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Ideal Structure of Multiplier Algebras
of Simple C∗-algebras With Real Rank Zero
To my wife Montserrat

Francesc Perera

Abstract. We give a description of the monoid of Murray-von Neumann equivalence classes of projec-
tions for multiplier algebras of a wide class of σ-unital simple C∗-algebras A with real rank zero and
stable rank one. The lattice of ideals of this monoid, which is known to be crucial for understanding
the ideal structure of the multiplier algebraM(A), is therefore analyzed. In important cases it is shown
that, if A has finite scale then the quotient ofM(A) modulo any closed ideal I that properly contains A
has stable rank one. The intricacy of the ideal structure ofM(A) is reflected in the fact thatM(A) can
have uncountably many different quotients, each one having uncountably many closed ideals forming
a chain with respect to inclusion.

Introduction

Let A be a non-unital C∗-algebra with a faithful and non-degenerate action on a
Hilbert space H. An element x in B(H) is a multiplier for A if xA ⊂ A and Ax ⊂ A.
The multiplier algebra of A is defined as

M(A) = {x ∈ B(H) | x is a multiplier for A}.

The representation of M(A) as the C∗-algebra of double centralizers shows that the
construction of the multiplier algebra is independent of the particular Hilbert space
H (see [42, Proposition 3.12.3]).

Denote by K(H) the algebra of compact operators on H. Then it is well-known
that M

(
K(H)

)
= B(H) and that the Calkin algebra B(H)/K(H) is simple, and

therefore it is natural to ask when the corona algebra M(A)/A is simple. This ques-
tion has been considered in different instances (see e.g. [34], [56], [35]), being com-
pletely solved in case A is separable and simple: M(A)/A is simple if and only if A is
elementary or A has continuous scale ([35, Theorem 2.10]).

Many papers have been concerned with M(A) and the ideal structure of M(A)/A.
To cite a few examples, see [20], [10], [34], [54], [55], [56], [35], [36], [58], [59],
[60], [30]. Our main objective is to analyze the lattice of closed ideals of M(A)/A
when the scale is not continuous and under certain assumptions on A which in-
clude the case of AF algebras. We therefore work within the class of σ-unital simple
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C∗-algebras A with real rank zero (in the sense of [11]) and stable rank one. We
also assume that V (A), the monoid of Murray-von Neumann equivalence classes of
projections in M∞(A), is strictly unperforated (equivalently, K0(A) is weakly unper-
forated). Such a class has been considered successfully in [30], where the additive
structure of K0

(
M(A)

)
is completely described, as is the order structure in certain

cases. As a consequence, several results concerning stably cofinite closed ideals follow.
For expository reasons, we shall denote by N the class of non-elementary C∗-algebras
satisfying the abovementioned conditions. It is remarkable that there are many sim-
ple C∗-algebras that fall in this class, as noted by Lin in [36]. Among them there are
the C∗-algebras classified by Elliott in [24] and also stabilizations of the ones con-
sidered in [28]. It is important to note that there are no examples known, at least
at present, of C∗-algebras with real rank zero and stable rank one whose K0’s are not
weakly unperforated (though there are examples of simple C∗-algebras with real rank
one and stable rank one whose K0’s have perforation, see [50]). As a matter of fact, if
A is a unital simple C∗-algebra with real rank zero, then V (A) is strictly unperforated
if and only if the well-known open question (FCQ) has a positive answer for A (see
[5]), as shown in [43, Corollary 3.10].

Our work relies on focusing on the non-stable K-theory of M(A), that is,
V

(
M(A)

)
, which by a result of Zhang reflects the lattice of all closed ideals of M(A),

instead of just the stably cofinite ones. We therefore describe V
(
M(A)

)
in terms of

V (A) and a certain semigroup of functions on the state space of V (A). This descrip-
tion allows to systematize the study of the ideal structure of M(A)/A and provides
a new insight into some of the previous work done for AF algebras. For example,
if the algebra A has exactly n extremal infinite quasitraces, then there is a quotient
of M(A)/A that has exactly 2n closed ideals. This generalizes a result of Lin ([34]).
Some of our results use the additional hypothesis that M(A) has also real rank zero.
This occurs, for example, if A is σ-unital, with real rank zero and stable rank one,
and K1(A) = 0, as shown by Lin in [37, Theorem 10]. In general, the vanishing of
K1 is a necessary condition for M(A) to have real rank zero in case A is stable (see
[57]). Since M(A) does not have cancellation, our method of proof leads to work
with non-cancellative monoids; this language provides cleaner proofs and major in-
tuition of how a “global picture” of the lattice of closed ideals of M(A)/A could be
traced. Moreover, many of the results obtained concerning the ideal lattice of M(A)
will be used in a subsequent paper ([44]) to analyze in an efficient way the extremal
richness of M(A) and M(A)/A (see also [12] and [33]).

The paper is organized as follows. In the first Section we summarize the basic
notions. In Sections 2 and 3, an isomorphism from V

(
M(A)

)
onto a disjoint union

of V (A) and a semigroup of lower semicontinuous affine functions over the state
space of V (A) is established. The algebras with finite scale are considered in Section 4.
We provide a characterization in terms of a stable rank condition on a quotient of
M(A)/A that in turn yields an answer to a question of Goodearl in [30]. Semifinite
quasitraces are the main topic of Section 5. Using techniques from [43] we get a
characterization of algebras with bounded scale that extends a result of Blackadar
in [4]. The methods developed in previous sections are used in Section 6 to obtain
results on multiplier algebras with unbounded scale. In particular, we construct a
chain of uncountably many closed ideals if the algebra A has (at least) one infinite
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extremal quasitrace which is not isolated. In Section 7, we use the concept of stable
rank of an element of a monoid introduced in [3] to compute the stable rank of M(A)
which, for non-unital A, can only take the values 2 or ∞, depending on the scale of
A.

Part of this work was carried out while the author was visiting the University of
California at Santa Barbara. He wishes to express his gratitude to the mathematics
department for the hospitality and working conditions provided. He is also grateful
to Pere Ara for his guidance and his support, to Ken Goodearl for extensive comments
on a preliminary draft, and to the referee for very useful suggestions that led to a
better presentation of this paper.

1 Notation and Preliminaries

In this section we recall some basic definitions on monoids and spaces of functions,
and we fix the notation that will be used in our work. Since the literature concerning
abelian monoids is quite fragmentary, we have given some references in order, we
hope, to help the reader tracing back the history of some of the concepts.

All monoids in this paper will be abelian. We shall write them additively and we
shall use 0 for their identity element. The operation on a monoid M defines a natural
(translation-invariant) preordering by:

x ≤ y ⇐⇒ y = x + z for some z in M.

This preordering is called the algebraic preordering, and M is said to be algebraically
ordered (see, for example, [6, 2.1.1]).

We say that a monoid M has refinement (or that M is a refinement monoid) if, for
all x1, x2, y1, y2 in M that satisfy x1 + x2 = y1 + y2 there exist elements zi j in M, for

i, j = 1, 2, such that
∑2

j=1 zi j = xi and
∑2

i=1 zi j = y j (e.g. [18], [52]). We say
that M is a Riesz monoid provided that M satisfies the Riesz Decomposition Property,
that is, whenever x, y1, y2 in M satisfy x ≤ y1 + y2, then there exist x1, x2 in M such
that x = x1 + x2 with xi ≤ yi for all i (see, for example, [53]). In the presence
of cancellation, these properties are well-known to be equivalent, as is seen in [26,
Proposition 2.1]. However, in general, the Riesz Decomposition Property is weaker
than the refinement property.

A non-zero element u in M is called an order-unit if for any x in M there exists
a natural number n such that x ≤ nu (cf. [9]). A monoid M is said to be conical
provided that the set M∗ of non-zero elements is closed under addition (see, e.g. [2],
[3]). For any C∗-algebra A, we denote by V (A) the monoid of Murray-von Neumann
equivalence classes of projections from M∞(A). (As usual, if p and q are projections
in M∞(A), we use p ∼ q to indicate Murray-von Neumann equivalence, whereas
p � q means that p ∼ q ′ for some projection q ′ ≤ q.) Note that V (A) is conical and
in case A is unital, then [1A] is an order-unit for V (A).

A non-empty subset S of a monoid M which is a submonoid and order-hereditary
(that is, if x ≤ y and y ∈ S then x ∈ S) will be called an order-ideal ([3]). We say
that a monoid M is simple ([3]) if M has precisely two order-ideals, namely the ideal
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generated by 0 and M. Note that, if M is conical, then M is simple if and only if M is
non-zero and every non-zero element is an order-unit.

Let M be a monoid and let I be an order-ideal of M. Define a congruence on
M as follows: if x, y ∈ M, write x ∼ y if and only if there exist z,w in I such that
x + z = y + w. Denote by M/I the quotient of M modulo this congruence, and by
[x] the congruence class of an element x in M. Then [x] + [y] = [x + y], and thus
M/I becomes a monoid, referred as to the quotient monoid of M modulo I (see [3]).
Observe that, if u in M is an order-unit, then [u] is an order-unit for M/I.

Let M be a partially ordered monoid. A non-empty subset I of M is called an
interval in M if I is upward directed and order-hereditary (see [27], [31]). We denote
by Λ(M) the set of all intervals in M. Note that Λ(M) becomes an abelian monoid
with operation defined by

I + J = {z ∈ M | z ≤ x + y for some x in I, y in J}.

If I ∈ Λ(M), we say that I is countably generated ([43]) provided that I has a countable
cofinal subset (i.e., there is a sequence {xn} of elements in I such that, for any x in I,
there exists n in N such that x ≤ xn). We denote by Λσ(M) the set of all intervals in M
that are countably generated. If D is a fixed interval in Λσ(M), we denote by Λσ,D(M)
the submonoid of Λσ(M) whose elements are those intervals I in Λσ(M) such that
I ⊆ nD for some n.

Let K be a compact convex set. Following [1], we use Aff(K) to denote the group of
all affine continuous real-valued functions on K. We denote by LAff(K) the monoid
of all affine and lower semicontinuous functions on K with values on R ∪ {+∞}.
Let LAffσ(K) be the submonoid of LAff(K) whose elements are pointwise suprema
of increasing sequences of affine continuous functions on K. If d ∈ LAffσ(K), we
denote by LAffσ,d(K) the submonoid of elements in LAffσ(K) that are bounded by
nd for some natural number n. The use of the superscript + (resp. ++) will always
refer to positive (resp. strictly positive) functions.

2 The Ideals of M(A)

In [56], Zhang established the exact relationship between the closed ideals of the
multiplier algebra of a σ-unital C∗-algebra A with real rank zero and the order-ideals
of its monoid V

(
M(A)

)
of equivalence classes of projections. We include below a

slight re-statement of his result. The rest of the section is devoted to representing
V

(
M(A)

)
(if A has furthermore stable rank one) as a certain monoid of intervals

over V (A), in analogy with [30].
If A is any C∗-algebra, denote by Lc(A) the lattice of closed ideals of A, and by

L
(

V (A)
)

the lattice of order-ideals of V (A).

Theorem 2.1 ([56, Theorem 2.3]) Let A be a σ-unital C∗-algebra with real rank

zero. Then the map Lc

(
M(A)

) → L
(

V
(
M(A)

))
given by I �→ V (I) is a lattice

isomorphism.
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Definition 2.2 (cf. [21]) Let A be a C∗-algebra. Define the dimension range of A as
the set:

D(A) = {[p] ∈ V (A) | p is a projection in A}.
If {en} is an increasing approximate unit for A consisting of projections, then D(A)
can be described as a countably generated interval which has {[en]} as a countable
cofinal subset.

Let A be a σ-unital C∗-algebra with real rank zero. If e is a projection in
Mn

(
M(A)

)
, then eMn(A)e is a σ-unital C∗-subalgebra of Mn(A) by [30, Lemma 1.3],

and it has an approximate identity consisting of an increasing sequence of projections
(see [57, Proposition 1.2]). Define, as in [30, 1.4],

θ(e) = {[p] ∈ V (A) | p is a projection in eM∞(A)e}.

Then θ(e) is an interval in V (A). In fact,

θ(e) = {[p] ∈ V (A) | p is a projection in eMn(A)e}
= {[p] ∈ V (A) | p � e}
= {[p] ∈ V (A) | p � ek for some k},

where e1 ≤ e2 ≤ · · · is an increasing approximate unit for the algebra eMn(A)e
consisting of projections. On the other hand, it is clear that θ(e) ⊆ nD(A).

We will need the following result, which is essentially [30, Proposition 1.8]; for
our purposes it needs only a minor modification.

Proposition 2.3 Let A be a σ-unital C∗-algebra with real rank zero and stable rank
one. Let g be a projection in M∞

(
M(A)

)
and let X and Y be countably generated

intervals in V (A) such that X + Y = θ(g). Then g = e + f for some orthogonal
projections e and f in M∞

(
M(A)

)
such that θ(e) = X and θ( f ) = Y .

