DN is a question, about the meaning of the variable given in the first com-
ponent of the pair. The second component is a specification of what to do with the
answer (we see an example shortly). Unlike the domain equation, the data type decla-
ration explicitly spells out the constructors V and E, which can be used to construct the
tree d and deconstruct/pattern-match on it. Analogously, we will be using V and E to denote
inclusions/retracts into/from the two disjoint union components of the domain D.

Using this more sophisticated domain of denotations, the denotational semantics
is then

[[i]]= V(i), (1)

[[x]]= E(x, λv. V(v)), (2)

[[e1 + e2]]= (λv1. (λv2. V(v1 + v2))† [[e2]])† [[e1]] . (3)

It maps integer literals to N, and variables to questions about their value as a natural num-
ber. When this natural number is provided, it is injected in the domain of answers. In
Eq. (3), the left subexpression gets to ask questions first. The notation f † means lifting of
a map f : N→D to D→D. It is inductively defined by the following two cases:

f † V(n)= fn,

f † E(x, k)= E(x, f † ◦ k).

In other words, if the argument is a proper value, f applies to it. If the argument is a
question, it is propagated upwards applying f again once the answer is received. All in all,
Eqs. (1)–(3) map a term to a question-answer tree with integer leaves, which specifies the
meaning of the term for each possible answer about the meaning of its variables.

Although we have not yet described how to answer, or handle, questions, we can
already use the semantics to verify that x+ 1 may always be replaced with 1+ x preserving
meaning, in symbols:

x + 1≡ 1 + x. (4)

Indeed, the denotations of both sides are equal:

[[x+ 1]] = E(x, (λv. V(v+ 1))) = E(x, (λv. V(1+ v))) = [[1+ x]] .

The middle equality holds because the domain-theoretic addition is commutative. We have
thus validated an equational law, which holds for any question-answering strategy, i.e., for
any handler.

The semantics can be used to verify many more such “free identities”:

e+ i≡ i+ e,

(e1 + e2)+ e3 ≡ e1+ (e2+ e3),
(5)

for any integer i and expressions e, e1, etc. This gives a hint about our answer to Question 1
in §1.1, about a way to derive algebraic identities. We start with a model, and choose
identities that reflect its salient features.

Interestingly, the semantics so far does not validate an equation like:

x1+ x2 ≡ x2+ x1 (6)

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 7

because it is not “free”: it does not hold universally. For example, it is violated by a handler
that maintains a global counter of the received questions, adding the counter to the answer.
Our most important contribution is that we show how to reason about equations modulo
particular handlers. For example, given a handler that always provides the same value to
each variable, (6) holds. We may even show that for such handler, the general semantics
coincides with [[−]]env .

Indeed, the environment semantics is a particular case of the tree semantics (1)-(3):

[[e]]env ρ = � ρ [[e]] ,

where �, to be called the handler, is inductively defined by the two cases:

� ρ V(n)= n,

� ρ E(x, k)= ((� ρ) ◦ k) ρ(x).

In other words, the handler takes a question-answer tree and a variable assignment ρ and
uses the latter to answer all the questions in the former. The question-answering strategy
provided by � (and hence, by the environment semantics) can verify the identity (6). We
show the proof method next.

This is the taste of things to come: throughout the paper, we will be encountering two
sorts of semantics. One is the question-answer tree semantics like [[−]] that presupposes no
question-answering strategy. We often call such semantics “free”; the identities (equational
laws) it verifies are to be called “free” as well. The other semantics, such as [[−]]env , rely
on a particular question-answering strategy, and hence can verify more identities.

2.2 Induction principle

Let us look again at the domain D, which was inductively defined as D=N+ (V×DN).
It is the domain of trees of finite height (but with ω branching factor). Therefore, it lets
us prove properties and define functions and relations, by the familiar structural/height
induction.

For example, we can prove that (λx. V(x))† = λy. y, which is the analogue of the right
unit monad law (see also Lemma 1). Indeed, in the base case, (λx. V(x))†V(v)= V(v). The
inductive case (λx. V(x))†E(x, k) is also the straightforward application of the induction
hypothesis (λx. V(x))† ◦ k = k.

A more interesting (and related to the central contribution) example is the inductive
construction of the following relation ≈ on semantic domains and maps between the
domains.

n ∈N
n≈ n

∀i∈N. k1 i≈ k2 i

E(x, k1)≈ E(x, k2)

v1 ≈ v2

V(v1)≈ V(v2)

∀i∈N. k1 i≈ k2 i

E(x1, λx. E(x2, λy. k1 (x+ y)))≈ E(x2, λx. E(x1, λy. k2 (x+ y)))

∀x1x2∈X . x1 ≈ x2 implies f1x1 ≈ f2x2
f1, f2 ∈ Y X .

f1 ≈ f2

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

8 O. Kiselyov et al.

Here, x1 and x2 are distinguished variable names. The relation ≈ is clearly symmet-
ric and transitive, but not reflexive on all domains and maps. For example, if a map
f : DD could distinguish E(x1, λx. E(x2, λy. V(x+ y))) from E(x2, λx. E(x1, λy. V(x+ y)))
then f 	≈ f . One can easily prove that if two trees d1, d2 ∈D are such that d1 ≈ d2, their
heights are the same.

The height induction on D lets us prove that if f1, f2 ∈DN such that f1 ≈ f2 then f †
1 ≈ f †

2 .
In other words, for all d1, d2 ∈D such that d1 ≈ d2, f †

1 d1 ≈ f †
2 d2. In the base case of height

zero, d1 = V(v1). It must then be d2 = V(v2) where v1 ≈ v2, and the conclusion immediately
follows from the premise. In the inductive case, suppose f †

1 d′1 ≈ f †
2 d′2. for all related d′1, d′2

of height less than some m. Let d1 be E(x, k1) of height m. There are two cases to consider.
In the general case, the related d2 is also of the form E(x, k2), and for all i ∈N, k1 i≈ k2 i.
The trees k1 i and k2 i are of height at most m− 1. The induction hypothesis applies and
gives f †

1 (k1 i)≈ f †
2 (k2 i). The conclusion immediately follows from the definition of lifting

and ≈. In the special case of d1 = E(x1, λx. E(x2, λy. k1 (x+ y))) the related d2 may also
be of the form d2 = E(x2, λx. E(x1, λy. k2 (x+ y))). Then f †

1 d1 = E(x1, λx. E(x2, λy. f †
1 (k1

(x+ y)))) and similarly for f †
2 d2. Again, the induction hypothesis applies and the conclu-

sion follows.
The just proven property and (3) shows that if [[e1]] ≈ [[e’1]] and [[e2]] ≈ [[e’2]] then

[[e1 + e2]] ≈ [[e’1 + e’2]]. Let us write e ≡h e’ just in case [[e]] ≈ [[e’]]. What we have
proven is that ≡h is context-compatible. Then the fact that ≈ is an equivalence relation on
D gives us that ≡h is a congruence. Such result manifests the central contribution of the
paper: equivalence modulo handler is a congruence (in the just considered case, uncondi-
tionally). Therefore, if there is a handler � that does not distinguish x1 + x2 from x2 + x1,
then we may replace the former expression with the later in any context without affecting
the program result, provided the program is handled by �.

3 Basic calculus with effects

We now extend the toy calculus of §2 to a model of a realistic, higher order program-
ming language supporting arbitrary effects, beyond the “get the value of a variable”. The
full calculus is inspired and greatly influenced by Eff 3.1 and its formalizations (Bauer &
Pretnar, 2015; Bauer & Pretnar, 2014), with many big and small differences noted in §8.
The next section presents the syntax; §3.2 the type system, §3.3 the denotational seman-
tics, §3.4 examples of equational reasoning, and §3.5 reasoning about an example effect:
non-determinism. The calculus is designed to model typical programs written in Haskell,
Scala, Multicore OCaml, etc., using one of many algebraic effect libraries.

The salient feature is the separation of effectful and pure operations. For example, in
many programming languages, total function applications such as odd 42, and invoca-
tions of procedures on potentially effectful expressions like print x[1] look the same, as
juxtapositions. We distinguish them syntactically: the effectful application is denoted as �.

The calculus is bare, with just a dash of syntax sugar. We tried to strike the balance
between minimality (so it is easy to reason about) and convenience (so one can easily
write—and read—interesting programs in it).

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 9

Variables x,y,z,u,k,l. . .
Constants c ::= (), true, false, 0, 1, . . . + , −, [], . . .
Effects o, to be defined as needed
Types t,u,a,b ::= unit | int | bool | t list | t → t | t ⇒ t | t ↪→ t

Values v ::= x | c | �x.v | rec f x. e | v v | op o

Expressions (Computations) e ::= val v | e � e | if e then e else e
| handle e with {val x → e � o x k → e . . . }

Evaluation Contexts C ::= [] | C � e | val v � C | if C then e else e
| handle C with {val x → e � o x k → e . . . }

Syntax sugar

fn x.e := rec f x.e (f not free in e)
let x = e1 in e2 := val (fn x. e2) � e1

v � e := val (fn x. val (v x)) � e
e1; e2 := let x = e1 in e2 (x not free in e2)
fn (). e := fn (x:unit). e (x not free in e)

Fig. 1. The Basic Eff.

3.1 Syntax

Figure 1 presents the basic calculus: specific effects are added later, by specifying the
inhabitants of the sort o, of effect constants; see §3.5 for an example. The rest of this
section explains the figure line by line. The calculus is simply typed.

The characteristic of the calculus is a thorough separation of computations that may have
an effect or diverge, from non-divergent, non-effectful—so-called “pure”—computations.
The separation is evident already in types: t1→t2 is the type of pure functions, whose
applications always terminate with no effect. In contrast, t1⇒t2 is the type of general,
effectful functions. The other types are basic (such as unit and integer), and data types
such as list types.

The separation is also clear in the syntax of expressions and computations. Pure com-
putations are represented by value terms v: variable references, built-in constants such as
integer and boolean literals and addition, applications v1 v2 and pure abstractions �x.v.
The latter represent effect-free, total functions. Values of the type t1⇒t2 are created
by general abstractions and effect operations. The former, rec f x. e, represent (poten-
tially) recursive and effectful functions; op o creates a function that does the effect o
(we delay the description of effects and their types u↪→t till §3.2).4 A frequent particu-
lar case of rec f x.e is of f not occurring free in e. We adopt an abbreviation fn x.e for such
non-recursive, but still potentially effectful, functions.

Expression terms e describe general, potentially effectful and non-terminating computa-
tions. A value v may be promoted to the (trivial) computation as val v. This promotion is
ubiquitous, and easy to see from the context. Therefore, as a rule we shall elide val, except

4 Like effect libraries in Haskell and other languages—and unlike Eff—we do not specifically distinguish effect
instances: i.e., distinct and independently handled realizations of the same effect, created at runtime.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

10 O. Kiselyov et al.

for emphasis. The conditional expressions are standard; the effect-handling form handle is
described in §3.3.

Befitting the separation of pure and effectful computations, there are two sorts of func-
tional applications, both left-associative. First is the pure application of values v1 v2

mentioned earlier. It is guaranteed by the type system to be effect-free and terminating.
Next is the general application of expressions e1 � e2: Either expression or the applica-
tion itself may have an effect or diverge. We also introduce the notation for two particular
forms of �: one is let-expression and the other is the application v � e of a pure, terminat-
ing function to an effectful expression; it corresponds to Haskell’s fmap. Thus, val v � e
(often written as v � e per our convention) is the call-by-value application of a potentially
effectful function v. On the other hand, v � e is the call-by-value application of a pure
function v. Therefore, v1 � v2 is just v1 v2, as we shall see later. An evaluation context is
an expression with the hole [] marking the next reducible expression. Filling the hole in the
context C with some expression e is written C[e].

For notational convenience we use name : type := term to give a name to a term for
easy reference in text and other terms. The type may be omitted. Notational definitions
may also be parameterized by metavariables.