Let M and N be monoids and let u in M and v in N be order-units. A monoid mor-
phism (that is, an additive map) f : (M, u) → (N, v) is called normalized provided
that f (u) = v. The following is the monoid-theoretic version of [30, Theorem 1.10].

Theorem 2.4 Let A be a σ-unital C∗-algebra with real rank zero and stable rank one.

Then there exists a normalized monoid isomorphism from
(

V
(
M(A)

)
, [1M(A)]

)
onto

the abelian monoid
(

W D
σ

(
V (A)

)
,D

)
whose elements are those countably generated

intervals I in V (A) for which there exist n in N and a countably generated interval J in
V (A) such that I + J = nD, where D = D(A).

Proof It is proved in [30, Proposition 1.6] that, if e, f are projections in M∞
(
M(A)

)
,

then θ(e ⊕ f ) = θ(e) + θ( f ), and if e ∈ Mn

(
M(A)

)
, then there exists a projection g

in Mn

(
M(A)

)
such that θ(e) + θ(g) = nD. Also, in [30, Proposition 1.7], it is seen

that e ∼ f if and only if θ(e) = θ( f ).
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Define a map γ : V
(
M(A)

) → W D
σ

(
V (A)

)
by γ(v) = θ(e), where v = [e] for

some projection e in M∞
(
M(A)

)
. Using the observations above, it is clear that γ

is an injective monoid morphism. Note that D is an order-unit for W D
σ

(
V (A)

)
and

that γ([1M(A)]) = D. Hence γ is normalized. To see that γ is bijective, let I ∈
W D

σ

(
V (A)

)
. There exists a countably generated interval J and a positive integer n

such that I + J = nD. Observe that, in fact, D = θ(1M(A)) and so nD = θ(1Mn(M(A))).
Hence, by Proposition 2.3, there exist orthogonal projections e, f in Mn

(
M(A)

)
such

that θ(e) = I and θ( f ) = J. Thus I = γ([e]).

As a first application of the theorem, it is possible to relate the monoids of equiv-
alence classes of projections of multiplier algebras of hereditary C∗-subalgebras of A
to the monoid S(A) of equivalence classes of positive elements in the sense of Cuntz
(see [15], [8], [35], [39], [48] and [43]). We recall the definitions for the convenience
of the reader. If a, b ∈ A+, we write a � b if there exist elements rn, sn in A such that
a = limn→∞ rnbsn. When restricted to projections, the relation � gives the usual
Murray-von Neumann subequivalence (see [48, Proposition 2.1]). We write a ∼ b
if a � b and b � a. If x, y ∈ M∞(A)+, say that x ∼ y if and only if there exists
a natural number n such that x ∼ y in Mn(A). Denote by 〈x〉 the equivalence class
of x with respect to ∼, and define 〈x〉 + 〈y〉 =

〈(
x 0
0 y

)〉
. Let S(A) be the set of all

∼-equivalence classes in M∞(A)+. This is an abelian monoid, which is partially or-
dered with 〈x〉 ≤ 〈y〉 if and only if x � y. By [43, Lemma 2.2], if A is σ-unital, then
S(A) has an order-unit, which we shall denote by uS(A). If x ∈ A+, denote by Ax the
hereditary C∗-subalgebra of A generated by x, that is, Ax = xAx.

Corollary 2.5 Let A be a σ-unital simple C∗-algebra with real rank zero and stable

rank one. Let n ∈ N and x ∈ Mn(A) \ {0}. Then V
(

M
(

Mn(A)x

))
is isomorphic to a

submonoid of S(A).

Proof Since V
(

Mn(A)x

) ∼= V (A) we conclude from Theorem 2.4 that the monoid

V
(

M
(

Mn(A)x

))
is isomorphic to a submonoid of Λσ,D

(
V (A)

)
. Now, by [43, The-

orem 2.8], S(A) is order-isomorphic to Λσ,D

(
V (A)

)
.

3 The Monoid Representation

The isomorphism between V
(
M(A)

)
and W D

σ

(
V (A)

)
given in Theorem 2.4 for σ-

unital C∗-algebras with real rank zero and stable rank one allows us to concentrate on
monoids of intervals in a given monoid. We therefore work with the monoid W D

σ (M)
of countably generated intervals I in M such that there exist n in N and a countably
generated interval J with I + J = nD. Here M is a monoid and D is a countably
generated interval in M which is generating, that is, D generates M as a monoid.
Our goal is to relate W D

σ (M) to a monoid of lower semicontinuous affine functions
defined on the state space of M, and translate subsequently the results to the setting
of simple C∗-algebras. The resulting representation of V

(
M(A)

)
is connected with

the ones obtained by Elliott in [22] and by Lin in [36, Theorem 7].
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Definition 3.1 (cf. [2]) Let M be a monoid. For x and y in M we write x ≤∗ y
provided that there exists a non-zero element z in M such that x + z = y. An atom of
M is a non-zero element a in M such that there is no b in M satisfying 0 ≤∗ b ≤∗ a.
We say that M is an atomic monoid if every element of M can be written as a sum of
atoms.

If x, y ∈ M, we write as usual x < y if and only if x ≤ y and x �= y. Note that, if
M is cancellative, then both relations < and ≤∗ coincide.

Recall that a state on a preordered abelian group G with order-unit u is a group
morphism s : G → R such that s(G+) ⊆ R+ and s(u) = 1 (see [26]).

Definition 3.2 (cf. [9]) Let (M, u) be a monoid with order-unit. A state on (M, u)
is a monoid morphism s : M → R+ such that s(u) = 1. We denote by St(M, u) the
set of states on (M, u).

It is easy to see that, if (M, u) is a monoid with order-unit, then

St(M, u) = St
(

G(M), u
)

where G(M) is the Grothendieck group of M. A state on (M, u) is said to be discrete
if s

(
G(M)

)
is a cyclic subgroup of R ([26]).

If M is an algebraically ordered conical simple monoid with order-unit u, then
St(M, u) is non-empty if and only if M is partially ordered (see, e.g. [26, Corol-
lary 4.4]). It is a standard fact that, if M is an atomless simple monoid and u is an
order-unit in M, then St(M, u) has no discrete states.

Definition 3.3 ([31], [30]) Let M be a monoid. An interval I in M is soft if and only
if I is non-zero and for each x in I, there exist y in I and n in N such that (n+1)x ≤ ny.

As noted in [30, Section 4] (see also [31, Lemma 7.4, Proposition 7.5]), if M is the
positive cone of a simple and weakly unperforated Riesz group G, then every non-
zero interval in M is either soft or of the form [0, x] for some non-zero element x in
M. This fact can be extended to the non-cancellative case, for countably generated
intervals.

Lemma 3.4 Let M be a conical simple refinement monoid. Then every element in
Λσ(M) is either soft or of the form [0, x] for some x in M, but not both.

Proof Suppose first that M is atomless. We show that every interval I generated by
a strictly increasing sequence x1 < x2 < · · · is soft. There exists t in M∗ such that
x1 + t = x2. Since M has no atoms, is simple and has refinement, there exists y in M∗

such that y ≤∗ {t, x1}. Further, y is an order-unit, so that x1 ≤ ky for some k. Now:

(k + 1)x1 = kx1 + x1 ≤ kx1 + ky = k(x1 + y) ≤∗ k(x1 + t) = kx2.

Similarly, for each i, there exists k with (k + 1)xi ≤ kxi+1. Hence I is soft. Note finally
that every countably generated interval is either generated by a strictly increasing
sequence or of the form [0, x] for some x in M.
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Now suppose that M has an atom and hence is atomic, because it is simple and
has refinement. By [2, Lemma 1.6], M is the infinite cyclic monoid and the result is
clear in that case.

The following is the appropriate formulation in the monoid-theoretical context of
the notion of weak unperforation for partially ordered abelian groups (see [7], [23,
2.1], [30, Section 8]).

Definition 3.5 Let M be a cancellative monoid. We say that M is strictly unperfo-
rated if, whenever nx < ny for some n in N, it follows that x < y.

Let M be a monoid and assume that there exists an order-unit u in M. Write
Su = St(M, u) and denote by φu : M → Aff(Su) the natural representation map
(given by evaluation). If f , g ∈ Aff(Su), we write f � g for uniform strict inequality,
that is, f (s) < g(s) for all s in Su. In some important cases it is possible to recover the
ordering in M from that of Aff(Su). We record this in the following (known) lemma,
which is a slight generalization of a result due to Effros, Handelman and Shen ([19,
Theorem 1.4]).

Lemma 3.6 Let M be a strictly unperforated cancellative monoid and let u in M be
an order-unit. Let x, y ∈ M. Suppose that φu(x) � φu(y). Then x < y.

Proof If φu(x) � φu(y), then there exists m in N such that m([y] − [x]) is an order-
unit in G(M), where G(M) is the Grothendieck group of M (see [26, Theorem 4.12]).
In particular, m([y] − [x]) > 0 and since M is cancellative, this implies that mx ≤∗

my in M, whence x < y, because M is strictly unperforated and cancellative.

If X ∈ Λ(M), set ρ(X) = supφu(X), where “sup” stands for pointwise supremum.
Then ρ(X) ∈ LAff(Su)+. The following is similar to [30, Lemma 5.2].

Lemma 3.7 Let M be a simple refinement monoid which is non-atomic, strictly un-
perforated and cancellative. Let u ∈ M∗.

(1) If X is a non-zero element in Λ(M), then ρ(X) ∈ LAff(Su)++ and it is bounded
away from zero.

(2) ρ(X + Y ) = ρ(X) + ρ(Y ) for any intervals X and Y in M.
(3) If f ∈ LAff(Su)++, then ρ ′( f ) = {x ∈ M | φu(x) � f } is a soft interval in M and

ρρ ′( f ) = f .
(4) If X ∈ Λ(M) is soft, then ρ ′ρ(X) = X.

Proof If X ∈ Λ(M) and it is non-zero, then X contains a non-zero element x in M,
which is an order-unit (because M is simple). Then ρ(X) ∈ LAff(Su)++. Since x is an
order-unit, there exists a natural number n such that u ≤ nx, and so ρ(X) ≥ φu(x) ≥
1/n. Thus (1) is established.

Since φu(X + Y ) = φu(X) + φu(Y ), we get (2).
Let f ∈ LAff(Su)++. Evidently ρ ′( f ) is non-empty and order-hereditary. To see

that it is upward directed, let x, y ∈ ρ ′( f ) and g = sup{φu(x), φu(y)}. Then g is
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upper semicontinuous, convex and g � f . By [26, Theorem 11.12], there exists h in
Aff(Su) such that g � h � f . Choose ε > 0 satisfying g � h−ε� h+ε� f . Since
M has no discrete states and it is a refinement monoid, we can use [41, Theorem 3.5]
to conclude that the image of G(M)+ under the natural representation map φu is
dense in Aff(Su)+. (Notice also that G(M)+ = M.) Therefore there exists z in M such
that ‖h − φu(z)‖ < ε. It follows then that φu(x), φu(y) � φu(z) and thus x, y ≤ z
by Lemma 3.6. Note also that z ∈ ρ ′( f ). This shows that ρ ′( f ) is an interval. To see
that ρρ ′( f ) = f , let s ∈ Su and take α < f (s). By [26, Theorem 11.8], there exists g
in Aff(Su)++ such that α < g(s) and g � f . Let ε > 0 be such that α < g(s) − ε and
g + ε � f . By [41, Theorem 3.5], there exists w in M satisfying ‖g − φu(w)‖ < ε.
Therefore φu(w)(s) > α and φu(w) � f , proving that ρρ ′( f ) = f . Finally, let
x ∈ ρ ′( f ). Then f −φu(x) is a strictly positive lower semicontinuous affine function.
A similar argument to the one used before shows that there exists a non-zero element
y in M such that x + y ∈ ρ ′( f ). Thus the proof of [31, Lemma 7.4] implies that ρ ′( f )
is soft and generating. This gives (3).

For (4), see the arguments used in [31, Proposition 7.7].

Let M be a partially ordered monoid, and assume that u is an order-unit in M.
Let D be a generating interval in M with a countable cofinal subset and set d =
supφu(D) = ρ(D). Define:

W d
σ(Su) = { f ∈ LAffσ(Su)++ | f + g = nd for some g in LAffσ(Su)++ and n in N}.

Notice that W d
σ(Su) can be also described as the elements f in LAffσ(Su)++ such that

f + g = nd for some n and some g in LAffσ(Su)+.
Consider now the set M�W d

σ(Su), where� stands for disjoint union of sets. Define
a monoid structure on M � W d

σ(Su) by extending the given addition operations on
M and W d

σ(Su) and by x + f = ρ[0, x] + f = φu(x) + f , if x ∈ M and f ∈ W d
σ(Su).

Note that x + f ∈ W d
σ(Su) and that d is an order-unit for M �W d

σ(Su).

Theorem 3.8 Let M be a conical simple refinement monoid and let u ∈ M∗. Let D be
a soft non-zero interval in M with a countable cofinal subset. Define a map

ϕ :
(

W D
σ (M),D

) → (
M �W d

σ(Su), d
)

by ϕ(X) = ρ(X) ∈ W d
σ(Su) if X is a soft interval, and ϕ([0, x]) = x if x ∈ M. Then

ϕ is a normalized monoid morphism. If, further, M is non-atomic, strictly unperforated
and cancellative, then ϕ is an isomorphism.

Proof First note that, if X and Y are intervals in M, then

ρ(X + Y ) = sup{φu(x + y) | x ∈ X and y ∈ Y} = ρ(X) + ρ(Y ).

In particular, if X ∈ W D
σ (M) and is soft, then ρ(X) ∈ W d

σ(Su). Since every count-
ably generated interval in M is either soft or of the form [0, x] for some x in M (by
Lemma 3.4), we see that ϕ is well-defined.
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(i) ϕ is a normalized monoid morphism. We only need to check that
ϕ([0, x] + X) = ϕ([0, x]) + ϕ(X), if x ∈ M∗ and X is a soft interval in W D

σ (M).
Since X is soft, we have that [0, x] + X is soft (see the proof of [31, Lemma 8.1]).
Then ϕ([0, x] + X) = ρ([0, x] + X) = ρ([0, x]) + ρ(X) = φu(x) + ρ(X) = x + ρ(X) =
ϕ([0, x]) + ϕ(X). Note also that ϕ(D) = ρ(D) = d, because D is soft.

Now assume that M is moreover non-atomic, strictly unperforated and cancella-
tive.

(ii) ϕ is injective. Suppose that ϕ(X) = ϕ(Y ). Note that, by definition of ϕ and
by Lemma 3.4, it is not possible for just one of X or Y to be soft. If both X and Y
are soft, then ϕ(X) = ρ(X) = ρ(Y ) = ϕ(Y ). Thus X = ρ ′ρ(X) = ρ ′ρ(Y ) = Y , by
Lemma 3.7. If, otherwise, neither X nor Y are soft, then X = [0, x] and Y = [0, y]
for some elements x, y in M, and so ϕ(X) = x = y = ϕ(Y ). Hence X = Y .

(iii) ϕ is surjective. If x ∈ M, then x comes from [0, x]. We need an easy observa-
tion here, consisting of the fact that [0, x] ∈ W D

σ (M) whenever x ∈ M:
There exists n such that x ∈ nD. Then, if Y = {y ∈ M | x + y ∈ nD} we have that

[0, x] +Y = nD, by [30, Lemma 3.8]. Using that M is cancellative and D is countably
generated, it is easy to see that Y is countably generated too.

Let f ∈ W d
σ(Su) and take X = ρ ′( f ), which is soft by Lemma 3.7. Notice also that

ρ(X) = f . Since there exist a function h in LAffσ(Su)++ and a natural number n with
f + h = nd, we have that X + ρ ′(h) = nD. Finally, we have to check that X and ρ ′(h)
are countably generated. We know that f = sup gn (pointwise), where {gn} is an
increasing sequence and gi ∈ Aff(Su)++ for all i. Denote by G(M) the Grothendieck
group of M. As in the proof of Lemma 3.7, we can use [41, Theorem 3.5] to con-
clude that the image of G(M)+ under the natural representation map φu is dense in
Aff(Su)+.

If n is large enough, there exist elements xn in M such that 0 � gn − 1/2n �
φu(xn) � gn+1 − 1/2n+1. Since φu(xn) � φu(xn+1), we get that xn ≤ xn+1, by
Lemma 3.6. Also, since f = sup gn, it follows that f = supφu(xn). Therefore xn ∈ X
for all n. Now, if x ∈ X, then φu(x) � supφu(xn). For each s in Su, there exists a nat-
ural number n with s(x) < s(xn). Let Un = {s ∈ Su | s(x) < s(xn)}. Then Su = ∪nUn

and by compactness it follows that there exist xi1 , . . . , xik with Su = ∪lUil . It is clear
that there exists k in N such that xil ≤ xk for all l, and then φu(x) � φu(xk). A second
use of Lemma 3.6 allows us to conclude that x ≤ xk. Hence X is countably generated.
Similarly, ρ ′(h) is countably generated.

We now translate our results to the context of C∗-algebras. Recall that we work
within the class N consisting of all σ-unital (non-unital) simple C∗-algebras A that
are non-elementary, with real rank zero, stable rank one and such that V (A) is strictly
unperforated.

Theorem 3.9 Let A be a C∗-algebra in the class N. Let u ∈ V (A)∗ and set d =
supφu

(
D(A)

)
. Then there is a monoid isomorphism ϕ from V

(
M(A)

)
onto V (A) �

W d
σ(Su) such that ϕ([1M(A)]) = d.

Proof Let M = V (A) and D = D(A). Then M is a conical monoid. Since A has
real rank zero and stable rank one, M is cancellative (by [8, Proposition III.2.4])
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and has refinement (see [56, Theorem 1.1]). It follows from the simplicity of A
that M is also simple, and non-atomic because A is non-elementary. Also, D is
countably generated by the comment in Definition 2.2. By [30, Lemma 11.2], D
is soft and non-zero. By Theorem 2.4, there is a normalized monoid isomorphism

from
(

V
(
M(A)

)
, [1M(A)]

)
onto

(
W D

σ (M),D
)

, and the latter is isomorphic to(
M �W d

σ(Su), d
)

by Theorem 3.8.

Let M be a partially ordered monoid. Let u be an order-unit in M and D a gener-
ating interval in M. Set d = supφu(D). We have considered the monoid of intervals
W D

σ (M), with the algebraic ordering as its natural ordering. We wish to consider
now Λσ,D(M), endowed with the (partial) ordering given by set inclusion. One rea-
son for this is that, in [43, Theorem 2.8], an ordered monoid isomorphism from
S(A) onto Λσ,D

(
V (A)

)
was established, where A is a σ-unital C∗-algebra with real

rank zero, stable rank one and D = D(A). The ordering given by set inclusion in
Λσ,D

(
V (A)

)
corresponds then to the natural ordering of S(A). Consider the monoid

M�LAffσ,d(Su)++ with addition defined as before by x+ f = ρ[0, x]+ f , where x ∈ M
and f ∈ LAffσ,d(Su)++. A similar argument to the one used in Theorem 3.8 shows
that Λσ,D(M) and M�LAffσ,d(Su)++ are isomorphic monoids. Thus we now define in
this monoid an ordering ≤1 that will correspond to set inclusion and, consequently,
another representation of S(A) will be given. The ordering may be expressed in the
following terms:

(1) x ≤1 y for x, y in M if and only if x ≤ y in M.
(2) f ≤1 g for f , g in LAffσ,d(Su)++ if and only if f (s) ≤ g(s) for all s in Su.
(3) x ≤1 f for x in M and f in LAffσ,d(Su)++ if and only if φu(x) � f .
(4) f ≤1 x for x in M and f in LAffσ,d(Su)++ if and only if f ≤1 φu(x).

It is easy to see that this ordering is partial and translation-invariant. We leave the
details to the reader.

Corollary 3.10 Let M be a conical simple refinement monoid, which is also assumed
to be non-atomic, strictly unperforated and cancellative. Let u ∈ M be an order-unit,
D a soft generating interval with a countable cofinal subset and d = supφu(D). Then
there is a normalized ordered monoid isomorphism

ψ : (Λσ,D(M),⊆,D) → (M � LAffσ,d(Su)++,≤1, d),

given by ψ(X) = ρ(X) if X is soft and ψ([0, x]) = x if x ∈ M.

Proof As in Theorem 3.8, we see that ψ is a normalized monoid isomorphism. To
see that it is in fact an order isomorphism, we proceed as follows.

Let X,Y ∈ ΛD
σ (M). If X ⊆ Y , we have four possibilities. If X and Y are not soft,

then X = [0, x] and Y = [0, y] for some elements x, y in M. Hence x ≤ y in M, and
thus ψ(X) ≤ ψ(Y ). If X is soft and Y is not, then Y = [0, y] for some y in M and
ψ(X) = ρ(X) ≤ φu(y), whence ψ(X) ≤ ψ(Y ). If X is not soft (hence of the form
[0, x] where x ∈ M) and Y is soft, then there exists by [31, Lemma 7.4] an order-unit
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v in M such that x + v ∈ Y . Therefore φu(x) � φu(x + v) ≤ ρ(Y ). The case when
both X and Y are soft is trivial.

Conversely, assume that ψ(X) ≤ ψ(Y ) where X,Y ∈ Λσ,D(M). Again we have to
consider four cases. If X and Y are both non-soft, then it clearly follows that X ⊆ Y .
If X is soft and Y is not, that is, Y = [0, y] for some y in M, then

X = ρ ′ρ(X) ⊆ ρ ′
(
φu(y)

)
= {z ∈ M | φu(z) � φu(y)} ⊆ [0, y],

because M is strictly unperforated. If X = [0, x] and Y is soft, set f = ψ(Y ) and
then it follows that φu(x) � f . If Y is generated by an increasing sequence {yn}
in M, then f = supφu(yn). Since Su is compact, there exists n such that φu(x) �
φu(yn), whence x ≤ yn. Thus [0, x] ⊆ Y . Finally, if X and Y are soft it follows from
Condition (4) in Lemma 3.7 that X ⊆ Y .

Theorem 3.11 Let A be a C∗-algebra in the class N. Let u ∈ V (A)∗ and set d =
supφu

(
D(A)

)
. Then there is an ordered monoid isomorphism from

(
S(A),≤)

onto(
V (A)�LAffσ,d(Su)++,≤1

)
that maps uS(A) to d. In particular, S(A) is not cancellative.

Proof Let D = D(A). As in Theorem 3.9, V (A) is a conical refinement monoid,
which is also simple, cancellative and non-atomic. By [43, Theorem 2.8]

(
S(A), uS(A)

)

is order-isomorphic to
(

Λσ,D

(
V (A)

)
,D

)
, where the ordering in the latter is given

by set inclusion. The first part of the result follows then from Corollary 3.10.
To see that S(A) is not cancellative, let x ∈ V (A)∗ and f ∈ LAffσ,d(Su)++. Then

x + f = φu(x) + f , while x �= φu(x).

4 Scales in C∗-Algebras

By using the representation of V
(
M(A)

)
as a disjoint union of V (A) and a monoid

of affine lower semicontinuous functions, we start a (rather) systematic study of the
ideal structure of multiplier algebras, within the class N of σ-unital non-elementary
simple C∗-algebras with real rank zero, stable rank one and with monoid of equiva-
lence classes of projections being strictly unperforated.

One important ingredient in what follows is the scale of the algebra under consid-
eration. Although the notions of continuous, finite or bounded scales in C∗-algebras
have been previously considered (see, e.g. [34], [35]), we shall develop in the present
section some variations of these concepts that will lead to work in a wider context.

Our approach benefits considerably from the previous monoid-theoretical setting
and therefore some of the arguments used relate to monoid techniques. This proce-
dure produces, in addition, simpler proofs.

We begin by proving a result concerning a special ideal that will appear repeatedly
in the sequel. The existence of such an ideal was first noticed by Lin in [34, Lemma 2]
for AF algebras, and later in [35, Remark 2.9] for separable simple C∗-algebras. In
[40], the existence of this ideal was shown for simple C∗-algebras with real rank zero
and having a non-zero finite projection. In the next result we compute the monoid of
isomorphism classes of projections of this ideal for a C∗-algebra in the class N. Our
proof also establishes its existence in this particular context.
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Proposition 4.1 Let A be a C∗-algebra in the class N and let u ∈ V (A)∗. Let L(A) be
the smallest closed ideal of M(A) that properly contains A. Then

V
(

L(A)
) ∼= V (A) � Aff(Su)++.

Proof Set D = D(A) and d = supφu(D). Let L = V (A) � Aff(Su)++, which is an
order-ideal of V (A)�W d

σ(Su). We shall prove the following assertion: L is the smallest
order-ideal of V (A) �W d

σ(Su) that properly contains V (A). Therefore the result will
follow from Theorems 2.1 and 3.9.

Note that V (A) is cancellative (since sr(A) = 1) and that V (A) �= 0. Therefore
K0(A) is partially ordered and non-zero (since K0(A)+ = V (A)), and hence Su =
St(K0(A), u) is non-empty. It follows that L properly contains V (A).

Let I be an order-ideal that properly contains V (A). Let f ∈ I \ V (A) and
g ∈ Aff(Su)++. Since f is lower semicontinuous and g is continuous, there exists a
natural number n such that g � n f . Thus n f − g is affine, strictly positive and lower
semicontinuous. Since f = supm fm for an increasing sequence { fm} in Aff(Su)++

and g � n f , there exists by compactness a natural number l such that g � n fk for
all k ≥ l. It follows that n f − g = supk≥l(n fk − g), and n fk − g ∈ Aff(Su)++ for all

k ≥ l. This implies that g ≤ n f in W d
σ(Su). Since I is an order-ideal of V (A)�W d

σ(Su)
we get that g ∈ I.