Our programs, like typical functional programs, use a number of data types: prod-
ucts, sums (variants), lists, etc. We only describe lists, the others are similar. Each data
type is represented by its type constructor, such as t list, and the constructor and decon-
structor constants. For lists, the constructors are the familiar [] (for the empty list), and
:: of the type t → t list → t list. We write its applications in infix, as v :: vs (and the
partial application as (v::)). The list deconstructor is the constant decons of the type
(unit ⇒ t’) → (t → t list ⇒ t’) → t list ⇒ t’. Using it directly is too cumbersome, so
we adopt a bit of syntax sugar, writing the application

decons (fn (). onnil) (fn (x:t). (fn (xs:t list). oncons)) � xs

(where onnil and oncons are some terms) as

match xs with
| [] → onnil
| (x::xs) → oncons

We will silently add other list-related constants such as map, foldr, etc.—and other data
types such as pairs as needed.

3.2 Type system

The type system, Figure 2, also draws the sharp distinction between pure terminating
and generally effectful diverging computations, by using two different type judgments
� v v:t for values and � e e:t for general expressions. In both judgments, the type
environment � is a possibly empty sequence of associations x:t of variables with types.

Like Eff 3.1 or Multicore OCaml (but unlike the extensible-effects library in Haskell
(Kiselyov & Ishii, 2015), for example), we do not further distinguish in types what sort of
effect the computation may have. That is, our type system is not a type-and-effect system.
Type-and-effect systems are a large area with significant progress in recent years (Bauer

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 11

x:t ∈ �

� v x: t
Const

� v + : int→int→int
� v v1: t1→t2 � v v2: t1

� v v1 v2: t2

o o: t1↪→t2
Op

� v op o: t1⇒t2

�, x:t1 v v: t2

� v �x.v: t1→t2

�, x:t1, f:t1⇒t2 e e: t2

� v rec f x.e: t1⇒t2

� v v: t

� e val v: t

� e e1:t1⇒t2 � e e2: t1

� e e1 � e2: t2

� e e: bool � e e1: t � e e2: t

� e if e then e1 else e2: t

� e e: t �, xv :t e ev :t’ o oi:ti↪→ui �, xi:ti,k:ui⇒t’ e ei: t’
Hnd

� e handle e with {val xv → ev � oi xi ki → ei . . . }: t’
Fig. 2. Type System.

& Pretnar, 2014; Brady, 2013; Leijen, 2017). For the present paper about semantics, the
simply typed effect-less type system suffices.

Most of the typing rules are standard, adjusted to carefully distinguish pure and effectful
computations and the corresponding judgments. The rule (Const) shows the typing judg-
ment only for the addition constant; the others are analogous. Effects are described by
constants of a special sort o, which are associated with (or, indexed by) a pair of types. We
write this association as o o: t1 ↪→ t2. As seen from the typing rule (Op), t1 is the type
of the argument of the effect operation and t2 is the type of the result it may produce. §3.5
will show an example and explain the most complex typing rule (Hnd).

3.3 Denotational semantics

The section extends the denotational semantics of the toy calculus of §2.1 to the full cal-
culus, which is typed. We adopt the Church-style semantics, assigning meaning to typing
derivations (represented by the judgment in their conclusions). The full calculus also per-
mits generally recursive expressions. Correspondingly, we adopt CPOs as computational
domains, with a least element denoted as ⊥. Overall, the semantics is quite standard. In
fact, it is almost the same as the (skeletal) semantics of Bauer & Pretnar 2014, §§5.1-5.3,
to which we refer for details.

Our calculus clearly separates expressions (representing potentially effectful and diver-
gent computations) from values (inert or total computations). Correspondingly, we use
domains to give the semantics to the former, and pre-domains (without ⊥) to the latter.
Both domains and pre-domains are indexed by the type of the denoted expressions/values.
Figure 3 presents the assignment T [t] of pre-domains and the assignment R[t] of domains
to types. If D1, D2 are (pre)domains, we write D1→D2 for a continuous map between
them, which is also a domain. For pre-domains D1, D2, we write l1:D1 × l2:D2 for the
labeled product pre-domain: the set of pairs <l1:d1,l2:d2>, d1 ∈D1, d2 ∈D2. The compo-
nents of the pair are identified by their labels li rather than their position. If p is such a
labeled pair, we write p.li to access the li-th component, and p × l3:d3 to extend the pair
with a new component. The set of all effect constants is denoted as O.

The right-hand side of R[t] is to be read as a disjoint union, with the separately added
⊥, of T [t] and the triple product of O, T [t1] and T [t2]→R[t]. As in §2.1, we write V and
E for the “tags” of that disjoint union (canonical retracts/inclusions).

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

12 O. Kiselyov et al.

T [int] = Z

T [bool]= {true, false}
T [unit] = {�}

T [t1→t2] = T [t1]→T [t2]
T [t1⇒t2] = T [t1]→R[t2]
T [x1:t1,. . . ,xn:tn]= x1:T [t1] × · · · × xn:T [tn]

R[t] = (T [t] + { (o,v,k) | ∃t1t2. o ∈ O, o o:t1↪→t2,v ∈ T [t1], k ∈ T [t2]→R[t] })⊥

Fig. 3. Semantic (pre)domains and the interpretation of types.

[[� v c: t]] ρ ∈ T [t]
[[� v x: t]] ρ = ρ.x
[[� v v1 v2: t]] ρ = ([[� v v1]]ρ) ([[� v v2]]ρ)
[[� v �x. v2: t1→t2]] ρ = λv. [[�, x:t1 v v2:t2]] (ρ × x:v)
[[� v fn x. e: t1⇒t2]] ρ = λv. [[�, x:t1 e e:t2]] (ρ × x:v)
[[� v rec f x.e: t1⇒t2]] ρ = fixλf . λv. [[�,f:t1⇒t2,x:t1 e e:t2]] (ρ × f:f × x:v)
[[� v op o: t1⇒t2]] ρ = λv. E(o, v, λx. V(x))

Fig. 4. Denotational semantics of the value fragment.

T [t list] = [x1, x2, . . . xn], n≥ 0
set of all finite sequences of elements of type t

[[v []: t list]]ρ = []
[[v (::): t→t list→t list]]ρ = right-associative infix operation :: defined as

x :: [x1, x2, . . . xn] := [x, x1, x2, . . . xn]
[[v map: (t1→t2)→t1 list→t2 list]]ρ = map where map f l := [f x | x ∈ l]

Fig. 5. Semantics of the list data type.

Overall, Figure 3 presents a set of mutually recursive equations for the domains and
pre-domains. Such equations have already been considered (Bauer & Pretnar, 2014; Pitts,
1996) and the solutions exist. Furthermore, there exists a minimal solution (in the sense of
possessing the minimal invariant property (Pitts, 1996)), which we adopt.5 In the minimal
solution, R[t] may be regarded as a domain of trees (quite like those in §2.1), whose leaves
may have ⊥ and which are not necessarily of finite height. Nevertheless, there exists an
induction principle, as in §2.2, which lets us define functions and relations on R[t] and
prove properties by induction (see (Bauer & Pretnar, 2014) for more discussion).

The semantic function [[� v v:t]] ρ in Figure 4 maps a type derivation and an envi-
ronment to an element of T [t]. Here, ρ is an element of the labeled product T [�]. The
semantics of built-in constants is standard: 0 means the integer zero, + means integer
addition, etc. In addition, the semantics of the list data type and its constants are presented
in Figure 5.

We also need a language to write semantics functions in. We use the simply typed
lambda-calculus (abstractions are written in Math font, as λx. x) with added constants such

5 The construction can be generalized by introducing monads (furthermore, free monads)—in the fruitful
approach to denotational semantics pioneered by Moggi (1989).

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 13

[[� e val v: t]] ρ = V([[� v v:t]]ρ)
[[� e e1 � e2: t2]] ρ = (λf . f † [[� e e2:t1]]ρ)† [[� e e1:t1⇒t2]]ρ
[[� e if e then e1 else e2:t]]ρ = (λb. if (b,[[� e e1:t]]ρ,[[� e e2:t]]ρ))†[[� e e:bool]]ρ
[[� e handle e with . . .]] ρ see text

[[� e let x=e1 in e2: t2]] ρ = (λv. [[�,x:t1 e e2:t2]](ρ × x:v))† [[� e e1:t1]]ρ
[[� e v � e: t2]] ρ = ([[� v v:t1→t2]]ρ)‡ [[� e e:t1]]ρ
[[� e e1; e2: t2]] ρ = (λ_. [[� e e2:t2]]ρ)† [[� e e1:unit]]ρ

Fig. 6. Denotational semantics of expressions.

as ⊥, integers, booleans (true and false), the least fix-point operator fix and the function if
defined as

if (b, x, y) :=
{

x if b= true

y otherwise

The semantics of expressions is shown in Figure 6. For every f : T [u] →R[t] there exists
a strict map R[u]→R[t], which we write as f † and call “lift”. It depends on f continuously
and is defined as the least fixed point of F:

F g := λx.

{
f v if x= V(v)

E(o, v, g ◦ k) if x= E(o, v, k)

(We do not write the obvious, for a strict map, case f †⊥=⊥.) Frequently occurring is a
special case of lift: lifting a pure function f : T [u] →T [t] to R[u] →R[t]. It is denoted as
f ‡ and defined as (λv. V(f v))†. Yet another special case is the strict map from g: R[u⇒t] to
T [u] → R[t] defined as g¶ := λx. (λr. r x)†g. Whereas, lifting is used to compute the deno-
tation of a function to an effectful expression, g¶ describes the application of an effectful
expression to a value. The following two lemmas describe the often used properties of lift-
ing. The lifting identity is trivially proven using the induction principle, similarly to §2.2.
The proof of lifting composition is shown in the Appendix, and can serve as an illustration
of proofs in denotational semantics.

Lemma 1 (Lifting identity). (λx. V(x))† = (λx. x)‡ = λx. x

Lemma 2 (Lift compositions). f † ◦ g† = (f † ◦ g)† f ‡ ◦ g† = (f ‡ ◦ g)† f ‡ ◦ g‡ =
(f ◦ g)‡

For handlers, [[� e handle e with {val xv → ev � oi xi ki → ei . . . }: t’]] ρ is
defined to be �′ (ρh ρ) [[� e e:t]]ρ where, as in §2, �′ is the handler and ρh is a han-
dling environment. The former is defined generically whereas the latter is effect-specific
and constructed from the handle with {. . . } expression. To simplify the notation, we
shall call �′(ρh ρ) the handler and denote as �. Which particular effects, it handles (that is,
which handling environment it uses) should be clear from the context.

Thus, the handler � for [[� e handle (e:t) with {val xv → ev � oi xi ki →
ei . . . }: t’]] ρ is the strict R[t] → R[t’] map inductively defined as

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

14 O. Kiselyov et al.

� V(v) = [[�,xv:t e ev:t’]](ρ × xv:v)
� E(o, v, k) = [[�,xi:t1,ki:t2⇒t’ e ei:t’]](ρ × xi:v × ki:� ◦ k)

o is equal to oi for some i

� E(o, v, k) = E(o, v, � ◦ k) o is not equal to any oi

This definition generalizes the intuitive handlers in §2. The denotation makes it clear that
our handlers, like those in Eff (Bauer & Pretnar, 2015), are “deep” (that is, the ki passed
to a handler clause includes the handler � itself to deal with the result of the suspended
computation). We see an example in §5.

To lighten the notation, we may abbreviate [[� v v:t]] and [[� e e:t]] to just [[v]] and
[[e]], resp., if the typing environment and the type can be easily guessed from the context.

By inspection, [[−]] is well-defined. In other words, for all (well-typed) values v and
expressions e, [[� v v:t]]ρ ∈ T [t] and [[� e e:t]]ρ ∈ R[t] for any ρ ∈ T [�]. This is the
statement of type soundness of the calculus.

3.4 Equational laws

One of the motivations for denotational semantics is to justify program equivalences, to be
able to say when two expressions are equivalent and inter-replaceable. Following Mosses
(§3.1) (1990), we say that two expressions of the same type � e e1:t and � e e2:t
for some � and t are contextually equivalent just in case that for any full context D[−]
such that D[e1] and D[e2] are closed well-typed expressions of the type (), [[D[e1]]]() = �

iff [[D[e2]]]() = �. (Contextual equivalence of values is analogous.) Here, by full context
D[−], we mean an expression with a single occurrence of the distinct free variable written
as [−]. The notation D[e] means a possibly capturing substitution of an expression e for the
distinct variable in the full context D[−]. Because of the quantification over all full con-
texts, contextual equivalence is difficult to prove. Denotational semantics helps by offering
a sufficient condition for contextual equivalence: equality of denotations.