Definition 4.2 Let M be a monoid with order-unit u. Suppose that M has a gen-
erating interval D. We say that (M,D) has continuous scale if the affine function
d = supφu(D) is continuous. If A is a simple C∗-algebra with real rank zero and
u ∈ V (A)∗, we say that A has continuous scale if

(
V (A),D(A)

)
has continuous scale.

It should be noted that the definition of continuous scale does not depend on the
particular choice of the order-unit u. If there is another order-unit v in M, then [26,
Proposition 6.17] shows that the state spaces Su and Sv are homeomorphic, whence
it follows that supφu(D) is continuous if and only if supφv(D) is. For simple C∗-
algebras, this definition is of course equivalent to the ones given in [34], [35] and
[36].

At this point, we can derive the characterization of simple C∗-algebras with con-
tinuous scale, which is valid in greater generality ([35, Theorem 2.10]). Our proof,
though, is simple enough to include it.

Corollary 4.3 Let A be a σ-unital non-unital simple C∗-algebra with real rank zero,
stable rank one and with V (A) strictly unperforated. Then M(A)/A is simple if and
only if A is elementary or A has continuous scale.

Proof If A is elementary, then it is well-known that M(A)/A is simple. So, suppose
that A is non-elementary. Let M = V (A) and let u ∈ M∗. Set d = supφu

(
D(A)

)
.

If d is continuous, then all functions in W d
σ(Su) are continuous whence W d

σ(Su) =
Aff(Su)++. By Proposition 4.1, M(A)/A is simple. The converse is proved similarly.
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The next instance that will be of interest to us is that concerning the case where
the scale is bounded, or finite, and not continuous. We first note the following:

Lemma 4.4 Let M be a conical simple refinement monoid with order-unit u, and let
D be a countably generated soft interval in M. Set d = supφu(D). Then d is finite if
and only if it is bounded.

Proof Assume that d is unbounded. Then, for each k there exists sk in Su satisfying
d(sk) > 22k. Note that d = supn φu(xn), for a strictly increasing sequence of elements
{xn} in M∗. Therefore we can choose a subsequence {xnk} such that sk(xnk ) > 22k for
all k. So, without loss of generality, we may assume that sk(xk) > 22k for all k. Define
s =

∑∞
k=1 1/2ksk, an element of Su. Then d(s) = ∞.

We can therefore use the previous lemma as a motivation to give the correspond-
ing notions of bounded and finite scale. For a compact convex set K, denote by ∂eK
the set of its extreme points.

Definition 4.5 Let M be a monoid with order-unit u and generating interval D. We
say that (M,D) has finite scale (resp. bounded scale) if the restriction of d = supφu(D)
to ∂eSu is finite (resp. bounded). If A is a simple C∗-algebra with real rank zero and
u ∈ V (A)∗, we say that A has finite scale (resp. bounded scale) if

(
V (A),D(A)

)
has

finite scale (resp. bounded scale).

Notice again that this definition is independent of the choice of the order-unit u.
The notion of finite scale differs from the one given in [34] in that the condition on d
is required only for the extreme boundary of the state space. On the other hand, if f is
a lower semicontinuous affine function on a compact convex set K and f is bounded
on ∂eK, then f is bounded. Namely, if f ≤ c on ∂eK for some constant bound c, then
because it is affine, f ≤ c on the convex hull K ′ of ∂eK. By lower semicontinuity,
f ≤ c on the closure of K ′, which is K by the Krein-Mil’man Theorem.

Now it is possible to construct simple C∗-algebras with finite but not bounded
scale, as the following example shows. For a compact space X, we denote by L(X) the
additive monoid of lower semicontinuous functions on X with values on R ∪ {+∞}.

Example 4.6 There exists a simple AF algebra whose scale is finite but not bounded.

Proof The line of attack will be to prove first that there exist a simple conical re-
finement monoid M, which is cancellative, unperforated and non-atomic, and a soft
countably generated interval D such that the scale with respect to D is finite but not
bounded. Let X = [0, 1], a compact Hausdorff space. Let C(X,R) be the ring of
real-valued continuous functions over X, which is separable since X is metrizable.
Let G be a countable dense subgroup of C(X,R) containing the constant function
1 and equip G with the strict ordering; hence G+ = { f ∈ G | f � 0} ∪ {0}.
Since G is dense in C(X,R), we have that G is an interpolation group (in the sense
of [26]), and it follows that M = G+ is a refinement monoid (see [26, Proposi-
tion 2.1]). Also M is a simple conical monoid, cancellative, unperforated and non-
atomic. The fact that M contains no atoms can be proved directly, but it also follows
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from the assumption that G is dense in C(X,R), whence it is non-cyclic, and so by
[26, Proposition 14.3] G contains no atoms, and so does M. Fix u = 1 as order-
unit and set S1 = St(M, 1) = St(G, 1). Since G is dense in C(X,R), the restric-
tion map St

(
C(X,R), 1

) → St(G, 1) is an affine homeomorphism. Now note that

St
(

C(X,R)
)

= M+
1 (X), the set of all probability measures over X, by [26, Proposi-

tion 6.8], whence ∂eS1 is affinely homeomorphic to ∂eM+
1 (X), and the latter is home-

omorphic to X, by [26, Proposition 5.24]. Let d0 ∈ L(X)++ be defined by the rule
d0(x) = 1/x for x �= 0 and d0(0) = 2. Let d ∈ L(∂eSu)++ be defined by composing d0

with the homeomorphism from ∂eSu onto X. Using [30, Lemma 7.2], we can extend
d to a lower semicontinuous affine function defined on S1, which is also strictly pos-
itive, and we will denote this function again by d. Set D = { f ∈ M | f � d}. Then
D is a non-zero soft countably generated interval, and ρ(D) = d. Then d restricted
to ∂eS1 is finite but not bounded.

There exists a simple AF C∗-algebra A such that
(

K0(A),D(A)
)

is isomorphic to
(G,D) (see [21]). In particular V (A) ∼= M. Denote by u the order-unit in D(A)
corresponding to the element 1 in D. Now we get from the previous argument that A
has finite but not bounded scale.

We now come to the main result of this section, in which we analyze the C∗-
algebras with finite scale. As it turns out, in special cases they can be characterized
by a stable range condition on a quotient of the corona algebra. Recall that, if J ⊂ I
are closed ideals of a C∗-algebra B with real rank zero, then the natural map V (I) →
V (I/ J) induces a monoid isomorphism V (I)/V ( J) ∼= V (I/ J), by [3, Proposition 1.4
and Theorem 7.2].

Theorem 4.7 Let A be a C∗-algebra in the class N. Let u ∈ V (A)∗ and suppose that
Su is metrizable (this is the case if A is separable). Then A has finite scale if and only if
the monoid V

(
M(A)

)
/V

(
L(A)

)
is cancellative. If, further, M(A) has real rank zero,

then A has finite scale if and only if sr
(
M(A)/L(A)

)
= 1.

The key that led to the proof of Theorem 4.7 relies on the translation of the prob-
lem in terms of monoids. In fact, the monoid approach has become the only way
to the solution we have been able to trace. Before proving the theorem we therefore
establish the corresponding result in the context of Riesz monoids.

In order to deal with the restrictions of lower semicontinuous affine functions
defined on a compact convex set to its extreme boundary we need a simple fact,
which is in [1, Lemma II.7.1].

Lemma 4.8 Let K be a compact convex set, and let f , g : K → R be two lower semi-
continuous affine functions. If f |∂eK = g|∂eK , then f = g.

Proposition 4.9 Let M be a cancellative simple monoid and let u ∈ M∗. Suppose that
M has a generating interval D with a countable cofinal subset and that (M,D) has finite
scale. If I is an ideal of M �W d

σ(Su) which properly contains M, then
(

M �W d
σ(Su)

)
/I

is cancellative.
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Proof First note that, since M is non-zero and cancellative, the state space Su is non-
empty. Therefore the proof of Proposition 4.1 shows that L = M � Aff(Su)++ is the
smallest order-ideal of M �W d

σ(Su) that properly contains M.
Suppose that I is an order-ideal of M � W d

σ(Su) that properly contains M. Then
there exists ∅ �= E ⊆ W d

σ(Su) such that I = M � E. Denote by ∼ the congruence
modulo I. If f + g ∼ f + h, where f , g, h ∈ W d

σ(Su), then f + g + x1 = f + h + x2,
for some elements x1, x2 in M � E. If xi ∈ E for i = 1, 2, then since the scale is finite
(g +x1)|∂eSu = (h+x2)|∂eSu , and so g +x1 = h+x2 by Lemma 4.8. Thus g ∼ h. If x1 ∈ E
and x2 = x ∈ M, then by a similar argument g + x1 = h + φu(x), but by minimality
of L we see that φu(x) ∈ Aff(Su)++ ⊆ E, so that g ∼ h. The other possibilities are
treated in a similar fashion.

When the simplex Su is metrizable and M is a cancellative simple Riesz monoid,
the converse to the above proposition is also true, namely that if

(
M �W d

σ(Su)
)
/L is

cancellative, then (M,D) has finite scale. In order to prove this, we need a technique
consisting of dropping infinite values of some functions. It is also convenient to
note the probably standard fact that LAff(K) = LAffσ(K) for a compact metrizable
Choquet simplex K. Recall that, if K is a simplex and if F is a face of K, then the union
of faces of K that are disjoint from F is again a face, called the complementary face of
F denoted by F ′ (see [1, Proposition 2, Theorem 1] and [26, Proposition 10.12]).

Proposition 4.10 Let K be a Choquet simplex. Let s ∈ ∂eK and let f ∈ Aff(K)++

with f (s) ≥ 1. Denote by {s} ′ the complementary face of {s}. Then there exists a
function g in LAff(K)++ which equals f on {s} ′ and 1 on s.

Proof If f (s) = 1, take g = f . Hence we may assume that f (s) > 1. By [26,
Theorem 11.28], K equals the direct convex sum of {s} and {s} ′, so there exists a
unique affine function g on K such that g|{s} ′ = f |{s} ′ and g(s) = 1. Note that
g ≤ f .

We have to check that g is lower semicontinuous. Notice that h = f − g equals
0 on {s} ′ and equals a = f (s) − 1 > 0 on s. If h were upper semicontinuous, then
g = f − h would be lower semicontinuous. Let λ ∈ [0,∞). Pick any element x in
K. There exists 0 ≤ α ≤ 1 such that x = αs + (1 − α)t , for some t in {s} ′. Then
h(x) = αa. Therefore, if λ > a, we get h−1[λ,∞) = ∅, which is closed. Now, if
0 ≤ λ ≤ a, consider the map:

ϕ : [λ, a] × {s} ′ → h−1[λ,∞),

defined by the rule ϕ(γ, t̄) = (γ/a)s + (1 − γ/a)t̄ , so that

h
(

(γ/a)s + (1 − γ/a)t̄
)

= γ + (1 − γ/a)h(t̄).

Now t̄ = βs + (1 − β)t , where β ∈ [0, 1] and t ∈ {s} ′, so that h(t̄) = βa. Then
h
(

(γ/a)s + (1 − γ/a)t̄
)

= γ + (a − γ)β ≥ λ. Therefore ϕ is well-defined. Also ϕ is
continuous and onto: if x ∈ h−1[λ,∞), then x = αs + (1 − α)t for some α in [0, 1],
t in {s} ′, and αa ≥ λ. Thus ϕ(αa, t) = x. Since [λ, a] ×{s} ′ is compact, we get that
h−1[λ,∞) is closed.
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Corollary 4.11 Let K be a metrizable Choquet simplex and let f ∈ LAff(K)++ such
that f (s) = ∞ for some s in ∂eK. Then there exists a function g in LAff(K)++ such that
g(s) = 1 and f + g = 2 f .

Proof Write f = supn fn, where { fn} is an increasing sequence in Aff(K)++. Since
f (s) = ∞, we may assume that fi(s) > 1 for all i. Let {s} ′ be the complementary
face of {s} and use Proposition 4.10 to build functions gn in LAff(K)++ such that
gn|{s} ′ = fn|{s} ′ and gn(s) = 1. Note that gn ≤ gn+1. Let g = supn gn. It follows that
g ∈ LAff(K)++. Also, (g + f )|{s}∪{s} ′ = 2 f |{s}∪{s} ′ and since K is the convex hull of
{s} ∪ {s} ′, we get g + f = 2 f .

By applying the above several times in a row we can drop the values of f at finitely
many extreme points where f is infinite.

Corollary 4.12 Let K be a metrizable Choquet simplex and let f ∈ LAff(K)++ such
that there exist s1, . . . , sn in ∂eK with f (si) = ∞ for all i. Then there exists a function g
in LAff(K)++ such that g(si) = 1 for all i and g + f = 2 f .