Definition 1 (Term equivalence). The equivalences � v1 ≡ v2 and � e1 ≡ e2 (also
written as v1 ≡ v2 and e1 ≡ e2, if � is easily guessed) on possibly open values or
expressions of the same type are defined as follows:

[[� v v1: t]] = [[� v v2: t]]

� v1 ≡ v2

[[� e e1: t]] = [[� e e2: t]]

� e1 ≡ e2

It is immediate from the definition that ≡ is an equivalence relation. The compositionality
of the denotational semantics ensures that ≡ is a congruence (that is, closed under term
construction). Two expressions related by e1 ≡ e2 are hence equivalent in all contexts,
including under lambda. §4 defines a more refined version of ≡ modulo a handler.

Figure 7 shows a sample of term equivalences (or, as we often say, equational laws),
easily proven by computing [[−]] of both sides and observing they are identical. These laws
are valid for any effect and handler (like the ‘free’ laws in §2). In contrast, proving such
laws using operational semantics is very difficult. In many so-called proofs of equational
laws one sees, say, in Haskell community, congruence is not even mentioned let alone
demonstrated. In the denotational approach, congruence is automatic: once we prove two

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 15

Map laws map f [] ≡ []
map f (v::vs) ≡ (f v)::(map f vs)

Substitution
laws

(fn x. e) � v ≡ e[x←v]
rec f x. e ≡ fn x. e[f←rec f x.e]

Lifting laws f � v ≡ f v
f � e ≡ let x = e in f � x
e � e’ ≡ let x = e in x � e’
v � e ≡ let x = e in v � x

Monad laws:
left unit,
right unit,
associativity

(fn x. e) � val v ≡ e[x←v]
val (fn x. val x) � e ≡ e or, alternatively (�x.x) � e ≡ e
let x = (let y = e1 in e2) in e3 ≡ let y = e1 in let x = e2 in e3

where y does not occur free in e3

let x = e1 in f � e2 ≡ f � (let x = e1 in e2)
e1; f � e2 ≡ f � (e1; e2)

Fig. 7. Basic equational laws. Here, v is an arbitrary value, e is an arbitrary term, vs is an arbitrary
list, and [x← e] denotes substitution.

expressions have the same denotations, the expressions are substitutable in any context,
whether the context is an evaluation context or a general one; applying laws in the general
binding context (function bodies) is common when optimizing programs.

3.5 Basic reasoning with non-determinism

We finish §3 by giving examples of using the just introduced formalism. Although the
formalism is not yet complete (see §4 for the final part), it is already useful.

We introduce6 the first effect: the effect constant Coin with the type o Coin:
unit↪→bool. Intuitively, the corresponding effect is tossing a coin. The following abbrevi-
ation saves a bit of tedium:

coin := op Coin � ()

Actually, the meaning of an effect operation like Coin is entirely determined by a
handler—just as the meaning of the name n in the definition let n=e in . . . is entirely
determined by e; n is just a name. Handlers for non-determinism are discussed in §6.
Yet we can write code with the Coin effect right away, without waiting for handlers.
Moreover, we can even prove some properties of the Coin code, which thus hold for every
interpretation of the Coin effect, similar to the “free” laws in §2. Such laws, valid for
any interpretation of an effect, are quite rare. One may also think they are “content-free”
because of their generality. Here we demonstrate the free laws that are interesting and
useful, for reasoning and program optimization.

The first free law is the one that is indispensable in reasoning about non-determinism,
letting us “pull out” non-determinism out of a computation:

6 In real programming language systems and effect libraries, effects are introduced by special declarations.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

16 O. Kiselyov et al.

Lemma 3 (Left distributivity). CC[if coin then e1 else e2] ≡ if coin then CC[e1]
else CC[e2]

where CC is the evaluation context not containing a handler for the Coin effect.
As an example of writing programs in our minimalistic language and using the Coin

effect, consider the following function to non-deterministically insert a value x at some
position in the given list xs (which can be used, for example, to compute list permutations):

insert : t → t list ⇒ t list :=
�x. rec loop xs.

match xs with
| [] → x::[]
| y::ys → if coin then x::y::ys else (y::) � (loop � ys)

The code non-deterministically inserts x either at the head of xs, or somewhere inside xs
(if it is nonempty).

The first question to ask about a list-processing function is how it behaves with respect
to map:

Lemma 4 (‘Free’ theorems of insert).

1. insert (f x) � map f xs ≡ map f � (insert x � xs)
2. insert (f x) � (map f � e) ≡ map f � (insert x � e)

for all x:t, xs:t list, f:t→t’, and an arbitrary expression e:t list of arbitrary effects.

Free theorems come to mind. However, insert is an effectful function, and the free theorem
no longer comes for free. Still, it holds for the “free” non-determinism, regardless of the
specific meaning of the Coin effect. No matter how Coin effect may be handled, we are
always justified, in all possible contexts including under lambda, to replace the left-hand
side term of the lemma with the right-hand side, or vice versa. Such a replacement may be
profitable, if the moved map f is later fused.

The most interesting is part 1. of the lemma (the other is a consequence). To prove
it, we need the denotation for insert, to be called insert, which we easily compute
compositionally as below (it is clearly parametric in the type t of list elements).

[[v insert:t⇒t list⇒t list]]() = insert where
insert x := fix(insF x)

insF x u := λl.
{
V(x::[]) if l= []
E(Coin,�,g u x y l′) if l= y :: l′

g u x y l′ := λb. if (b, V(x :: y :: l′), (y ::)‡(u l′))
We thus aim to show that

insert (f x) (mapf l)= (mapf)‡(insert x l)

where x is the denotation of x, f is of f, l of ys. The proof proceeds very similarly to
the proof of Lemma 2. It uses induction, but not on the length of the list; rather, it is an
induction on the approximants to the fixpoint. The Appendix shows the complete proof.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 17

The Appendix also elaborates a extended example based on the second author’s study
(Mu, 2019b) on modeling and reasoning about Spark, a popular platform for distributed
data-parallel computation (Zaharia et al., 2010).

4 Equivalence modulo handler

We now complete the formalism, introducing the equivalence modulo handler, which in
turn relies on the denotation of evaluation contexts.

One of the important intuitions about effects is that they “bubble up” through evaluation
contexts that contain no handler for them. Indeed, Figure 6 shows that [[C[e]]]ρ can be
written in the form of an application of a strict map to [[e]]ρ; that strict map depends only
on the structure of the evaluation context C and ρ and does not depend on e. Such a factor-
ization is the manifestation of compositionality of the semantics. We write this strict map
as [[C]]ρ and call [[C]] the context denotation. Figure 6 lets us make further observations:

Lemma 5 (Evaluation context congruence).

1. [[C[C’]]] = λρ. [[C]]ρ ([[C’]]ρ), where [C[C’]] is the composition of contexts
2. If C has no handlers at all, [[C]] has the form λρ. f † for some f
3. If C has no handler for the effect o, then [[C]]ρ E(o, v, k) = E(o, v,[[C]]ρ ◦ k)

Part 3 of the lemma formally expresses the “bubbling up” of the effects. In other words,
our effects are algebraic, in the sense of Plotkin & Power (2003). Left distributivity for
non-determinism (Lemma 3) is a particular case of algebraicity. Part 3. of Lemma 5 lets us
view the denotation E(o, v, k) of an effectful expression intuitively as the denotation of an
effectful operation op o � v in the evaluation context whose denotation is k.7

We now move to contextual equivalence modulo handler. Let o0 be the effect dealt with
by handler in question8 and let H be a closed evaluation context that contains that handler;
that is, H handles o0.9 We shall write Ch for an evaluation context that has no handlers
for o0.

Let e1 and e2 be two possibly open expressions of the same type, both performing the
effect o0. If their denotations differ, we may not, in general, replace e1 with e2 without
affecting the meaning of the whole program. Suppose, however, we prove that for all
contexts Ch, [[� e H[Ch[e1]]]] = [[� e H[Ch[e2]]]]. That will let us substitute e1 with e2

in an expression H[Ch[e1]] for an arbitrary Ch, preserving the program’s meaning. One
may say that e1 and e2 are equivalent provided they occur in an evaluation context that
contains H but no other handler for o0. That notion of equivalence (used, for example,
in Bauer & Pretnar (2014)) is rather weak, however. It does not us replace e1 with e2

in general contexts, for example, let f = fn x. Ch[e1] in H[Ch’[f � e’]], which, one may
feel, should be justifiable if there are no handlers for o0 other than H. We now justify this
intuition, closely following §2.2.

7 Not every expression whose denotation is E(o, v, k) is of the form C[op o � v]; for example: if true then op
o � v else e’. But every expression with such denotation is ≡ to an expression of that form.

8 We use the single effect for clarity. Also, without loss of generality several effects can always we combined
into one, at the expense of modularity and code bloat.

9 Requiring H to be closed is not limiting. In fact, the state handler immediately below shows an example of
parametrization.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

18 O. Kiselyov et al.

Let H be a handler for o0 (whose denotation [[H]]() we write as �) subject to conditions
specified below. Let ≈ be a relation defined on all semantic domains and maps between
domains, as follows:

�E(o0, v1, k1)≈ �E(o0, v2, k2)

E(o0, v1, k1)≈ E(o0, v2, k2)

v1 ≈ v2 k1 ≈ k2 o 	= o0
E(o, v1, k1)≈ E(o, v2, k2)

v1 ≈ v2

V(v1)≈ V(v2) ⊥≈⊥

v ∈ T [t]
t is primitive type

v≈ v

∀x1x2. x1 ≈ x2 implies f1x1 ≈ f2x2
f1, f2 domain maps

f1 ≈ f2

The condition on �, which we demand from now on, is: For all context denotations
C1, C2 such that � ◦C1 and � ◦C2 are defined and C1 ≈C2

� ◦C1 ≈ � ◦C2 (7)

Clearly, ≈ is symmetric and transitive (and also admissible: it relates ⊥ to itself and
closed under least-upper bounds of chains). It is generally not reflexive though: if a map
f : R[t]→R[t’] could examine the elements of the form E(o, v, k), it could distinguish the
related E(o0, v1, k1) and E(o0, v2, k2) when v1 	= v2. Our goal is to identify the subset of
domains on which ≈ is an equivalence relation.

First, we note several simple facts about ≈:

≈ is preserved by applications and compositions (8)

On domains T [t] where t does not contain⇒, the relation ≈ is the identity (9)

If f1 ≈ f2 then f †
1 ≈ f †

2 (10)

�≈ � (11)

Here, (11) follows from (7). That ≈ is preserved by lifting, (10), is proved like the similar
property in §2.2, relying on the induction principle.

Theorem 1. For all expressions e and values v such that the only handler for o0 (if
present) is H, we have [[e]]≈[[e]] and [[v]]≈[[v]].

The proof is by structural induction. Here are two typical cases. Let e be an application
e1 � e2. Then [[e1 � e2]] is λρ. (λf . f † [[e2]] ρ)† [[e1]] ρ, and the conclusion follows from
(10) and the induction hypothesis. Let v be fn x. e, whose denotation is λρ. λv. [[e]] (ρ × x :
v). The conclusion follows from the definition of ≈ and the inductive hypothesis.

The very similar proof shows that if e1 and e2 are such that [[e1]] ≈ [[e2]] then we have
[[D[e1]]] ≈ [[D[e2]]], for any general context D[−] whose handlers for o0, if any, is H.

Finally, consider two possibly open expressions e1 and e2 of the same type such that
[[e1]] ≈ [[e2]]. Let D[−] be a context such that D[e1] and D[e2] are both closed programs
of a primitive type. Further assume that the only handler for o0 in D[−] is H. We have
just shown that [[D[e1]]] ≈ [[D[e2]]]. Since D[e1] and D[e2] are both closed programs of a
primitive type, it then follows that if [[D[e1]]] = V(v) for some v then [[D[e2]]] = V(v), and
vice versa. In other words, for programs in which the only handler for o0 is H, satisfying
(7), the relation ≈ is the contextual equivalence. Therefore, for such related e1 and e2 we
adopt the notation e1 ≡h e2 and call such expressions equivalent modulo handler H.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 19

5 State

This section, expanding on §2.1, formally introduces the State effect and its handler and
demonstrates reasoning about the State-ful code relative to the handler.