Proof Without loss of generality, we may assume that s1, . . . , sn are distinct. By drop-
ping f (s1) to 1 we get g1 in LAff(K)++ such that g1|{s1} ′ = f |{s1} ′ and g1(s1) = 1.
Since s2 ∈ {s1} ′, we have g1(s2) = ∞. So we can drop g1(s2) to 1 and get a func-
tion g2 in LAff(K)++ such that g2|{s2} ′ = g1|{s2} ′ and g2(s2) = 1. Note that, since
s1 ∈ {s2} ′, we get that g2(s1) = g1(s1) = 1, and also {s1, s2} ′ ⊆ {s1} ′, {s2} ′, so that
g2|{s1,s2} ′ = f |{s1,s2} ′ . In particular g2(s3) = ∞.

Continuing in this way we get functions gn belonging to LAff(K)++ such that
gn(si) = 1 for all i and gn|{s1,...,sn} ′ = f |{s1,...,sn} ′ . Take g = gn. Since K equals
the direct convex sum of the convex hull of {s1, . . . , sn} and {s1, . . . , sn} ′, and
(g + f )|{s1,...,sn}∪{s1,...,sn} ′ = 2 f |{s1,...,sn}∪{s1,...,sn} ′ , we get g + f = 2 f , as wanted.

The same kind of proof yields a slight extension of the previous result.

Corollary 4.13 Let K be a metrizable Choquet simplex and let f ∈ LAff(K)++ such
that there exist distinct states s1, . . . , sn in ∂eK with f (si) = ∞. Then, for fixed real
numbers a1, . . . , an > 0, there exists a function g in LAff(K)++ such that g(si) = ai for
all i and g + f = 2 f .

The arguments in [29, Theorem 1.2] show that, if M is a Riesz monoid with order-
unit u, then St(M, u) is a Choquet simplex. We will make use of this fact in the
following.

Theorem 4.14 Let M be a cancellative simple Riesz monoid and let u ∈ M∗. Suppose
that M has a generating interval D with a countable cofinal subset and that Su is metriz-
able. Then (M,D) has finite scale if and only if

(
M �W d

σ(Su)
)
/L is cancellative (where

L = M � Aff(Su)++).
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Proof Necessity is shown in Proposition 4.9. Assume that
(

M �W d
σ(Su)

)
/L is can-

cellative and that d|∂eSu is not finite. Then d(s) = ∞ for some s in ∂eSu. Apply
Corollary 4.11 to construct a function d ′ in LAff(Su)++ such that d ′(s) = 1 and
d + d ′ = 2d. Then, in particular, d ′ ∈ W d

σ(Su) and in the quotient modulo L we have
[d] + [d ′] = 2[d]. By assumption,

(
M �W d

σ(Su)
)
/L is cancellative and consequently

[d] = [d ′]. Hence there exist affine and continuous functions f1 and f2 on Su such
that d + f1 = d ′ + f2, which gives a contradiction after evaluating at s.

Proof of Theorem 4.7 The first part of the statement follows from Theorem 3.9 and
from Theorem 4.14, taking M = V (A).

If RR
(
M(A)

)
= 0, then

V
(
M(A)

)
/V

(
L(A)

) ∼= V
(
M(A)/L(A)

)
,

so A has finite scale if and only if V
(
M(A)/L(A)

)
is cancellative, and, by [8, Propo-

sition III.2.4], this is equivalent to saying that sr
(
M(A)/L(A)

)
= 1.

To conclude this section we derive two consequences. Recall that a closed ideal I in
a C∗-algebra B is stably cofinite if the algebra B/I is stably finite. In [30, Section 16],
Goodearl asks if the smallest stably cofinite closed ideal of M(A) that contains A
coincides with the smallest closed ideal of M(A) that properly contains A, where A
is a simple non-elementary σ-unital (non-unital) C∗-algebra with bounded scale,
real rank zero, stable rank one and with V (A) strictly unperforated, and assuming
moreover that RR

(
M(A)

)
= 0. We solve this problem by giving a positive answer in

a wider context. It also follows from Proposition 4.9 that we do not need separability
for this.

Theorem 4.15 Let A be a C∗-algebra in the class N. If A has finite scale and
RR

(
M(A)

)
= 0, then for every closed ideal I of M(A) properly containing A we have

that sr
(
M(A)/I

)
= 1. In particular, these ideals are stably cofinite and L(A) is the

smallest stably cofinite closed ideal of M(A) that contains A.

Proof If I is a closed ideal of M(A) properly containing A, then L(A) ⊆ I (by
Proposition 4.1). Since the real rank of M(A) is zero and A has finite scale, we have
that sr

(
M(A)/L(A)

)
= 1 by Theorem 4.7. Therefore M(A)/I, being a quotient of

M(A)/L(A), has stable rank one by [45, Theorem 4.3].

Definition 4.16 Let M be a monoid. We say that M is stably finite provided that,
whenever x + y = y for x, y in M, then x = 0. An order-ideal I of M is said to be
stably cofinite if M/I is a stably finite monoid.

Stably finite monoids have sometimes been called strict (see [6]). Note that a C∗-
algebra A is stably finite if and only if the monoid V (A) is stably finite.

A natural question is if the hypotheses of Theorem 4.15 are satisfied except that
the scale is not finite, does M(A)/L(A) fail to be stably finite? The answer is “yes”
at least in the case when d is infinite at some state s in ∂eSu such that s lies in the
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closure of {s} ′. By Proposition 4.10 (applied to the constant function 2), there exists
a function g in LAff(Su)++ such that g(s) = 1 and g = 2 on {s} ′. Then d + g = d + 2
(since this holds in {s} ∪ {s} ′), so in

(
V (A) � W d

σ(Su)
)
/
(

V (A) � Aff(Su)++
)

we

have [d] + [g] = [d]. Further, g is not continuous because s ∈ {s} ′, so [g] �= 0.
Using Theorem 3.9, it follows that V

(
M(A)/L(A)

)
is not stably finite, and therefore

M(A)/L(A) is not stably finite.
In the case where the scale is bounded and not continuous, something more can

be said about the structure of V
(
M(A)/L(A)

)
. Recall from [30] (see also [8]) that

a (finite) 1-quasitrace on a C∗-algebra A is a map τ : A → C which is linear on
commutative ∗-subalgebras of A, satisfies τ (x∗x) = τ (xx∗) ≥ 0 for all x in A,
and τ (a + bi) = τ (a) + iτ (b) if a, b ∈ Asa. A (finite) quasitrace on A is a (finite)
1-quasitrace that extends to a (finite) 1-quasitrace on M2(A), meaning that there ex-
ists a (finite) 1-quasitrace τ ′ on M2(A) such that τ ′ ( x 0

0 0

)
= τ (x). It follows from

[8, Propositions II.4.1 and II.4.2] that any quasitrace τ extends uniquely to all matrix
algebras Mn(A), all these extensions being determined by τ . The norm of τ is defined
as the supremum of its values on the positive unit ball of A and is known to be finite
([8, Corollary II.2.3]). We denote by QT(A) the set of all normalized quasitraces on
A, that is, quasitraces with norm 1.

Theorem 4.17 Let A be a C∗-algebra in the class N. Suppose that A has bounded but
not continuous scale and that the real rank of M(A) is zero. Let

F ′ =
{
τ ∈ QT

(
M(A)

) ∣∣ τ |A = 0
}
.

Then F ′ is a closed face of QT
(
M(A)

)
and V

(
M(A)/L(A)

) ∼= (Aff F ′)+.

Proof Note that, by Theorem 4.15, V
(
M(A)/L(A)

)
is cancellative. Hence

V
(
M(A)/L(A)

)
= K0

(
M(A)/L(A)

) +
.

Now [30, Theorem 16.4] says that

K0

(
M(A)/L(A)

) + ∼= (Aff F ′)+.

5 Quasitraces

The purpose of this section is to establish the exact relationship between the state
space Su and the semifinite quasitraces on A, for a simple C∗-algebra A with real rank
zero. This will be used in the sequel to express conditions related to algebras without
finite scale in terms of quasitraces.

The core of the section is concerned with the semifinite version of Blackadar and
Handelman’s result [8, Theorem III.1.3]. Many of these results are possibly known,
but since we could not locate references in the literature, we provide proofs for the
convenience of the reader, which show how our case is obtained from the unital case.

We give the definition of a (not necessarily finite) quasitrace, which is the obvi-
ous modification of the definition of a trace (see, e.g. [42, 5.2.1]), assuming also
extendibility to matrices over the algebra.
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Definition 5.1 Let A be a C∗-algebra. A 1-quasitrace on A is a map τ : A+ → [0,∞]
such that τ (αx) = ατ (x) if x ∈ A+ and α ∈ R+, such that τ (x + y) = τ (x) + τ (y),
whenever x and y are commuting elements in A+, and such that τ (xx∗) = τ (x∗x) for
all x in A. A quasitrace on A is a 1-quasitrace τ that extends to a 1-quasitrace τn on
Mn(A) for each n.

Here we use the convention that 0 · ∞ = 0, so that τ (0) = 0. Viewing A as the
upper left hand corner subalgebra of Mn(A), the extension τn in 5.1 of τ means that
τ (x) = τn(xe11), where e11 is the matrix unit in Mn(Ã).

If τ is a quasitrace, set Fτ = {x ∈ A+ | τ (x) < ∞}, which is non-empty since
0 ∈ Fτ . We say that τ is densely defined if Fτ is dense in A+, and we denote the
set of densely defined quasitraces by QTd(A). We also use LQT(A) to denote the
set of lower semicontinuous quasitraces, while LQTd(A) stands for the set of lower
semicontinuous, densely defined, quasitraces. Note that all the sets considered are
convex.

It is natural then to consider quasitraces that satisfy certain finiteness conditions.
Some of them are closely related to the property of being order-preserving, which
does not seem to follow directly from the definitions.

Lemma 5.2 Let τ be an order-preserving quasitrace on a C∗-algebra A. Then F ′
τ =

{x ∈ A | x∗x ∈ Fτ} is an ideal of A.

Proof Since τ (0) = 0, we have that F ′
τ is non-empty. Let x ∈ F ′

τ and y ∈ A. Then
τ
(

(xy)∗(xy)
)

= τ (xy y∗x∗) ≤ ‖y‖2τ (xx∗), because τ is order-preserving. Since
τ (xx∗) < ∞, we get that xy ∈ F ′

τ . Similarly yx ∈ F ′
τ . Therefore F ′

τ is closed under
products by elements of A. The same method of proof as in [8, Corollary II.1.11]
shows that, if a, b ∈ A+, then τ (a + b) ≤ 2

(
τ (a) + τ (b)

)
. Now, if x, y ∈ F ′

τ ,

we have that (x + y)∗(x + y) ≤ 2(x∗x + y∗y), whence τ
(

(x + y)∗(x + y)
) ≤

4
(
τ (x∗x) + τ (y∗y)

)
<∞.

For any C∗-algebra A we denote by K(A) the Pedersen ideal of A (see [42, 5.6]).

Corollary 5.3 Let A be a C∗-algebra and let τ ∈ QTd(A). If τ is order-preserving,
then τ |K(A)+ is finite. In particular, τ (p) <∞ for any projection p in A.

Proof F ′
τ is an ideal of A by Lemma 5.2. Let x ∈ Fτ , and note that x2 = x1/2xx1/2 ≤

‖x‖x. Therefore, using that τ is order-preserving we get τ (x2) ≤ ‖x‖τ (x) < ∞.
Thus x ∈ (F ′

τ )+, showing that Fτ ⊂ (F ′
τ )+. Since τ is densely defined, we get that F ′

τ

is dense and therefore it contains K(A). Let x ∈ K(A)+. Then x1/2 ∈ K(A)+ and thus
τ (x) = τ (x1/2x1/2) < ∞, whence K(A)+ ⊆ Fτ . Therefore the first part of the result
follows. If p is a projection in A, then p ∈ K(A) by [42, 5.6.3] and so τ (p) <∞.

Observe that, if τ is a quasitrace on a C∗-algebra A and if a, b are commuting
elements in A+ such that a ≤ b, then τ (a) ≤ τ (b). This is clear if τ (b) = ∞, while
if τ (b) < ∞ we have that τ (b) = τ (b − a) + τ (a) ≥ τ (a) since b − a and a are
commuting elements of A+.
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Adopting the terminology of [17], we say that a quasitrace τ : A+ → [0,∞] on
a C∗-algebra A is semifinite if every non-zero element in A+ majorizes a non-zero
element at which τ is finite. For ε > 0, denote by fε the continuous function from R
to R which is 0 on (−∞, ε], linear on [ε, 2ε] and 1 on [2ε,∞).

Proposition 5.4 Let A be a C∗-algebra and let τ ∈ LQTd(A). Each one of the follow-
ing conditions implies the next one:

(1) τ is order-preserving;
(2) τ |K(A)+ is finite;
(3) τ is semifinite.

Further, (1) and (2) are always equivalent; and if A is simple then they are all equivalent.