We introduce two effect constants: Get and Put with the types o Get: unit↪→ts and
o Put: ts↪→unit for some type ts, and define the short names for the primitive State
operations:

get := op Get � () put v := op Put � v

The closed handler

handleS s0 e :=
(handle e with {val x → fn s. x
� Get x k → fn s. k � s � s
� Put x k → fn s. k � () � x

}) � s0

will be referred to as handleS s0 e where e:t is the computation to handle and the value s0

is the initial state (of the type ts). We define Cs as an evaluation with no handlers for Get
and Put.

The following is a sample State computation

handleS 0 (put 10; let x = get in put 20; let y = get in (x+ y))

whose denotation is V(30).
The handler � corresponding to handleS is the R[t] → R[ts⇒t] map, defined as the

least fixed point of the following recursive definition by cases. It is a particular case of the
general definition in §3.3:

� V(v) = V(λs. V(v))

� E(Get, v′, k′) = V(λs. (�(k′ s))¶s)

� E(Put, v′, k′) = V(λs. (�(k′ �))¶v′)
� E(o, v, k) = E(o, v, � ◦ k) o is neither Get nor Put

It is easy to see that the condition (7) is satisfied, from the induction principle.
Assuming the State handler � we derive the following equivalences modulo that handler:

Lemma 6 (Get-Put Laws).

(PutPut) put v’; Cs[put v] ≡h Cs[put v]
(PutGet) put v; Cs[get] ≡h put v; Cs[val v]
(GetPut) let x = get in Cs[put x] ≡h let x = get in Cs[val ()]
(GetGet) let x = get in Cs[get] ≡h let x = get in Cs[val x]

(The proof of the (GetPut) law is in the Appendix. The others are analogous, and simpler.)
Actually, the familiar get-put laws (Pretnar, 2010; Gibbons & Hinze, 2011) are the partic-
ular case of our laws, when Cs is the empty context (that is, when the get/put operations
are performed right one after the other). Our laws are a bit more general, saving us trouble
of bringing the effectful operations next to each other. The Appendix shows an extended

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

20 O. Kiselyov et al.

derivation where this generality comes useful. The derivation (part of a larger project of
deriving an efficient n-queens solver) aims to show that an accumulating list mapping can
be done as a right fold, using mutable state as an accumulator. It includes the following
step, justified by the general (PutPut) law without further ado.

put s0; (f s0 x::) � (put (f s0 x); e) ≡h (f s0 x::) � (put (f s0 x); e)
where e is some expression and s0, f and x are some variables.

We should stress our State laws are congruences. They apply even if Cs or s contain
free variables, as the just shown example has demonstrated. We can use the laws to sim-
plify even fn x. put x; put x; e to just fn x. put x; e, assuming that it is handleS that will
handle the Put effects when the expression will eventually be executed.

6 Non-determinism: different handlers, different laws, different use cases

The non-determinism effect Coin was already introduced in §3.5, where we proved ‘free’
equivalences of non-deterministic computations, in particular, left distributivity. This sec-
tion considers non-free equivalences, specific to particular Coin effect handlers. It will
become clear that the equivalences (equational laws) do indeed vary with the handler.
However, some of the equational laws we prove here turn out semi-free, so to speak:
although they hold only for a particular non-determinism handler, they still allow arbi-
trary other effects. Completely “non-free” equivalences, that is, reasoning with interacting
multiple effect handlers is the topic of §7.

6.1 Laws of non-determinism

Let us first recall the laws commonly presupposed for non-determinism, so-called “semi-
lattice” laws. The already mentioned Coin effect that non-deterministically yields either
true or false is one way to express a binary nondeterministic choice. Alternatively, a binary
choice can be thought of as a program composition operator, denoted as ⊕ below, that
combines two expressions e1 and e2 into the choice expression, with e1 and e2 as the alter-
natives. The two ways are equivalent and inter-expressible (see Plotkin & Power (2003)
for details). However, ⊕ lets us state the algebraic laws of non-determinism in a particu-
larly elegant way; that is why it is used particularly in the algebraic effect tradition (see
Pretnar (2010) for the collection of references).

e⊕ e≡ e (Idem)

e1 ⊕ e2 ≡ e2 ⊕ e1 (Comm)

e1 ⊕ (e2 ⊕ e3)≡ (e1 ⊕ e2)⊕ e3 (Assoc)

Non-determinism is hence treated as a theory of semi-lattices.
Non-determinism as a theory of semi-lattices is indeed helpful when non-determinism

is used as a specification and for reasoning, not necessarily constructive, about the
algorithm. The eventual implementation is supposed to be deterministic.10 However, non-
determinism is useful not only for writing specifications of programs but also for writing

10 This is exactly how non-determinism was used in Rabin and Scott’s pioneering paper (1959). See Armoni &
Ben-Ari (2009) for detailed discussion and historic overview.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 21

programs themselves. For example, Thompson’s patent and the implementation of the
regular expression matching (Thompson, 1968) described the running of NFA directly,
on a specially designed nondeterministic (virtual) machine. Therefore, it is rather common
to see nondeterministic choice offered as a programming language facility, as an effect.

When ⊕, or Coin, is used for writing programs (rather than program specifications), the
semi-lattice theory is no longer adequate or becomes too expensive to support, which we
are to show below. (The semi-lattice laws take another hit when other effects are present,
in particularly, state. This is the topic of §7.) In our calculus it is more convenient to use
the Coin effect. The semi-lattice laws take the following form:

if coin then e else e ≡h e (idem)
if coin then e1 else e2 ≡h if coin then e2 else e1 (comm)
if coin then (if coin then e1 else e2) else e3 ≡h

if coin then e1 else (if coin then e2 else e3) (assoc)

Which particular handler � should be had in mind when speaking about each of these laws
is described next.

6.2 Laws and handlers

This section describes three concrete handlers that validate some or all of the semi-lattice
laws. We will also clearly see the price to pay for supporting all the laws.

We start with one of the simplest, and perhaps the most familiar handleList: the “list”
monad. Unlike Haskell lists, which are streams in disguise, our lists are finite. The handler
for the Coin-effect expression returns all of its possible choices in order, in a list.

handleList e :=
handle e with {val x → x::[] � Coin z k →

let x = k � true in let y = k � false in concat x y}

where concat : t list → t list → t list is the list concatenation function (list append). As
an example, handleList (if coin then 1 else 2) has V([1; 2]) as its denotation.

The handler denotation � for handleList is the strict inductively defined
R[t] → R[t list] map, a particular case of the general definition in §3.3:

� V(v) = V([v])

� E(Coin, v′, k′) = concat′′ (�(k′ true)) (�(k′ false))

� E(o, v, k) = E(o, v, � ◦ k) o is not Coin
concat′′ = λx1x2. ((λv1v2. V(concat v1 v2))‡x1)†x2

We now demonstrate that with respect to such an �, (assoc) equivalence holds. The key
step is as follows, obtained by straightforward calculation. Let e1, e2 and e3 be arbitrary
(possibly open) expressions of the same type t’, ρ the environment, CC the evaluation
context not containing a Coin handler, and � e CC[ei]: t holds. We write [[e]]’ to stand for
� [[CC[e]]]ρ.

[[if coin then (if coin then e1 else e2) else e3]]’= concat′′(concat′′[[e1]]’ [[e2]]’)[[e3]]’ (12)

[[if coin then e1 else (if coin then e2 else e3]]’ = concat′′[[e1]]’(concat′′[[e2]]’ [[e3]]’) (13)

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

22 O. Kiselyov et al.

The two denotations are the same because list concatenation is associative (and lifting
composition laws preserve associativity).

We stress that expressions ei may diverge or have arbitrary effects, which may either be
handled by the context CC or propagate past handleList. The above equalities hold nonethe-
less. We have thus established the associativity of non-determinism modulo handleList—
emphin the presence of arbitrary other effects.

Computing the denotations for handleList (if coin then 1 else 1) and handleList
(if coin then 1 else 2) easily shows that neither (idem) nor (comm) holds for handleList.

The next handler for non-determinism is even simpler: it returns the first choice of the
result out of many that a nondeterministic expression may have:

handleFirst e := handle e with {val x → x � Coin z k → k � true}

Although this handler seems silly, it is the right handler to use for “don’t care
non-determinism”; it corresponds to the operation once, offered in many (Functional)
Logic Programming languages. The straightforward calculations similar to those for
handleList show that (assoc) and (idem)—but not (comm)—equivalences now hold, mod-
ulo handleFirst. They hold in the presence of any other possible effects besides Coin,
including non-termination.

The final handler, like handleList, collects all choices for the result of a nondeterministic
expression in a list. In addition, it also sorts the list, in the order specified by a total order
predicate le: t→t→bool, and removes duplicates:

handleSet le e := sortUniq le � handleList e

Now all three (assoc), (idem) and (comm) equivalences hold. However, whereas (assoc)
holds in the presence of any other effect, (idem) and (comm) do not. We see this point
more clearly below, Lemma 7.

There is a price to pay for maintaining all three (assoc), (idem) and (comm) equiva-
lences. First, there is the expense of sorting, which requires the existence of a total order on
the results of a handled computation. Second, handleList can be easily extended to return
only a fixed number of choices for the expression result— or return the choices incremen-
tally. It will then cope with computations with an unbounded number of nondeterministic
choices; the trivial, yet practically useful, example is

iota := rec self x. if coin then x else self � (x+ 1)

Such computations are beyond handleSet or any other handler that maintains (comm).
There is a compromise between expressivity and the richness of the equivalences for a
handler. Lastly, (comm) and (idem) for handleSet are generally broken if the handled
expression also does other effects.

6.3 General depth-first non-determinism handler

The three handlers handleList, handleFirst and handleSet are instances of a general
handler for Coin effects, to be described below.11 The general handler handleGen for
nondeterministic computations of type t is parameterized by three operations: inj: t → ti,

11 It generally expresses depth-first-like nondeterministic search strategies, to which we limit our attention.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 23

extr: ti ⇒ t’ and comb: ti → (unit⇒ti) ⇒ ti. Here, t’ is the type of the handler result
(which may be different from t: see handleList) and ti is the type of the intermediate
result accumulator. The inj operation12 puts the result of the handled expression into the
accumulator; extr extracts the final result from the accumulator, and comb combines the
intermediate results for the two choices of Coin. For example, handleSet is the instance of
handleGen in which t’ and ti are t list, inj makes a singleton list, comb concatenates the
lists of choices so far, and extr sorts.

handleGen inj extr comb e :=
extr � handle e with {

val x → inj x
� Coin z k → comb � (k � true) � (fn (). k � false)}

The general handler can also be instantiated to return the result alternatives incremen-
tally, or return up to a certain maximum number of alternatives. Therefore, it could also
cope with expressions like iota 0 that involve an unbounded number of nondeterministic
choices.

We can relate the term equivalences with the properties of inj, comb and extr, which
are the meanings of the corresponding parameters of handleGen. The associativity (assoc)
equivalence holds if comb is associative (modulo extr: for instance, comb may maintain an
intermediate tree data structure, which is fast to adjoin. Provided that extr flattens the tree
at the end, (assoc) is preserved). Likewise, (comm) and (idem) are related to the properties
of comb and extr.

Lemma 7 (Generic handler-specific equivalences of non-determinism). The equivalences
(assoc), (idem) and (comm) holds provided the following equalities are satisfied, resp.

(assoc) extr†
(
comb† (comb† z1 λ(). z2) λ(). z3

) = extr†
(
comb† z1 (λ(). comb† z2 λ(). z3)

)
(idem) extr† (comb† z λ(). z)= extr† z

(comm) extr† (comb† z1 λ(). z2)= extr† (comb† z2 λ(). z1)

where {z, z1, z2, z3} ⊂R[ti] (but with no Coin effect).

If there are no effects other than Coin—that is, zi are either ⊥ or V(. . .)—whether
(comm) holds or not is up to the properties of extr and comb. However, when other
effects are involved, i.e., z may be of the form E(o, v, l), we need to know how exactly
the operation o is handled to decide if (comm) still holds.

There is still something we can say about handleGen that holds regardless of how other
effects are handled. The following lemma states a commutativity-like property, for any
instance of handleGen in the presence of any other effect.

Lemma 8 (Commuting Coin with other effects). Let � be handleGen inj extr comb for
any choice of its parameters, and let o be an effect operation not handled by it and v any
suitable argument to it, then

12 We gave it a pure type for simplicity; in general, it could be allowed to have side-effects, e.g., state.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

24 O. Kiselyov et al.

let x = op o � v in if coin then e1 else e2 ≡h

if coin then (let x = op o � v in e1) else e2

where e1 and e2 are arbitrary expressions; x may occur free in e1 but not in e2.

The proof is the straightforward computation of denotations of the two sides (pre-
composed with � ◦ gC) and comparing them.

6.4 Non-determinism with failure

Along with the nondeterministic choice, Rabin and Scott—who introduced nondeterminis-
tic finite automata and non-determinism in general into computer science (Rabin & Scott,
1959)—also acknowledged the possibility of a failure. We have avoided failure so far.
Now, we bring it back.

We introduce the effect operation Fail of the type o Fail: unit↪→empty (where empty
is the empty type) and the convenient abbreviation for using it:

fail : t := match op Fail � () with

Since the empty type has no constructors, matching on it needs no clauses and may be
assigned an arbitrary type. One may think of Fail as an exception, and of fail as raising that
exception.

Failure is indeed very useful in non-determinism. Suppose we have a function
p: int → bool that expresses some property on natural numbers. To find the number or
numbers that make p true, we literally write

comprehension p := let x = iota 0 in if p x then x else fail

where, recall, iota 0 non-deterministically gives a natural number. This one-liner is not
merely the specification of the comprehension principle. We can really compute with
it, given the appropriate handler that embodies a particular search strategy. We see an
interesting example shortly.

To handle the Fail operation, the earlier handleFirst is changed to

handleOne e := handle e with {val x → x::[]
� Fail z k → []
� Coin z k → match k � true with

| [] → k � false
| h::l → h::l}

which returns the singleton list with the result of one (of possibly many) nondeter-
ministic choices—the choice that succeeded. The handler returns the empty list if all
choices failed. This new handler is what Haskell calls “the Maybe monad”. Adding
the clause Fail z k → [] and removing concatenation are the only changes to the earlier
handleList.

As an example, of constructively using the comprehension principle, consider finding
(the first) perfect number greater than 28. If not practical, it is at least an interesting
example: the reader likely cannot tell the answer offhand.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 25

handleOne
(let i = iota � 0 in

if leq i 28 then fail else
let l = factors � i in
if ieq i (sum (1::l)) then i else fail)

where
factors : int ⇒ int list :=
fn n. handleList (let i = upto n � 2 in if divisible n i then i else fail)

upto : int → int ⇒ int :=
�z. rec self n.

if leq z n then fail else if coin then n else self � (add 1 n)
sum : int list → int := foldl add 0

where divisible: int→int→bool, ordering leq: int→int→bool and equality
ieq:int→int→bool are primitives with the obvious meaning. The example highlights the
advantages of first-class handlers, which may appear within the program rather than being
permanently stationed “outside” (as in Cartwright & Felleisen (1994) and the original
algebraic effect approach of Plotkin & Power (2003)): the body of the nondeterministic
expression deciding if a number is perfect embeds another nondeterministic expression,
finding out if the number is divisible, and collecting, using handleList, all of the divisors
(except 1 and the number itself).

The addition of the Fail effect does not invalidate the earlier equational properties
of handleList, and, consequently, handleSet: they still verify (assoc), whether there are
other effects or not. Lemma 8 continues to hold, after a trivial extension to handleGen. If
there are no other effects, handleSet still supports (comm) and (idem) equivalences. The
extended handleOne, like its original handleFirst, validates (assoc) and (idem). However,
whereas handleFirst supported idempotence ‘for free’ (in the presence of arbitrary other
effects), this is no longer the case for handleOne.

The Fail effect also adds new equivalences, specific to this effect. The proof is an easy
exercise.

Lemma 9 (Laws of failure). Let � be handleOne or handleList (extended for the Fail
effect) or handleSet. Then

CC[fail] ≡h fail
if coin then fail else e ≡h e
if coin then e else fail ≡h e

where e is any expression and CC is a context with no non-determinism handlers.

6.5 Laws and handlers: Summary

Table 1 overviews which handler validates which law, in the presence of no other effect,
or any other effect, or just Fail as the other effect, beside Coin. It should be stressed again
there is a trade-off between expressivity and performance, on one hand, and the richness
of the equivalences for a handler on the other hand. The handler handleSet validates all

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

26 O. Kiselyov et al.

Table 1. Non-determinism handlers and their laws. “None” means no other effects beside Coin;
“Fail” means the Fail effect may also be present; “Any” means arbitrary other effect

handleList handleFirst handleSet handleOne

Law None Any Fail None Any Fail None Any Fail None Any Fail
(idem) − − − + + + + − + + − +
(comm) − − − − − − + − + − − −
(assoc) + + + + + + + + + + + +

semi-lattice laws. It also cannot deliver answers incrementally, cannot cope with nondeter-
ministic computations with unbounded number of answers, takes extra time for sorting the
answers, and requires the existence of the total order on answers (which may be expensive
to compute).

Yet another challenge comes from searching over large (and often, infinite) search
space—a very common application of non-determinism. A search procedure that always
finds an answer if it exists, without getting trapped, either has to validate both (comm) and
(assoc), or deny both.13 If the search is to deliver results incrementally, neither (comm) nor
(assoc) may hold.

7 Non-determinism and state

One of the motivations of this work is to study the interaction between effects. We have
reasoned with multiple effects already: in §6 we proved handler-specific equational laws
of non-determinism that are valid in the presence of any other effect. This section describes
the true interaction of effects—or, to be precise, the interaction of their handlers, since it
is the handlers that give effects their meaning. We shall see how a handler for one effect
may invalidate or preserve term equivalences established modulo another handler; we shall
also see the equivalences that arise from a particular combination of several handlers. Our
running example will be the interplay between non-determinism and state.

To account for the equational laws that arise from the interaction of two handlers, we
extend the development in §4 in a rather simple way. Instead of one distinguished effect
o0 we now have two: o1 and o2, which are to be handled by H1 and H2. The expres-
sions e1 and e2 are to be considered equivalent modulo H1 and H2 if H1[C1[H2[C2[e1]]]]
and H1[C1[H2[C2[e2]]]] have related denotations, where the contexts C1 and C2 have
no handlers for the effects of H1 and H2. In other words, we consider the equality of
the denotations of e1 and e2 modulo �1 ◦ g1 ◦ �2 ◦ g2 where g1 and g2 are arbitrary con-
text denotations (corresponding to the appropriately typed but otherwise arbitrary C1

and C2). Clearly equalities modulo �1 ◦ g1 ◦ �2 ◦ g2 are different from equalities modulo
�2 ◦ g2 ◦ �1 ◦ g1, as we shall see soon on concrete examples. We attach the subscript N
when talking about non-determinism handlers (one of those described in §6—which one
should be clear from the context) and the subscript S when referring to handleS from §5;
thus≡NS is the equivalence modulo �N ◦ gN ◦ �S ◦ gS . Throughout this section, we assume
that expressions have no effects other than non-determinism and state.

13 Laws of MonadPlus http://okmij.org/ftp/Computation/monads.html#monadplus

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

http://okmij.org/ftp/Computation/monads.html#monadplus
https://doi.org/10.1017/S0956796820000271

Not by equations alone 27

7.1 Local state

The first case of combining non-determinism and state is handling the state before
non-determinism effects: the context handleN(CN [handleS s0 CS[]]). The Get-Put
laws of state from §5 were proved without making any assumptions about the the
other effects. When a non-determinism handler is outermost, its handled expression
CN [handleS s0 CS[e]] may only have non-determinism effects (since state is dealt with by
handleS); therefore, we may use the laws from §6 on the assumption of no other effects.
Furthermore, the State effects in nondeterministic branches are handled independently
from each other. One may think of it as that each nondeterministic branches has it own
local copy of the state. This is in contrast to the global state situation to be discussed in
the next section, where the state is shared among nondeterministic branches, and changes
made to the state in one branch carries over to the next.14

Lemma 10. If e1 ≡S e2 or e1 ≡N e2 (regarding e1 and e2 as if they may have only fail and
Coin effects) then e1 ≡NS e2

Thus when state is handled locally to nondeterministic choice, we may reason about state
and non-determinism independently. The independence is actually stronger than what is
implied by Lemma 10:

Lemma 11 (Early Failure). put s; fail ≡NS fail get; fail ≡NS fail

In other words, if we are going to fail eventually, we may as well fail right away (and
save ourselves from doing useless computations). Compared to Lemma 9, the fail opera-
tion here is not in the evaluation context: put s and get are. The proof of the lemma is a
straightforward calculation.

Lemma 11 says that Fail and state effects do in a sense “commute”, which is of great
help in equational reasoning. Failing early is also the most important optimization on non-
deterministic programs. The Appendix shows an extended example, a part of the derivation
of an efficient n-queens solver.

7.2 Global state

When the handlers for non-determinism and state are stacked as handleS s0

(CS[handleN(CN [])]) (i.e., handleS is outermost), reasoning becomes more complicated.
The non-determinism handlers no longer may assume that Coin and Fail are the only effects
in their handled expression. Although the analogue of Lemma 10 still holds, we can use
only those ≡N equivalences that are valid in the presence of other effects: that is, only
(assoc). The useful early failure Lemma 11 no longer holds: put s; fail and fail are distinct
because the former affects the global state that the context CS may observe.

14 The terminologies “local/global state” were used in this sense by, for example, Wu et al. (2014). This is
different from, for example, Plotkin and Power (2003), where “local state” denotes the state effect that allows
one to create new local variables.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

28 O. Kiselyov et al.

To better appreciate the subtlety of reasoning with global state, we consider two simple
examples, distilled from realistic derivations. Let s be a value of the state type handled by
handleS and v an arbitrary value.

e1 := put s; v
e2 := let s0 = get in if coin then (put s; v) else (put s0; fail)

In the case of the local state, discussed in §7.1, the two expressions are equivalent:
e1 ≡NS e2. One can easily see it by first applying Lemma 11 and simplifying (put s0; fail)
to just fail; The laws of failure Lemma 9 prove the equivalence. For the global state
Lemma 11 does not hold and hence the two expressions are distinct: whereas e1 changes
the global state to s, e2 appears to leave it, effectively intact. One may even think that e2

is equivalent to just v. However, the following calculation of the denotation of e2 in the
context handleS s0 (CS[handleN(CN [])]) shows this not to be the case:

�S(gS(�N (gNE(Get, �, λso. E(Coin, �,

λb. if (b, E(Put, s, λ(). V(v)), E(Put, s0, λ(). E(Fail, �,⊥)))))))) s0

= �S(gS(�NE(Coin, �, λb. if (b, E(Put, s, λ(). gN V(v)), E(Put, s0, λ(). E(Fail, �,⊥))))))) s0

If we put just v in the above context, the application of the context denotation gN V(v)
occurs in the context of the global state s0; whereas in the case of e2, the same application
occurs within E(Put, s, λ(). gN V(v)), that is, after we have requested to change the state to
s. The context denotation gN may query the state and hence distinguish the two cases. It
may also appear that when �N is handleOne from 6.4, e2 is equivalent to e1. Again, the
above denotation shows this not to be the case. Recall, handleOne may also evaluate the
second branch of the nondeterministic choice, if the first branch produced a failure, that
is, if gN V(v) turns out to have E(Fail, �,⊥) as a denotation (which may happen for the
appropriately chosen gN).

The next example is taken verbatim from a real derivation. It concerns the following pair
of expressions, where again s is some value of the appropriate state type, v is an arbitrary
value and e is an arbitrary expression.

e1 := if coin then (put s; v) else e
e2 := if coin then v else (put s; e)

It has truly appeared that e1 and e2 are equivalent. But let’s look at the denotations of the
two expressions in the context handleS s0 (CS[handleN(CN [])])

�S(gS(�NE(Coin, �, λb. if (b, E(Put, s, gN V(v)), gN e)))) s0

�S(gS(�NE(Coin, �, λb. if (b, gN V(v), E(Put, s, gN e))))) s0

The difference becomes easy to see: the application of the context denotation gN V(v)
appears under different global states.