Proof (1) ⇒ (2) follows from Corollary 5.3.
(2) ⇒ (1). Suppose that a, b are elements in A such that 0 ≤ a ≤ b. Then there

exists a sequence {tn} of elements in the unit ball of A such that a1/2 = limn→∞ tnb1/2

(see [32, Lemma A-1]). Then a = limn→∞ b1/2t∗n tnb1/2. Since τ is lower semicon-
tinuous we have that τ (a) ≤ lim infn τ (b1/2t∗n tnb1/2). Therefore it clearly suffices
to show that τ (b1/2c∗cb1/2) ≤ τ (b) whenever ‖c‖ ≤ 1. Write b = limn bn, where
{bn} is an increasing sequence of commuting elements in K(A)+ that also com-
mute with b as in [42, Proof of Theorem 5.6.1]. Then cbc∗ = limn cbnc∗, and since
Bn = bnAbn ⊂ K(A), we have that τ |(Bn)+ is a finite quasitrace and therefore it is
order-preserving, by [8, Corollary II.2.5]. Thus

τ (b1/2c∗cb1/2) = τ (cbc∗) ≤ lim inf
n

τ (cbnc∗) ≤ lim inf
n

τ (bn) = sup
n
τ (bn) = τ (b),

since bn ≤ b for all n and they commute with b and τ is lower semicontinuous.
(2) ⇒ (3) is clear.
(3) ⇒ (2). Now assume that A is simple. We first prove that τ

(
fε(x)

)
< ∞

whenever ε > 0 and x ∈ K(A)+.
Let x be a non-zero element in K(A)+, and choose 0 �= y in K(A)+ with τ (y) <∞.

Then K(A) = K(A)yK(A), and therefore 〈x〉 ≤ n〈y〉 in S(A) for some n ≥ 1. By [48,
Proposition 2.4], there exist δ ′ > 0 and r in Mn(A) such that

fε(x) = r diag
(

fδ ′(x), . . . , fδ ′(x)
)

r∗.

Thus, if we set v = r diag
(

fδ ′(x), . . . , fδ ′(x)
) 1/2

, we have that fε(x) = vv∗ and

v∗v = diag
(

fδ ′(y)1/2, . . . , fδ ′(y)1/2
)

r∗r diag
(

fδ ′(y)1/2, . . . , fδ ′(y)1/2
)
.

Taking δ = δ ′/2 we get (v∗v)t = t(v∗v) = v∗v with t = diag
(

fδ(y), . . . , fδ(y)
)

.
Note that ‖v∗v‖ = ‖ fε(x)‖ ≤ 1 and so v∗v ≤ 1. Thus v∗v ≤ t . Hence

τ
(

fε(x)
)

= τ (vv∗) = τ (v∗v) ≤ τ (t) = nτ
(

fδ(y)
) ≤ (n/δ)τ (y) <∞.
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Now choose 0 �= x in K(A)+ and let ε > 0 such that fε(x) �= 0. Then K(A) =
K(A) fε(x)K(A) and so 〈x〉 ≤ n〈 fε(x)〉 in S(A) for some n ≥ 1. For each m there

exists as before δm > 0 such that τ
(

f1/m(x)
) ≤ nτ

(
fδm

(
fε(x)

))
. Taking into ac-

count that fδm

(
fε(x)

) ≤ fε/2(x) we get τ
(

f1/m(x)
) ≤ nτ

(
fε/2(x)

)
. Since τ is lower

semicontinuous we have that

τ (x) ≤ lim inf
m

τ
(

x f1/m(x)
) ≤ n‖x‖τ( fε/2(x)

)
<∞,

as desired.

Corollary 5.5 Let A be a simple C∗-algebra and let τ ∈ LQT(A). If τ |K(A)+ < ∞
then τn|K(Mn(A))+ <∞ for all n. In particular, the extensions τn are uniquely determined
by τ .

Proof It suffices to check that τ2|K(M2(A))+ < ∞. Let a ∈ K
(

M2(A)
)

+
=

M2

(
K(A)

)
+

, and let B be the hereditary C∗-subalgebra of A generated by the en-
tries of a. By [42, Proposition 5.6.2], B ⊆ K(A) and thus a ∈ M2(B)+. By [17,
Lemma 5.6], B is algebraically simple, hence so is M2(B). Therefore, if x ∈ B+ and
x �= 0, we have M2(B) = M2(B)xe11M2(B). Fix ε > 0. An argument similar to the
one used in the proof of Proposition 5.4 shows that τ2

(
fε(a)

) ≤ nτ
(

fδ(x)
)

for some

δ > 0 and some natural number n, and by hypothesis τ
(

fδ(x)
)
< ∞. Now, since

ε fε(a) ≤ a, we see that τ2 is semifinite and so τ2|K(M2(A))+ <∞, by Proposition 5.4.
Suppose now that τ̄ and τ̄ ′ are lower semicontinuous 1-quasitraces on A such that

τ̄ |K(A)+ = τ̄ ′|K(A)+ . Let x ∈ A+. Since by [42, Proof of Theorem 5.6.1] there exists an
increasing sequence {xn} of commuting elements in K(A)+ that also commute with
x and with limit x, we get that τ̄ (x) = sup τ̄ (xn) = sup τ̄ ′(xn) = τ̄ ′(x).

Finally, if τ ′
2 is another extension of τ to M2(A)+, then τ ′

2 |M2(B)+ is a finite 1-
quasitrace that extends τ |B+ for any singly generated hereditary C∗-subalgebra B ⊆
K(A). Using [8, Propositions II.4.1 and II.4.2] we get that τ ′

2 |K(M2(A))+ = τ2|K(M2(A))+ ,
whence τ ′

2 = τ2 and τ2 is determined by τ .

Let A be a C∗-algebra and let x ∈ K(A)+. Set Q =
{
τ ∈ LQTd(A)

∣∣ τ |K(A)+ <

∞}
and Qx = {τ ∈ Q | τ (x) = 1}. Note that, if x �= 0 and A is simple, then

R+Qx = Q. To see this, let τ ∈ Q. If τ = 0, then clearly τ ∈ R+Qx. If, on the
other hand, τ �= 0, then since τ is determined by its values on K(A)+ (by the proof
of Corollary 5.5) it follows that τ |K(A)+ �= 0, and hence τ (x) > 0. For, if τ (x) = 0,
then τ

(
fε(x)

)
= 0 for all ε > 0. Observe that K(A) = K(A)xK(A) by simplicity of

A. Let y ∈ K(A)+. Then, as in the proof of Proposition 5.4, there exists n in N such
that for all ε > 0, there is δ > 0 and a positive number cn satisfying τ

(
fε(y)

) ≤
cnτ

(
fδ(x)

)
. Then τ

(
fε(y)

)
= 0 for all ε > 0. Since τ is lower semicontinuous and

y = limn f1/2n(y)y f1/n(y), we finally get τ (y) ≤ lim infn ‖y‖τ( f1/n(y)
)

= 0. Thus

τ |K(A)+ = 0, a contradiction to τ (x) = 0. Thus τ = τ (x)
(
τ/τ (x)

) ∈ R+Qx, and
therefore R+Qx = Q.

It follows from the proof of Corollary 5.5 that elements of Q which agree on K(A)+

are equal. Therefore (Q,+) is cancellative. Let X = Q − Q = {τ − τ ′ | τ , τ ′ ∈
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Q}, which is a real linear space. As in [17, Section 7], we endow X with the locally
convex topology generated by the semi-norms px : X → R, ϕ �→ |ϕ(x)|, where x ∈
K(A)+, which is called the weak topology on X. Since equality of elements in Q is
determined by equality on K(A)+, the semi-norms {px} form a separating family, so
that X becomes a Hausdorff space. If A is simple, then Qx is weakly compact.

Our goal is to show that, if A is a simple σ-unital C∗-algebra with real rank zero
and p is a non-zero projection in A, then the spaces Qp and Su, where u = [p] ∈
V (A), are affinely homeomorphic. This was observed in [36, Section 2] without
proof, and for C∗-algebras that, moreover, have stable rank one. For convenience of
the reader we give an argument which does not need cancellation and is partly based
on that used in [30, Theorem 12.3].

Theorem 5.6 (Blackadar-Handelman) Let A be a simple σ-unital C∗-algebra with
real rank zero. Let p be a non-zero projection in A and set u = [p] in V (A). Then there
exists an affine homeomorphism

α : Qp → Su,

such that α(τ )([q]) = τ (q) for all τ in Qp and all projections q in M∞(A).

Proof It is clear that the map α is affine and continuous. Since both Qp and Su are
compact spaces, it only remains to show that α is bijective.

Suppose that α(τ ) = α(τ ′) for some τ , τ ′ in Qp. Then τ and τ ′ agree on all
projections of A. Let x ∈ K(A)+. Then B = xAx ⊆ K(A), hence τ |B+ and τ ′|B+ are
finite quasitraces on B. Note that B has real rank zero, and since τ and τ ′ coincide
on all projections of B, they must agree on all B+ by uniform continuity (see [8,
Corollary II.2.5]). In particular, τ (x) = τ ′(x). Therefore τ |K(A)+ = τ ′|K(A)+ . Now,
given any element x in A+, there exists an increasing sequence of commuting elements
xn in K(A)+ (which also commute with x) such that x = limn xn. Then τ (x) =
supn τ (xn) = supn τ

′(xn) = τ ′(x), again by [8, Corollary II.2.5]. This shows that α
is injective.

Let s ∈ Su and fix an (increasing) approximate unit {pn} of A consisting of projec-
tions. Since A has real rank zero and s �= 0, we have that γn := s[pn] > 0 if n is large
enough. Therefore we may assume without loss of generality that γn > 0 for all n in
N. Denote by jn : pnApn → A the inclusion maps, which induce monoid morphisms
V ( jn) : V (pnApn) → V (A). Note that γ−1

n sV ( jn) ∈ St
(

V (pnApn), [pn]
)

. By [8,
Theorem III.1.3] (or also [9, Theorem 3.5]), there exists a (finite) quasitrace τn in
QT(pnApn) such that τn(q) = γ−1

n s[q] for all projections q in M∞(pnApn), that is,
γnτn(q) = s[q] for all projections q in M∞(pnApn).

Since pnApn ⊆ pn+1Apn+1 for all n and have real rank zero, we see that γnτn and
γn+1τn+1 agree on pnApn. Therefore the maps γnτn induce a map τ̄ : ∪n pnApn →
[0,∞), which is a 1-quasitrace. It remains to extend τ̄ to A+. This cannot be done
by uniform continuity since the sequence {γn} need not be bounded. Set τ (x) =
supn τ̄ (pnxpn), which defines a map τ : A+ → [0,∞]. We now show that τ (xx∗) =
τ (x∗x) whenever x ∈ A. Fix n ≤ m. We compute that

τ̄ (pnx∗pmxpn) = τ̄ (pmxpnx∗pm) ≤ τ̄ (pmxx∗pm) ≤ τ (xx∗).
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Since τ̄ |pnApn = γnτn is continuous we get τ̄ (pnx∗xpn) = limm→∞ τ̄ (pnx∗pmxpn) ≤
τ (xx∗), whence it follows that τ (x∗x) ≤ τ (xx∗), and by symmetry τ (xx∗) = τ (x∗x).

It is clear that, if α > 0 and x ∈ A+, then τ (αx) = ατ (x). Suppose that x, y are
commuting elements in A+. Let δ > 0. Then there exists n0 in N such that, if n ≥ n0,

‖pnxpn y pn − pn y pnxpn‖ ≤ ‖xpn y − y pnx‖ < δ.

Let k ∈ N. By [8, Corollary II.2.6], there exists δ = δ(k) such that, if ‖xpn y−y pnx‖ <
δ, then

∣∣ τ̄( pn(x + y)pn

) − τ̄ (pnxpn) − τ̄ (pn y pn)
∣∣ < (1/2k). Therefore there exists

n0 such that
∣∣ τ̄( pn(x + y)pn

) − τ̄ (pnxpn) − τ̄ (pn y pn)
∣∣ < (1/2k) whenever n ≥ n0.

We conclude that τ (x + y) ≤ (1/2k) + τ (x) + τ (y), whence τ (x + y) ≤ τ (x) + τ (y).
The converse inequality is proved similarly. Thus τ (x + y) = τ (x) + τ (y).

We now check the lower semicontinuity of τ . Let {xk} be a sequence in A+ con-
verging to an element x in A+. For each n in N we have τ̄ (pnxpn) = limk τ̄ (pnxk pn) ≤
lim infk τ (xk), since τ̄ (pnxk pn) ≤ τ (xk). Thus τ (x) ≤ lim infk τ (xk), whence τ is
lower semicontinuous.

Let x ∈ A+. If n ∈ N, we have x1/2 pnx1/2 ≤ x, and so τ (x1/2 pnx1/2) = τ (pnxpn) ≤
‖x‖τ (pn) = ‖x‖γn < ∞. Thus τ is semifinite. Also, since p ∼ p ′ for some projec-
tion p ′ in pnApn and some n in N, we have that τ (p) = τ (p ′) = γnτn(p ′) = s[p ′] =
s[p] = 1.