Interestingly, we find the equivalence for a simple modification of e1 and e2 (e and e’
are arbitrary expressions):

Lemma 12. put s; (if coin then e else e’) ≡SN if coin then (put s; e) else e’

which is the immediate consequence of Lemma 8. Therefore, the equivalence actually
holds for any other state handler, besides handleS. It is not “free”, however, it is specific to

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 29

handleGen or its instantiations such as handleList. (Informally, it holds only for handlers
that, when dealing with a Coin operation, pursue the true branch first.) Clearly the above
equivalence is incompatible with (comm).

Another equivalence following from Lemma 8 is in the spirit of Lemma 11, letting us
commute state and failure, to some extent:

Lemma 13. if coin then (eS; fail) else e ≡SN eS; e
where eS is an expression that only performs state effects; e is arbitrary.

8 Related work

8.1 Algebraic effects

The algebraic effects approach has originated in the work of Plotkin & Power ((2003),
among others), aiming for a uniform denotational treatment of actual effects such as
mutation of memory cells, hardware exceptions, etc. Effects are represented (and hence,
described) by equational theories. Multiple effects are likewise treated axiomatically, as
compositions of equational theories. The effect operations hence have a meaning of their
own, specified through algebraic identities. Plotkin and Power also elucidated and devel-
oped the correspondence between algebraic operations and generic effects. Effect handlers
did not come until about decade later, in the work of Plotkin & Pretnar (2010). A handler
is taken to be an algebra homomorphism, and hence has to respect the identities that are
associated with the effects they are to handle. Since the pioneering work of Plotkin and
Power, the approach has developed significantly; in fact, it has become rather difficult to
cite all the relevant literature. A significant portion of the literature deals with types—far
more sophisticated than the ones used in our calculus—that are to reflect possible effects
of an expression.

8.2 Extensible Denotational Language Specifications

Overcoming the ad hoc treatment of various effects was also the motivation of Cartwright
& Felleisen (1994). In their approach, however, an effectful operation such as “store” has
no inherent meaning; it is the handler, of the ‘central authority’, which executes the ‘store’
and other requests that gives the operation its meaning. As they wrote in 1994:

An effect is most easily understood as an interaction between a sub-expression and a
central authority that administers the global resources of a program. [. . .] Given an

administrator, an effect can be viewed as a message to the central authority plus enough
information to resume the suspended calculation.

The denotational model of effects developed by Cartwright and Felleisen uses one global
trusted handler such that the semantics of every effectful operation is denoted by a message
to this handler. The two salient features of this model are (i) that the denotation of an
expression does not need to change if more effects are added to the language: only the
global handler needs to change and (ii) interactions of effects are straightforward to model
as there is exactly one semantic component that is responsible for managing all the effects.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

30 O. Kiselyov et al.

Cartwright and Felleisen’s ‘central authority’ (the global handler) may be thought of as
the “hardware” that executes the “actual” effect operations. It does not take a big leap to
think of that handler to be part of a program, rather than being stationed outside it. One
may think of such embedded handler as a virtual machine, or a hypervisor. Our approach
to effects comes from this view.

8.3 Bauer and Pretnar’s Eff and its Formalizations

One can see the clear influence of Eff 3.4 (Bauer & Pretnar, 2015) and especially of its
formalization in Bauer & Pretnar (2014) in the design of our calculus and its denotational
semantics. In fact, our denotational semantics is essentially the same as the skeletal seman-
tics of Bauer & Pretnar. Our calculus however is more core than Bauer and Pretnar’s Core
Eff: We do not distinguish between effects and operations because each effect has only
one operation. Kiselyov & Sivaramakrishnan (2018) demonstrate why this is adequate.
We also introduce pure computations and take � as a primitive operation. The thrust of
Bauer & Pretnar (2014) is the effect system. We, in contrast, focus on reasoning and get
by with a simple type system.

One can see the origin of equivalence modulo handlers in Bauer and Pretnar’s work
(§7.1)(2014): “With handlers the workings of a computation may be inspected in a highly
intensional way. Consequently, there are few generally valid observational equivalences.
However, when known handlers are used to handle operations, we may derive equiva-
lences that describe the behavior of operations. The situation is opposite to that of [19],
where we start with an equational theory for operations and require that the handlers
respect it.” This quote characterizes our work as well.

Bauer & Pretnar (2014) derive several equivalences modulo particular state effect han-
dlers, including the Get-Put laws. However, their laws are not actually equational laws
because they are not congruences and do not apply in general contexts. Although their laws
can be used to simplify handler[put x; put x] to just handler[put x], they do not apply to
simplify the body of the function f in let f = fn x. put x; put x in . . . (even if we assume
a particular handler that will eventually handle all state effects in a program). The present
paper introduces truly equational reasoning modulo handlers, which can be carried out in
any context.

8.4 Equational reasoning with monads

Most research on monads and effects are either on the theoretical side or are about, as
libraries, implementations of various monads and their combinations. Curiously, it is less
common seeing people reason about actual monadic programs. Hutton & Fulger (2007)
proved the correctness of a tree labeling algorithm that uses a monad. Their approach,
however, essentially unfolds the definitions of the monad and the effect operators, proving
everything for this specific monad.

Gibbons & Hinze (2011) is an archetypal example of monadic equational reasoning. It
showed that correctness of monadic programs, for example a backtracking program solving
the n-queens problem using non-determinism and state, can be proved using the monad
laws and properties the effect operators are supposed to satisfy, and independently from

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 31

the actual implementation of the monad. They classified effects into hierarchical classes,
and identified various properties these effects are supposed to have.

Affeldt & Nowak (2018) formally verified the results of Hinze and Gibbons in Coq,
using the features of Coq to modularly organize the hierarchy of effects and their proper-
ties. The properties are used to verify effectful algorithms. A separate proof shows that a
given monad, with a monolithic implementation, satisfies the properties.

8.5 Other related work

Forster et al. (2019) demonstrate an alternative denotational framework, based on a call-
by-push-value calculus enhanced with effect operations, with set-theoretic (algebraic)
semantics. The authors of that work had put the semantics to a different, from ours, use:
to rigorously prove or disprove expressibility of different ways of realizing computa-
tional effects (algebraic effects, delimited control and monad reflection). It seems likely
our development of equivalence-modulo-handlers can also be done in their denotational
framework.

Deriving, rather than postulating equational laws was also the motivation of Johann,
Simpson and Voigtländer (2010). Their approach, however, is in some sense opposite from
ours: syntactic rather than semantics, operational rather than denotational. Yet trees (and
preorders on trees) play just as essential role.

9 Conclusions

This paper champions, develops and applies the idea that a handler determines the equa-
tional theory of the effects, rather than the equational theory taken as given. Equational
laws emerge as a distillation of the behavior of a handler or a combination thereof. In this,
“bottom-up” approach harking back to Harel and Pratt (1978), we are assured that our rea-
soning, and laws, are grounded, in a real and practical implementation. Our main technical
tool is denotational semantics, which we hence also champion and apply, for reasoning
about and optimizing interesting programs involving multiple, interleaving effects.

Technically, “equational theory from handler” takes the form of equivalence modulo
handler, which we introduce and prove it to be congruence and an equivalence relation.
We apply this notion to investigate the equational theory of popular handlers for non-
determinism (List and Maybe monads), and also two combinations of non-determinism
and state (Local and Global state).

Acknowledgments

Conversations with Gordon Plotkin are gratefully acknowledged. We thank the anonymous
reviewers for many helpful comments and suggestions.

This work was partially supported by JSPS KAKENHI Grants Number 18H03218 and
17K00091.

Conflicts of interest

None.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

32 O. Kiselyov et al.

References

Affeldt, Reynald & Nowak, David. (2018). Experimenting with monadic equational reasoning in
Coq. The 35th Conference of the Japan Society for Software Science and Technology.

Armoni, Michal & Ben-Ari, Mordechai. (2009). The concept of nondeterminism: its development
and implications for teaching. Sigcse bulletin, 41(2), 141–160.

Bauer, Andrej & Pretnar, Matija. (2014). An effect system for algebraic effects and handlers. Logical
methods in computer science, 1(4).

Bauer, Andrej & Pretnar, Matija. (2015). Programming with algebraic effects and handlers. Journal
of logical and algebraic methods in programming, 84(1), 108–123.

Brady, Edwin. (2013). Programming and reasoning with algebraic effects and dependent types.
Pages 133–144 of: ICFP ’13. ACM Press.

Cartwright, Robert & Felleisen, Matthias. (1994). Extensible denotational language specifications.
Pages 244–272 of: Hagiya, Masami & Mitchell, John C. (eds), Theor. Aspects of Comp. Soft.
LNCS, no. 789. Springer.

Chen, Yu-Fang, Hong, Chih-Duo, Lengál, Ondřej, Mu, Shin-Cheng, Sinha, Nishant & Wang, Bow-
Yaw. (2017). An executable sequential specification for Spark aggregation. International
Conference on Networked Systems. Springer-Verlag.

Fischer, Sebastian, Kiselyov, Oleg & Shan, Chung-Chieh. (2011). Purely functional lazy nondeter-
ministic programming. Journal of functional programming, 21, 413–465.

Forster, Yannick, Kammar, Ohad, Lindley, Sam & Pretnar, Matija. (2019). On the expressive power
of user-defined effects: Effect handlers, monadic reflection, delimited control. J. funct. program,
29, e15.

Gibbons, Jeremy & Hinze, Ralf. (2011). Just do it: Simple monadic equational reasoning. Pages
2–14 of: ICFP ’11. ACM Press.

Harel, David & Pratt, Vaughan R. 1978 (Jan.). Nondeterminism in logics of programs (preliminary
report). Pages 203–213 of: Conference Record of the Fifth Annual ACM Symposium on Principles
of Programming Languages.

Hinze, Ralf. (2000). Deriving backtracking monad transformers. Pages 186–197 of: ICFP ’00.
ACM Press.

Hutton, Graham & Fulger, Diana. (2007). Reasoning about effects: seeing the wood through the
trees. Symposium on Trends in Functional Programming.

Hyland, Martin, Plotkin, Gordon & Power, John. (2006). Combining effects: Sum and tensor.
Theoretical computer science, 357(1–3), 70–99.

Johann, Patricia, Simpson, Alex & Voigtl’́ander, Janis. (2010). A generic operational metatheory for
algebraic effects. Pages 209–218 of: LICS. IEEE Press.

Kiselyov, Oleg. 2017 (3 Sept.). Higher-order programming is an effect. HOPE 2017 at ICFP 2017.
Kiselyov, Oleg & Ishii, Hiromi. (2015). Freer monads, more extensible effects. Pages 94–105

of: Proceedings of the 8th ACM SIGPLAN symposium on Haskell, Vancouver, BC, Canada,
September 3-4, 2015. ACM.

Kiselyov, Oleg & Sivaramakrishnan, KC. (2018). Eff directly in OCaml. Electronic proceedings in
theoretical computer science, 285, 23–58.

Kiselyov, Oleg, Sabry, Amr & Swords, Cameron. (2013). Extensible effects: an alternative to monad
transformers. Pages 59–70 of: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell,
Boston, MA, USA, September 23-24, 2013. ACM.

Leijen, Daan. (2017). Type directed compilation of row-typed algebraic effects. Pages 486–499 of:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages.
POPL 2017. New York, NY, USA: ACM.

Moggi, Eugenio. (1989). An abstract view of programming languages. Tech. rept. ECS-LFCS-90-
113. Edinburgh Univ.

Mosses, Peter D. (1990). Denotational semantics. Chap. 11, pages 577–631 of: van Leewen, J. (ed),
Handbook of Theoretical Computer Science, vol. B: Formal Models and Semantics. New York,
NY: The MIT Press.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 33

Mu, Shin-Cheng. (2019a). Calculating a backtracking algorithm: an exercise in monadic pro-
gram derivation. Tech. rept. TR-IIS-19-003. Institute of Information Science, Academia
Sinica.

Mu, Shin-Cheng. (2019b). Equational reasoning for non-determinism monad: the case of
Spark aggregation. Tech. rept. TR-IIS-19-002. Institute of Information Science, Academia
Sinica.

Pitts, Andrew M. (1996). Relational properties of domains. Information and computation, 127(2),
66–90.

Plotkin, Gordon & Power, John. (2003). Algebraic operations and generic effects. Applied
categorical structures, 11(1), 69–94.

Plotkin, Gordon & Pretnar, Matija. (2009). Handlers of algebraic effects. Pages 80–94 of: Castagna,
Giuseppe (ed), Programming Languages and Systems. Lecture Notes in Computer Science, vol.
5502. Springer.