Note now that ∪n pnApn ⊆ Fτ . Hence τ is densely defined. The extensions of γnτn

to Mk(pnApn)+ induce a 1-quasitrace on Mk(A)+ for each k, which is an extension of
τ . Therefore τ ∈ Qp. Finally, if q is a projection in M∞(A), then q is equivalent to a
projection q ′ in M∞(pnApn) (for some n). Thus τ (q) = τ (q ′) = γnτn(q ′) = s[q ′] =
s[q], and so α is surjective.

As an application we analyze the structure of the simple C∗-algebras with bounded
scale. Blackadar showed in [4, Theorem 4.8] that a simple separable AF algebra has
bounded scale if and only if it is algebraically simple. Lin proved later that, if A is a
simple σ-unital C∗-algebra with continuous scale then it is algebraically simple ([35,
Theorem 3.3]). In the following we extend Blackadar’s result to the class of σ-unital
simple C∗-algebras with real rank zero and stable rank one.

Theorem 5.7 Let A be a simple σ-unital C∗-algebra with real rank zero and stable
rank one. Assume that V (A) is strictly unperforated. Then the following are equivalent:

(1) A is algebraically simple;
(2) Every semifinite quasitrace in LQTd(A) is finite;
(3) A has bounded scale.

Proof Let p be a non-zero projection in A, set u = [p] in V (A) and d =
supφu

(
D(A)

)
. If {en} is an approximate unit consisting of projections, then d =

supφu([en]).
(1) ⇒ (2). Let τ ∈ LQTd(A) and assume that it is semifinite. Since A is al-

gebraically simple, we have that K(A) = A and by Proposition 5.4, τ |K(A)+ < ∞
whence τ is finite.
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(2) ⇒ (3). By Lemma 4.4, if d is not bounded then there exists a state s in Su such
that d(s) = +∞, that is, supn s[en] = +∞. Since R+Qp = Q and Q equals the set of
semifinite quasitraces in LQTd(A) by hypothesis, we have that Qp consists of the finite
quasitraces τ on A such that τ (p) = 1. Let τ be the quasitrace in Qp that corresponds
to s via the homeomorphism α of Theorem 5.6. By [8, Corollary II.2.3], the norm of
τ must be bounded, but this contradicts the fact that sup τ (en) = sup s[en] = +∞.

(3) ⇒ (1). Assume that d � k for some constant bound k. For every s in Su

we have d(s) = sup s[en] < k = ks[p], whence s[en] < ks[p] for all n ≥ 1. Since
V (A) is strictly unperforated and cancellative, we have that [en] ≤ k[p] in V (A) for
all n ≥ 1 (see Lemma 3.6). Let x =

∑∞
n=1(1/2n)en and note that x ∈ A. It follows

from [43, Proposition 2.3] that 〈x〉 ≤ k〈p〉 in S(A). Let B ⊆ Mk(A) be the hereditary
C∗-subalgebra generated by diag(p, . . . , p) ∈ Mk(A). Note that B is simple, unital,
with real rank zero and stable rank one, and in particular B is algebraically simple.

Observe now that, if n ∈ N then there exists a projection e ′n in Mk(A) such that
en ∼ e ′n ≤ diag(p, . . . , p). We therefore obtain a sequence of projections {e ′n} in B
such that e ′n � e ′n+1 for all n ≥ 1. Using cancellation of projections it is possible to
construct an increasing sequence of projections {qn} in B with qn ∼ e ′n ∼ en for all
n ≥ 1 (see, e.g. [43, Proof of Proposition 2.7]). Let y =

∑∞
n=1(1/2n)qn, an element

of B. Then 〈x〉 = 〈y〉 in S(A) by [43, Proposition 2.3] and therefore x ∼s y ([43,
Corollary 2.4]), that is, there exists a in Mk(A) such that yBy = a∗Mk(A)a, while
aMk(A)a∗ = xMk(A)x ∼= xAx, and the latter equals A since x is a strictly positive
element. By [17, Lemma 5.6] yBy ⊆ B is algebraically simple, and since a∗Mk(A)a
and aMk(A)a∗ are isomorphic (e.g. extending by continuity the isomorphism given
in [14, 1.4]), we conclude that A is algebraically simple.

6 Ideals in the Corona Algebra

Lin has shown that, if A is a non-unital and non-elementary separable AF C∗-algebra
with a finite number of extremal semifinite traces of which n are infinite, then
M(A)/A has exactly 2n closed ideals ([34, Theorem 2]). An extension of this result
was established by Rørdam in [47, Theorem 4.4] for C∗-algebras of the form A ⊗ K,
where A is a simple unital infinite dimensional C∗-algebra with a certain compari-
son property and K stands for the C∗-algebra of compact operators over a separable
infinite dimensional Hilbert space.

We show in the current section that a similar pattern can be adopted in our setting,
thus including Lin’s result. In particular, we remove the assumption of the algebra
having finitely many extremal semifinite traces. We continue to work with the class N

consisting of all σ-unital (non-unital) simple C∗-algebras A that are non-elementary,
with real rank zero, stable rank one and such that V (A) is strictly unperforated.

Let A be a C∗-algebra. In [46, Propositions 4.1–4.3] it is shown that A has a max-
imal closed ideal Isr 1(A) of stable rank one, that can be determined by

Isr 1(A) = {a ∈ A | a + (Ã−1)− = (Ã−1)−},
where Ã−1 denotes the set of invertible elements in Ã. We give below a description of
this ideal for the algebra M(A)/L(A) under certain additional hypothesis on A, where
L(A) stands for the smallest closed ideal of M(A) that properly contains A.
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Proposition 6.1 Let A be a separable C∗-algebra in the class N. There exists a unique
closed ideal Ifin(A) of M(A) among the ideals properly containing A which is maximal
with respect to the property that V

(
Ifin(A)

)
/V

(
L(A)

)
is cancellative. If RR

(
M(A)

)
=

0, then Ifin(A)/L(A) = Isr 1

(
M(A)/L(A)

)
.

Proof Fix u in V (A)∗. Let D = D(A) and d = supφu(D). Let

Ifin := V (A) � Efin , where Efin = { f ∈ W d
σ(Su) | f |∂eSu is finite }.

Then Ifin is an order-ideal of V (A) � W d
σ(Su). We shall establish the following state-

ment: Ifin is the largest order-ideal of V (A) � W d
σ(Su) with respect to the property

that Ifin/L is cancellative, where L = V (A) � Aff(Su)++. Then the first part of
the result will follow from Theorems 2.1 and 3.9, taking Ifin (A) as the closed ideal
such that V

(
Ifin (A)

) ∼= Ifin . First we prove that Ifin/L is cancellative. Suppose that
[ f ] + [g] = [ f ] + [h] in Ifin/L, for f , g, h in Ifin . Then there exist l1, l2 in L such that
f + g + l1 = f + h + l2. We may assume that l1 and l2 are affine and continuous
functions. Restricting to the extreme boundary we get (g + l1)|∂eSu = (h + l2)|∂eSu .
Then g + l1 = h + l2 by Lemma 4.8 and consequently [g] = [h] in Ifin/L.

Now suppose that V (A) � E is another order-ideal of V (A) � W d
σ(Su) such that

(V (A) � E)/L is cancellative. We claim that E ⊆ Efin .
If not, there exists f in E such that f (s) = ∞ for some s in ∂eSu. By Corollary 4.11

we can construct a function g in LAff(Su)++ such that g(s) = 1 and g + f = 2 f .
Since f ∈ E and g ≤ 2 f algebraically, we conclude that g ∈ E. Therefore we have
[g] + [ f ] = [ f ] + [ f ] in

(
V (A) � E

)
/L. By cancellation [g] = [ f ], and so there

exist affine continuous functions l1 and l2 satisfying g + l1 = f + l2, which gives a
contradiction after evaluating at s.

If RR
(
M(A)

)
= 0, then

V
(

Ifin (A)/L(A)
) ∼= V

(
Ifin (A)

)
/V

(
L(A)

) ∼= Ifin/L.

Hence Ifin (A) is the largest closed ideal of M(A) with respect to the property that
V

(
Ifin (A)/L(A)

)
is cancellative, which is equivalent to sr

(
Ifin (A)/L(A)

)
= 1 by [8,

Proposition III.2.4]. Thus Ifin(A)/L(A) = Isr 1

(
M(A)/L(A)

)
.

We shall call Ifin (A) the finite ideal of M(A). Observe that A has finite scale pre-
cisely when Ifin(A) = M(A).

Definition 6.2 Let A be a C∗-algebra. We say that a lower semicontinuous and
order-preserving quasitrace τ is infinite if supλ τ (uλ) = +∞ for some approximate
unit {uλ}λ∈Λ of A.

Note that this definition does not depend on the particular approximate unit.
Note also that, if A has real rank zero and τ is infinite, then sup τ (p) = ∞, where the
supremum is taken over the projections p of A.

In the following and subsequent results, we shall identify without further com-
ment the spaces Su and Qp, where p is a projection in a simple, σ-unital C∗-algebra
A with real rank zero and u = [p] ∈ V (A), using Theorem 5.6.
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Theorem 6.3 Let A be a separable C∗-algebra in N and let p be a non-zero projection
in A. Assume that A has exactly n infinite extremal quasitraces in Qp. Then there exist
precisely 2n closed ideals between Ifin (A) and M(A).

Proof Set u = [p] in V (A) and d = supφu

(
D(A)

)
. Notice first that A has exactly n

infinite extremal quasitraces in Qp if and only if the cardinality of the set

Γd := {s ∈ ∂eSu | d(s) = +∞}

is n, by virtue of Theorem 5.6.
For each subset α ⊆ Γd, define

Eα = { f ∈ W d
σ(Su) | f |∂eSu is finite outside α}

and let Iα be the closed ideal of M(A) such that ϕ
(

V (Iα)
)

= V (A) � Eα, where ϕ
is the isomorphism constructed in Theorem 3.9. By Corollary 4.12 the ideals V (Iα)
form a set of 2n different order-ideals of V (A) � W d

σ(Su). Notice that ϕ
(

V (I∅)
)

=
Ifin and ϕ

(
V (IΓd )

)
= V (A) � W d

σ(Su). Assume that V (A) � E is an order-ideal in
V (A) � W d

σ(Su) for some E ⊆ W d
σ(Su) that contains Efin . Let α ⊆ Γd be the largest

subset of Γd such that f |∂eSu is finite outside α for every function f in E. Such an α
does exist due to the finiteness of Γd. By construction, E ⊆ Eα, and we claim that
E = Eα.

We may assume that Efin � E. Let d ′ be the function in LAff(Su)++, constructed
using Corollary 4.12, that satisfies d ′|Γ ′

d
= d|Γ ′

d
and d ′(s) = 1 for all s in Γd, where Γ ′

d
is the complementary face of the closed face (of Su) generated by Γd (the latter is the
convex hull of Γd since Γd is finite). Note that d ′ + d = 2d. Thus d ′ ∈ V (A)�W d

σ(Su)
and in fact d ′ ∈ Ifin ⊂ V (A)� E. Also, by construction of α, there exists a function f
in E whose restriction to ∂eSu is infinite precisely on α. Let dα be the “α-dropping” of
d. That is, if (Γd \ α) ′ denotes the complementary face of the (closed) face generated
by Γd \α, then dα is constructed in such a way that dα|(Γd\α) ′ = d|(Γd\α) ′ and dα(s) =
1 for all s in Γd \ α.

Since Γ ′
d ⊆ (Γd \ α) ′, we get dα|Γ ′

d
= d|Γ ′

d
. Notice also that dα(s) = ∞ for

all s in α. Therefore (dα + f )Γd∪Γ ′
d

= (d ′ + f )Γd∪Γ ′
d
, and since Su equals the direct

convex sum of the (closed) face generated by Γd and its complementary face Γ ′
d, we

get dα + f = d ′ + f . Hence dα + f ∈ E, and consequently dα ∈ E.
The only thing that we need to check in order to finish the proof is that Eα = Fα,

where

Fα := { f ∈ W d
σ(Su) | f + g = mdα for some m in N and g in W d

σ(Su)}.

Since dα ∈ E and E ⊆ Eα we get that dα ∈ Eα. Therefore the order-ideal generated by
dα is contained in V (A)�Eα, and thus Fα ⊆ Eα. Conversely, let g ∈ Eα. In particular,
since Eα ⊆ W d

σ(Su), there exist h in W d
σ(Su) and a natural number m such that g +h =

md. We know that g|∂eSu is infinite at most on α. By adding copies of d if necessary,
we may assume that g(t) < m for all t belonging to Γd ∩{s ∈ ∂eSu | g(s) <∞}. Now
we use Corollary 4.13 to get h ′ in W d

σ(Su) such that h ′(t) = m − g(t) if t ∈ Γd \ α
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and h ′|(Γd\α) ′ = h|(Γd\α) ′ . We also have h + h ′ = 2h. Now (g + h ′)|(Γd\α)∪(Γd\α) ′ =
mdα|(Γd\α)∪(Γd\α) ′ , whence g + h ′ = mdα, as desired.