Pretnar, Matija. (2010). The logic and handling of algebraic effects. Ph.D. thesis, The University of
Edinburgh.

Rabin, Michael O. & Scott, Dana. (1959). Finite automata and their decision problems. IBM journal
of research and development, 3, 114–125.

Reynolds, John C. (1981). The essence of Algol. Pages 345–372 of: de Bakker, Jacobus Willem &
van Vliet, J. C. (eds), Algorithmic Languages. Amsterdam: North-Holland.

Thompson, Ken. (1968). Programming techniques: Regular expression search algorithm. Commun.
acm, 11(6), 419–422.

Winskel, Glynn. (1993). Formal semantics of programming languages. MIT Press.
Wu, Nicolas, Schrijvers, Tom & Hinze, Ralf. (2014). Effect handlers in scope. Pages 1–12 of:

Proceedings of the 7th ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, September
4-5, 2014. ACM.

Zaharia, Matei, Chowdhury, Mosharaf, Franklin, Michael J., Shenker, Scott & Stoica, Ion. (2010).
Spark: Cluster computing with working sets. Proceedings of the 2Nd USENIX Conference on Hot
Topics in Cloud Computing. HotCloud’10. Berkeley, CA, USA: USENIX Association.

A Proofs of properties of lift

Lemma 14 (Lift compositions).

f † ◦ g† = (f † ◦ g)† f ‡ ◦ g† = (f ‡ ◦ g)† f ‡ ◦ g‡ = (f ◦ g)‡

Proof. To prove the first law, we introduce the following functionals (higher-order
functions)

Gu := λx.

{
g v ifx= V(v)

E(o, v, u ◦ k) if x= E(o, v, k)

Hu := λx.

{
f †(g v) if x= V(v)

E(o, v, u ◦ k) if x= E(o, v, k)

and define the following sequences of functions:

G0 :=⊥ Gn+1 :=G Gn

H0 :=⊥ Hn+1 :=H Hn

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

34 O. Kiselyov et al.

Clearly, Gn �Gn+1 and the same for Hn, thus Gn and Hn form ascending chains. We now
show that f † ◦Gn =Hn. Clearly, f † ◦G0 = f † ◦ ⊥=⊥=H0. Assuming f † ◦Gn =Hn, we
have

f † ◦Gn+1 = f † ◦GGn

= λx.

{
f †(gv) if x= V(v)

E(o, v, f † ◦Gn ◦ k) if x= E(o, v, k)

= λx.

{
f †(gv) if x= V(v)

E(o, v, Hn ◦ k) if x= E(o, v, k)
by inductive hypothesis

=Hn+1

The two chains f † ◦Gn and Hn are hence identical and so have the same least-upper bounds
(the existence of the least-upper bounds is guaranteed by the domain). Keeping in mind
that lub Hn = (f † ◦ g)† and, by continuity of functional composition, lub(f † ◦Gn)= f † ◦
lub Gn = f † ◦ g† we complete the proof. �

The other composition laws of lift are easy consequences, keeping in mind that f ‡ is the
abbreviation for (λx. V(f x))†.

B Free Reasoning with Non-determinism

Recall, we have introduced the effect constant Coin with the associated type
o Coin: unit↪→bool, and the convenient abbreviation

coin := op Coin � ()

We now demonstrate less-trivial, realistic programs using the Coin effects, and the com-
bination of semantic and equational reasoning about these programs. The properties of the
Coin code we prove here hold for every interpretation of the Coin effect.

We adapt the example from Mu (2019b) (following up Chen et al. (2017)). The task was
to model and reason about Spark, a popular platform for distributed data-parallel computa-
tion (Zaharia et al., 2010). In Spark, Resilient Distributed Datasets (RDD) are partitioned
and stored on distributed servers. When an aggregate operation is performed, results from
the servers may arrive in different order. Thus a Spark computation is non-deterministic
in nature—possibly with other side effects (e.g., state). While Spark programmers may
generally wish that their programs compute the same function regardless of how the data
is distributed, unpleasant surprises are not uncommon in practice. Consider the integral
of x73 on [−2, 2]. Since x73 is an odd function, the result ought to be 0. In our experi-
ments, AreaUnderCurve.of , a function in the Spark machine learning library that computes
numerical integration distributively, returns different results ranging from −8192.0 to
12288.0 on the same input, due to different orders of floating-point computation.

It is therefore desirable to figure out conditions under which a Spark aggregation is
deterministic, that is, when we model it as a monadic program, it in fact equals val x for
some x. When we model Spark in our language, the fact that sub-computations can be
performed in arbitrary order is modeled by transforming a list of sub-results into one of its

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 35

permutations. The following function non-deterministically computes a permutation of its
input list:

perm : t list ⇒ t list :=
rec perm xs. match xs with
| [] → []
| x::xs → insert x � (perm � xs)

This recursive code relies on the following auxiliary function to non-deterministically
insert a value x at some position in the given list xs:

insert : t → t list ⇒ t list :=
�x. rec loop xs.

match xs with
| [] → x::[]
| y::ys → if coin then x::y::ys else (y::) � (loop � ys)

The code non-deterministically inserts x either at the head of xs, or somewhere inside xs
(if it is non-empty).

B.1 Free theorem of non-deterministic list permutation

Among the many properties needed, we would like to make sure that perm commutes with
map f for pure f:

Lemma 15 (‘Free’ theorem of perm). perm � map f xs ≡ map f � (perm � xs)

Since perm is defined in terms of insert, we need the corresponding property about
insert:

Lemma 16 (‘Free’ theorem of insert). For all x:t, xs:t list, f:t→t’, and an arbitrary
expression e:t list of arbitrary effects,

1. insert (f x) � map f xs ≡ map f � (insert x � xs)
2. insert (f x) � (map f � e) ≡ map f � (insert x � e)

If we just look at the types of perm : t list ⇒ t list and insert: t→t list⇒t list and treat
the effectful arrows as regular function type, the properties reminds us of free theorems.
We should remember, however, that insert is an effectful function, and the free theorem
no longer comes for free. Incidentally, the proof shows that the theorem may be called
free in a different sense: it holds for the “free” non-determinism, regardless of the specific
meaning of the Coin effect. No matter how Coin effects may be handled, we are always
justified, in all possible contexts including under lambda, to replace the left-hand side term
of Lemma 16 with the right-hand side, or vice versa.

We demonstrate the semantic proof of Lemma 16: both sides of≡ have the same denota-
tions. First we need the denotation for insert, to be called insert, which we easily compute
compositionally as below (it is clearly parametric in the type t of list elements).

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

36 O. Kiselyov et al.

[[v insert:t⇒t list⇒t list]]() = insert where
insert x := fix(insF x)

insF x u := λl.
{
V(x::[]) if l= []
E(Coin,�,g u x y l′) if l= y :: l′

g u x y l′ := λb. if (b, V(x :: y :: l′), (y ::)‡(u l′))

Proof of Lemma 16. For part 1, we aim to show that

insert (f x) (mapf l)= (mapf)‡(insert x l)

where x is the denotation of x, f is of f, l of ys. The proof proceeds very similarly to
the proof of Lemma 2. It uses induction, but not on the length of the list; rather, it is an
induction on the approximants to the fixpoint.

We define the following sequences of functions:

G0 :=⊥ Gn+1 := insF (f x) Gn

H0 :=⊥ Hn+1 := insF x Hn

It is easy to see that each function in the sequence is more defined than the earlier ones:
Gn �Gn+1 and Hn �Hn+1, so that the sequences form an ascending chain – and pos-
sess least-upper bounds, by the definition of domains. From the continuity of all involved
functions,

insert (f x) (mapf l) = (lubGn) (mapf l) = lub(Gn (mapf l))

(mapf)‡(insert x l)= (mapf)‡((lubHn) l)= lub((mapf)‡(Hn l))

The lubs in the two lines are the same; in fact, we now demonstrate that Gn (mapf l)=
(mapf)‡(Hn l) for all n, by simple induction. The base case n= 0 is trivial. For the inductive
case n+ 1, we rely on the property of mapf that if l is empty then so is mapf l and if l
is y :: l′ for some y and l′ then mapf l is likewise representable as f y :: mapf l′. Thus it
remains to show that

λb. if (b, V(f x :: f y :: mapf l′), (f y ::)‡(Gn (mapf l′)))
= λb. if (b, V(f x :: f y :: mapf l′), (mapf)‡((y ::)‡(Hn l′)))

which immediately follows from Lemma 2, the properties of list map, and the inductive
hypothesis.

Part 2 of the lemma is a simple consequence of Lemma 2.

For Lemma 15, we show a syntactic proof for a change, using the already established
equational laws – by structural induction on the list xs. (We skip the trivial base case of
the empty list.) The proof is quite short thanks to Lemma 16, part 2, which deals with
applications of insert x to arbitrary effectful expressions.

Proof of Lemma 15. Now, assuming the lemma holds for xs, we have for x::xs:

perm � map f (x::xs)
≡ perm � (f x::map f xs) {map laws}
≡ insert (f x) � (perm � map f xs) {substitution laws}
≡ insert (f x) � (map f � (perm � xs)) {induction hypothesis}
≡ map f � (insert x � (perm � xs)) {insert law, part 2}
≡ map f � (perm � (x::xs)) {substitution law, opposite direction}

which completes the proof.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 37

B.2 Don’t care non-determinism

Recall that our eventual goal is to clarify when the results of a Spark run do not depend
on the partitioning scheme for Resilient Distributed Datasets. We shall model Spark as a
map-reduce–like processing with the familiar foldl (often called ‘reduce’): if � is a left-
associative binary infix operation, foldl (�) z [x1, . . . , xn] is z � x1 � . . . � xn. It can be also
defined equationally as

foldl : (u → t → u) → u → t list → u
foldl f z [] ≡ z
foldl f z (x :: xs) ≡ foldl f (f z x) xs

To state the desired property we also need the auxiliary functions

units : t list ⇒ unit := rec units xs. match xs with
| [] → ()
| y::ys → if coin then () else units � ys

unitsf : t list ⇒ unit := rec unitsf xs. match xs with
| [] → ()
| y::ys → unitsf � ys; units � ys

noperm : t list ⇒ t list := rec noperm xs. match xs with
| [] → ()
| y::ys → let l = noperm � ys in units � l; y::l

Here, units does not actually do anything always returning unit, but still making as many
choices as the length of its argument list; unitsf is similarly useless but makes the facto-
rial number of choices. Finally noperm � xs is unitsf � xs; xs (which is easy to prove
equationally using the associative laws).

We begin with an easy lemma

Lemma 17. If the function f : u→t→u has the property f (f z x) y ≡ f (f z y) x for all
x, y, and z, then

foldl f z � (insert x � xs) ≡ units xs; foldl f z (x::xs)

The assumed property of f is actually common among aggregation and ranking functions
(e.g, “count”). Our goal is to prove the corresponding property of perm, stating the ‘don’t
care non-determinism’ – when the result of foldl equals to that of a pure computation:

Theorem 2. If the function f : u→t→u has the property f (f z x) y ≡ f (f z y) x for all
x, y, and z, then

foldl f z � perm xs ≡ unitsf xs; foldl f z xs

However, it is not easy. Mu (2019b) previously demonstrated an equational proof, which
required postulating very strong equational laws on non-deterministic computations (such
as commutativity and idempotence) – the laws that are not satisfied by many implementa-
tions of non-determinism, as we discussed in §1.1. To see why such strong laws seem to
be indispensable, let’s try to prove the theorem by induction. Here is the inductive step,
using Lemma 17.

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

38 O. Kiselyov et al.

foldl f z � perm (x:xs)
≡ let l = perm � xs in foldl f z � (insert x � l)
≡ let l = perm � xs in units l; (foldl f z (x::l))

To apply the inductive hypothesis, we should somehow move units l ‘out of the way’. If
we postulate idempotence, it collapses to just one choice and disappears. However, without
imposing any assumptions on non-deterministic computations, we are stuck, it seems.

The semantic approach turned out more helpful, leading us to think of equivalences
other than equality. Reasoning modulo permutation proved particularly useful, as we now
demonstrate. Specifically, we state, and then prove, the key lemmas about the mathematical
properties of the denotations of perm and insert:

Lemma 18. Let sort be a stable list sorting function, in some fixed but otherwise arbitrary
order, and f satisfies the premise of Thm. 2.

1. foldlf z l= foldlf z (sort l)
2. sort ‡(insertx l)= (λ_. sort (x :: l))‡(units l)
3. sort ‡(perm l)= sort ‡(noperm l)

The lemmas describe what the denotation insert and perm are. We have to describe not
just the result of the computation but also its effects (captured in units , the denotation of
units).

Proof. Part 1 is the property of foldl given f that satisfies the premise of Thm. 2. We prove
the other parts by induction on the length of list l. We elide the trivial base cases of the
empty list. For part 2, we calculate

sort ‡(insertx (y :: l))

Definition of insert and the fixpoint

= sort ‡(insF x (insertx) (y :: l))

Unrolling definitions

= E(Coin, �, λb. if (b, V(sort (x :: y :: l)), sort ‡((y ::)‡(insertx l))))

Property of sort: sort (y :: l)= sort (y :: (sort l))

= E(Coin, �, λb. if (b, V(sort (x :: y :: l)), sort ‡((y ::)‡(sort ‡(insertx l)))))

Applying the induction hypothesis

= E(Coin, �, λb. if (b, V(sort (x :: y :: l)), sort ‡((y ::)‡((λ_. sort (x :: l))‡(units l)))))

Property of lifting

= E(Coin, �, λb. if (b, V(sort (x :: y :: l)), ((λ_. (sort ◦ (y ::) ◦ sort)(x :: l))‡(units l))))

Again the property of sort

= E(Coin, �, λb. if (b, V(sort (x :: y :: l)), ((λ_. sort (x :: y :: l))‡(units l))))

= (λ_. sort (x :: y :: l))‡E(Coin, �, λb. if (b, V(�), units l))

Definition of units , derived from units
= (λ_. sort (x :: y :: l))‡(units (y :: l))

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 39

Part 3 follows from Part 2 and is proven similarly. The crucial identity

(λl′. (λ_. sort (x :: l′))‡(units l′))†(perm l)

= (λl′. (λ_. sort (x :: l′))‡(units l′))†(sort ‡(perm l))

follows from the property of sort and the easily proven units l= units (sort l) �

Theorem 2 is then the simple consequence of Lemma 18(1,3). We stress that we have
proven the theorem without even considering any handler for non-determinism. That is,
the theorem is valid for all possible implementations. This is in stark contrast with the pre-
viously available equational proof, which required very strong assumptions (which many
implementations of non-determinism do not satisfy).

C Proof of the GetPut Law of State

The GetPut law to be proven here is as follows, where the equivalence it to be taken modulo
the handler for State � presented in §4 and Cs is an evaluation context with no handlers for
either Get or Put.

let x = get in Cs[put x] ≡h let x = get in Cs[val ()]

Proof. Let C’s be another evaluation context with no handlers for State and let g′s
be [[C’s]]. We write k for [[Cs[val −]]], which is λρ. λx. [[Cs]]ρV(x). We have to ver-
ify that � ◦ (g′sρ) precomposed with the denotations of let x = get in Cs[put x] and
let x = get in Cs[val ()] gives identical results. We compute the denotations as follows

[[get]]ρ E(Get, �, λs. V(s))

[[Cs[put x]]]ρ E(Put, ρ.x, kρ)

[[let x = get in Cs[put x]]]ρ E(Get, �, λs. E(Put, s, kρ ′))
where ρ ′ is ρ × x : s

[[let x = get in Cs[val ()]]]ρ E(Get, �, λs. kρ ′�)

λρ. �(g′sρ [[let x = get in Cs[put x]]]ρ) λρ. V(λs. (�E(Put, s, g′sρ ◦ kρ ′))¶s)

= λρ. V(λs. (V(λs′. (�(g′sρ(kρ ′�)))¶s))¶s)

= λρ. V(λs. (�(g′sρ(kρ ′�)))¶s)

λρ. �(g′sρ [[let x = get in Cs[val ()]]]ρ) λρ. V(λs. (�(g′sρ(kρ ′�)))¶s) �

D Reasoning with State

As an illustration of using the (generalized) equational laws modulo handleS, we take
an example adapted from Mu (2019a) on deriving monadic programs from specifica-
tions: deriving an efficient n-queens solver from the obvious specification of producing
all permutations of queen arrangement in columns and filtering out those where queens
beat each other diagonally. The test of safety of a queen arrangement involves the
conversion of the list of queen column positions to the list of up- and down-diagonal
positions, which can be written in terms of scanl. The common list processing function
scanl : (b→a→b) → b → a list → b list is inductively defined as

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

40 O. Kiselyov et al.

scanl f s [] ≡ [s]
scanl f s (x :: xs) ≡ s :: scanl f (f s x) xs

such that scanl f s [x1, x2, . . . , xn]= [s, f s x1, f (f s x1) x2, . . . , f (f . . .) xn]. It is the gener-
alization of the earlier foldl: the last element of scanl f s xs is foldl f s xs. One may discern
in the scanl processing the combination of building a list according to the current state s
and updating the current state. From the point of view of the n-queens solver derivation, it
is desirable to separate the two aspects: represent the list consumption and production into
a foldr (which could later be fused with other list processors) and move the state ‘out of
the way’, that is, to update it as a side-effect.

In an upshot, we would like to perform the scanl processing using mutable state, as

scanM : (b → a → b) → b → a list ⇒ b list
scanM := �f.�s0.fn xs. put s0; foldr g (fn ().[]) xs � ()

The foldr’s step function g is defined by:

g := �x.�u.fn (). let s = get in (f s x::) � (put (f s x); u � ())
We would like to relate scanM to scanl and hence verify that it does what we want from it.
To this end, we derive the inductive characterization of scanM, using the equational laws
of State, among others:

scanM f s0 [] ≡h put s0; []
scanM f s0 (x::xs)
≡h put s0; g x (foldr g (fn (). []) xs) � ()
≡h put s0; (fn (). let s = get in

(f s x::) � (put (f s x); (foldr g (fn (). []) xs) � ())) � ()
≡h put s0; let s = get in

(f s x::) � (put (f s x); (foldr g (fn (). []) xs) � ())
{ PutGet law }
≡h put s0; (f s0 x::) � (put (f s0 x); (foldr g (fn (). []) xs) � ())
{General PutPut law }
≡h (f s0 x::) � (put (f s0 x); (foldr g (fn (). []) xs) � ())
≡h (f s0 x::) � scanM f (f s0 x) xs

We have taken advantage of the general PutPut law to get rid of put s0 when another put
is present in the evaluation context, but not immediately adjacent. One can now see by
straightforward induction:

scanM f s xs ≡h let ys = (scanl f s xs) in put (last ys); (tail ys)
(where last gives the last element of the list). Thus scanM indeed does the scanl processing.

E Reasoning with Non-determinism and Local State

This section illustrates the reasoning with non-determinism and local state, relying on the
≡NS equivalence introduced in §7.1. We continue the scanM example from §D. Recall, the
goal was to derive an efficient n-queens solver from an inefficient but obviously correct
specification. The specification is to non-deterministically generate a list xs of queen col-
umn positions, and filter out ‘bad’ arrangements. The filtering can be expressed as follows
(see the pattern discussed in §6.4)

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

Not by equations alone 41

filtert1 ok f s0 xs := if all ok � (tail � scanl f s0 xs) then xs else fail

where scanl f s0 (with appropriately chosen f and s0, which we elide) computes diagonals
for each queen, and all ok checks that they are ‘safe’ (that is, no queen is at the diagonal
of another). Here ok:t→bool and

all:(t→bool) → t list → bool := �ok. foldr (�x.�a. band (ok x) a) true

In §D we converted scanl f s0 to the stateful scanM expression, so that the filtering can be
written as

filtert2 ok f s0 xs :=
let ys = scanM f s0 � xs in
if all ok ys then xs else fail

where scanM was written as a foldr (of a bit complicated stateful function). The reason, we
said in §D, is to later fuse it, with the foldr in all ok. We now demonstrate the fused result:

filtert3 ok f s0 xs := put s0; (foldr g (fn (). nil) xs � ())
where
g := �x.�u.fn ().

let s = get in
if ok (f s x) then (put (f s x); ((x::) � (u � ()))) else fail

We replaced two traversals of xs (one in scanl/scanM and the other in all) with the single
traversal. Most importantly, once we detect an unsafe diagonal (that is, once the ok test
returns false), we fail right away, without further computations and tests.

Theorem 3. For all ok:t→bool, f:t→t’→t, s0:t and xs:t’ list, we have
filtert2 ok f s0 xs ≡NS filtert3 ok f s0 xs

The proof, given below, is rather simple. The key property is

if (�xs.false) � scanM f s xs then x::xs else fail ≡NS fail

which is the immediate corollary of Lemma 11.
Expanding all definitions, the statement of Thm. 3 reads as follows

put s0; (let ys = foldr g (fn ().[]) xs � () in if all ok ys then xs else fail)
≡NS put s0; (foldr g’ (fn ().[]) xs � ())
where
g := �x.�u.fn ().

let s = get in (f s x::) � (put (f s x); u � ())
g’ := �x.�u.fn ().

let s = get in
if ok (f s x) then (put (f s x); ((x::) � (u � ()))) else fail

from which follows that it is enough to prove

let ys = foldr g (fn ().[]) xs � () in if all ok ys then xs else fail
≡NS foldr g’ (fn ().[]) xs � ())

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

42 O. Kiselyov et al.

Proof. The proof is by induction on the list xs. We elide the trivial base case. For the
inductive case x::xs we have:

let ys = foldr g (fn ().[]) (x::xs) � () in
if all ok ys then (x::xs) else fail
≡NS { expanding foldr }
let ys = let s = get in

(f s x::) � (put (f s x); foldr g (fn ().[]) xs � ()) in
if all ok ys then (x::xs) else fail
≡NS { associativity, lifting compositions }
let s = get in
let ys’ = (put (f s x); foldr g (fn ().[]) xs � ()) in

if all ok (f s x::ys’) then (x::xs) else fail
≡NS { definition of all }
let s = get in
let ys’ = (put (f s x); foldr g (fn ().[]) xs � ()) in

if ok (f s x) && all ok ys’ then (x::xs) else fail
≡NS { case analysis }
let s = get in
if ok (f s x) then

let ys’ = (put (f s x); foldr g (fn ().[]) xs � ()) in
if all ok ys’ then (x::xs) else fail

else
let ys’ = (put (f s x); foldr g (fn ().[]) xs � ()) in
fail
≡NS { Lemma 11 }
let s = get in
if ok (f s x) then

let ys’ = (put (f s x); foldr g (fn ().[]) xs � ()) in
if all ok ys’ then (x::xs) else fail

else fail
≡NS { associativity, lifting compositions }
let s = get in
if ok (f s x) then

put (f s x);
(x::) � (let ys’ = foldr g (fn ().[]) xs � () in if all ok ys’ then xs else fail)

else fail
≡NS { inductive hypothesis }
let s = get in
if ok (f s x) then

put (f s x); ((x::) � foldr g’ (fn ().[]) xs � ())
else fail
≡NS { definition of foldr and g’ }
foldr g’ (fn ().[]) (x::xs) � ())

�

https://doi.org/10.1017/S0956796820000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000271

	Not by equations alone: Reasoning with extensible effects
	Introduction
	Equational reasoning for effectful functional programs: A critical view
	Contributions
	Paper structure

	Preview
	Handling variables
	Induction principle

	Basic calculus with effects
	Syntax
	Type system
	Denotational semantics
	Equational laws
	Basic reasoning with non-determinism

	Equivalence modulo handler
	State
	Non-determinism: different handlers, different laws, different use cases
	Laws of non-determinism
	Laws and handlers
	General depth-first non-determinism handler
	Non-determinism with failure
	Laws and handlers: Summary

	Non-determinism and state
	Local state
	Global state

	Related work
	Algebraic effects
	Extensible Denotational Language Specifications
	Bauer and Pretnar's Eff and its Formalizations
	Equational reasoning with monads
	Other related work

	Conclusions
	Proofs of properties of lift
	Free Reasoning with Non-determinism
	Free theorem of non-deterministic list permutation
	Don't care non-determinism

	Proof of the GetPut Law of State
	Reasoning with State
	Reasoning with Non-determinism and Local State