We now investigate the quotients M(A)/ J for any closed ideal J of M(A) that
contains Ifin (A), showing that they have a particular structure.

Let M be a monoid. We say that M is purely infinite provided that, for any non-
zero element x in M, there is 0 �= y in M such that x + y = x. Observe that, in
case A is a C∗-algebra with real rank zero, then A is purely infinite if and only if V (A)
is a purely infinite monoid. Following [16] (see also [54], [39]), a C∗-algebra A is
purely infinite provided that every non-zero hereditary C∗-subalgebra of A contains
an infinite projection. The following observation is noted in [54, Theorems 1.1 and
1.3]. For our purposes, we find convenient to state it separately as a lemma.

Lemma 6.4 Let A be a σ-unital C∗-algebra with real rank zero. Let I � J be closed
ideals of M(A). Then every hereditary C∗-subalgebra of J/I is the closed linear span
of images of projections via the natural map π : J → J/I. In particular, any non-zero
projection of J/I contains a non-zero subprojection which is the image of a projection in
J.

Proof If B is a hereditary C∗-subalgebra of J/I, then π−1(B) is hereditary in J ⊆
M(A). Then, by [54, Theorem 1.1], we have that π−1(B) is the closed linear span of
its projections and therefore the first assertion follows.

If p is a non-zero projection in J/I, then apply the first part to the hereditary
C∗-subalgebra B = p( J/I)p ⊆ J/I.

Proposition 6.5 Let A be a separable C∗-algebra in the class N and let p be a non-zero
projection of A. Assume that A has exactly n infinite extremal quasitraces in Qp. Then
M(A)/ J is a purely infinite C∗-algebra for any closed ideal J of M(A) that contains
Ifin(A). Moreover, if RR

(
M(A)

)
= 0 then V

(
M(A)/Ifin (A)

)
is isomorphic to {2n,∪},

where 2n is the Boolean algebra of subsets of an n-element set.

Proof By Lemma 6.4, in order to show that M(A)/ J is purely infinite, it is enough to
show that every projection π(q) of M(A)/ J is infinite, where π : M(A) → M(A)/ J is
the natural map and q is a non-zero projection of M(A). For this, it suffices to prove
that V

(
M(A)

)
/V ( J) is a purely infinite monoid.

As in Theorem 6.3, set u = [p] in V (A) and d = supφu

(
D(A)

)
. Then the set Γd

has cardinality n. Recall that, if ϕ is the isomorphism constructed in Theorem 3.9,

then ϕ
(

V
(

Ifin (A)
))

= V (A) � Efin , where

Efin =
{

f ∈ W d
σ(Su)

∣∣ f |∂eSu < +∞}
,

as in Proposition 6.1. Write ϕ
(

V ( J)
)

= V (A) � E, where Efin ⊆ E ⊆ W d
σ(Su). Let

f ∈ W d
σ(Su)\E. Then there exists s in Γd such that f (s) = ∞. Since f ∈ W d

σ(Su) and
Γd is a finite set, we have that f |∂eSu is infinite at most at n points. By Corollary 4.12,
there exists a function g in LAff(Su)++ such that g(s) = 1 whenever f (s) = ∞ (for s
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in ∂eSu) and g + f = 2 f . Note that g ∈ V (A) � Efin ⊆ V (A) � E, and in the quotient
modulo V (A)�E we have [ f ] = 2[ f ]. Therefore V

(
M(A)

)
/V ( J) is a purely infinite

monoid, as desired.
Now assume that RR

(
M(A)

)
= 0. To prove the second part of the statement, let

Σ be the monoid of all the subsets of Γd with set union as addition. For each α in Σ,
construct dα in W d

σ(Su) as in the proof of Theorem 6.3 (that is, dα(s) = 1 for all s in
Γd \α and dα|(Γd\α) ′ = d|(Γd\α) ′), and let d ′ = d∅. Notice that dα + d ′ = 2dα and in
general by induction mdα = dα + (m − 1)d ′ for all m. Therefore we have a map

Σ → (
V (A) �W d

σ(Su)
)
/Ifin ,

defined by α �→ [dα]. It is easy to check that (dα + dβ)|∂eSu = (dα∪β + d ′)|∂eSu

for any α, β in Σ. It follows then that dα + dβ = dα∪β + d ′, and hence in(
V (A) � W d

σ(Su)
)
/Ifin we have that [dα] + [dβ] = [dα∪β]. Thus the map just de-

fined is a monoid morphism, which is clearly injective. To see that it is surjective, and
hence a monoid isomorphism, let [ f ] ∈ (

V (A) � W d
σ(Su)

)
/Ifin . Then there exists

α ⊆ Γd such that f ∈ Eα. Actually α is unique if we take it to be the smallest possible
(that is, f |∂eSu is infinite precisely on α).

There exist a natural number m and a function g in W d
σ(Su) such that f +g = mdα.

Let g ′ be the element in W d
σ(Su) obtained by dropping to 1 the values at which g|∂eSu

is infinite. Since g|∂eSu is infinite at most on α, we easily get f + g = f + g ′. Thus
f +g ′ = f +g = mdα = dα+(m−1)d ′, whence [ f ] = [dα] in

(
V (A)�W d

σ(Su)
)
/Ifin .

Note that, under the assumptions of Proposition 6.5 and in the particular case
that A has exactly one infinite extremal quasitrace, we have that V

(
M(A)/Ifin (A)

)
is isomorphic to {0,∞}, and this implies that every two non-zero projections in
M(A)/Ifin (A) are equivalent.

We turn our attention now to the case where the C∗-algebra can have infinitely
many extremal quasitraces which are infinite. The first observation to be made is
that some of the arguments used before can be easily adapted to our present situation.
The following generalizes [34, Theorem 3] and [33, Proposition 4.17].

Theorem 6.6 Let A be a separable C∗-algebra in the class N and let p be a non-zero
projection in A. Let c be the cardinal of infinite extremal quasitraces in Qp and assume
that c is infinite. Then M(A) has at least c maximal ideals that properly contain Ifin (A),
and the quotient of M(A) by any of these ideals is a purely infinite simple C∗-algebra.
Moreover, M(A) contains an infinite strictly decreasing sequence of closed ideals that
contain Ifin(A).

Proof Let u = [p] ∈ V (A) and d = supφu

(
D(A)

)
. Note that, by Theorem 5.6,

the cardinality of the set Γd defined in the proof of Theorem 6.3 is exactly c. For
any s in Γd, let Is be the closed ideal of M(A) such that ϕ

(
V (Is)

)
= V (A) � Es,

where Es := { f ∈ W d
σ(Su) | f (s) < ∞} and ϕ is the isomorphism constructed

in Theorem 3.9. Note that Ifin � V (Is), since it is possible to construct a function
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ds in W d
σ(Su) such that ds(s) = 1 and ds|{s} ′ = d|{s} ′ , using Corollary 4.11. Then

ds ∈ V (A) � Es and ds /∈ Ifin .
Let t, s ∈ Γd and suppose that t �= s. By construction ds(t) = ∞ and therefore

Is �= It , whence all the ideals under consideration are different.
Suppose that there is an order-ideal V (A)�E of V (A)�W d

σ(Su) such that V (A)�Es

is properly contained in V (A)�E. Then there exists f in (V (A)�E)\ (V (A)�Es), so
f (s) = ∞. Since f ∈ W d

σ(Su), there exist n in N and g in W d
σ(Su) such that f +g = nd.

If g(s) < ∞ then both f and g belong to E, so nd ∈ E and hence d ∈ E. If, on the
other hand, g(s) = ∞, let g ′ in W d

σ(Su) be defined by g ′(s) = 1 and g ′|{s} ′ = g|{s} ′ ,
by Corollary 4.11. Then g ′ ∈ E and ( f + g ′)|{s}∪{s} ′ = ( f + g)|{s}∪{s} ′ , so f + g ′ =
f + g = nd, whence it follows again that d ∈ E. This implies that E = W d

σ(Su). Thus
Is is a maximal ideal.

To construct an infinite strictly descending sequence of closed ideals that contain
Ifin(A), let {sn} be a sequence of different elements in Γd and let In be the closed ideal
of M(A) such that

ϕ
(

V (In)
)

= V (A) � { f ∈ W d
σ(Su) | f (si) <∞ for all i ≤ n}.

Then V (In) form a sequence of order-ideals in V
(
M(A)

)
that contain V

(
Ifin (A)

)
,

and V (I1) � V (I2) � V (I3) � · · · . Consequently I1 � I2 � I3 � · · · , and
In ⊇ Ifin (A) for all n.

To see that M(A)/Is is purely infinite simple it is enough to check, as in Propo-
sition 6.5, that the monoid

(
V (A) � W d

σ(Su)
)
/
(

V (A) � Es

)
is purely infinite. Let

f ∈ (
V (A) � W d

σ(Su)
) \ (

V (A) � Es

)
. Then f (s) = ∞ whence there exists f ′

in W d
σ(Su) such that f ′(s) = 1 and f + f ′ = 2 f . Therefore [ f ] = 2[ f ] in(

V (A) �W d
σ(Su)

)
/
(

V (A) � Es

)
, since f ′ ∈ V (A) � Es.

We consider now the case when ∂eQp is a compact Hausdorff space. In this case
the information relative to the elements in LAff(Qp) can be translated faithfully to
the extreme boundary by using well-known results, being consequently stored in the
continuity rather than in the affinity of the functions involved. This also allows for
some new constructions. Recall that, for a compact space X, we denote by L(X) the
monoid of lower semicontinuous functions on X with values on R ∪ {+∞}. We
denote by Lσ(X) the submonoid of L(X) whose elements are those functions which
are pointwise suprema of increasing sequences of continuous functions over X.

Let M be a partially ordered monoid with order-unit u. Let D be a generating in-
terval in M with a countable cofinal subset and set d = supφu(D). Assume that ∂eSu

is a compact Hausdorff space. By [30, Lemma 7.2], there is a monoid isomorphism
LAff(Su)++ ∼= L(∂eSu)++ given by restriction. Let d0 be the restriction of d. Define:

W d
0 (Su) = { f ∈ Lσ(∂eSu)++ | f + g = nd0 for some n in N and g in Lσ(∂eSu)++}.

Now the set M �W d
0 (Su) is a monoid with addition given by x + f = r

(
φu(x)

)
+ f ,

where x ∈ M, f ∈ W d
0 (Su) and r denotes the restriction map from Aff(Su)++ to

C(∂eSu)++, which is a monoid isomorphism (see [26, Corollary 11.20]). Then M �
W d

σ(Su) and M �W d
0 (Su) are isomorphic monoids.
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Proposition 6.7 Let A be a separable C∗-algebra in the class N and let p be a non-
zero projection in A. Suppose that ∂eQp is a (metrizable) compact Hausdorff space.
Let c be the cardinal of infinite quasitraces in ∂eQp and assume that c is infinite. Then
M(A)/Ifin (A) is purely infinite and has exactly c minimal (non-zero) closed ideals.

Proof Let u = [p] ∈ V (A) and d = supφu

(
D(A)

)
. By Theorem 5.6, we have that

∂eSu is compact Hausdorff and by Theorems 2.1 and 3.9 we get V
(
M(A)

) ∼= V (A)�
W d

σ(Su). The remark preceding this proposition assures that we have an isomorphism
ψ from V

(
M(A)

)
onto V (A) � W d

0 (Su). Note that the set Γd defined in the proof
of Theorem 6.3 is equal to {s ∈ ∂eSu | d0(s) = ∞}, where d0 = d|∂eSu , and that
the cardinality of Γd is exactly c. In the following we shall write d instead of d0 for
convenience.

First we show that, for every s in Γd, there exists a function h in W d
0 (Su) such that

h(x) = ∞ if and only if x = s.
Since ∂eSu is metrizable, the topology on ∂eSu is induced by some metric δ. Let

s ∈ Γd. If t ∈ ∂eSu, set g(t) = 1/δ(t, s), and note that g is continuous on Y :=
∂eSu \ {s} and lower semicontinuous on ∂eSu. Consider h = inf{g, d}. Then h is
lower semicontinuous, positive and h ≤ g. If t ∈ Y , let f (t) = d(t) − h(t) =
sup{d(t) − g(t), 0} and set f (s) = 0. In order to prove that h ∈ W d

0 (Su), we have
to check that f is lower semicontinuous. Let k ∈ R+ and define Uk = {x ∈ ∂eSu |
f (x) ≤ k}. Let tn be a sequence in Uk that converges to some point t in ∂eSu. First
suppose that t = s. Then f (s) = 0 ≤ k, so s ∈ Uk. Second, if t ∈ Γd \ {s} then
there exists n0 such that tn �= s if n ≥ n0. Since g is continuous on ∂eSu \ {s} and
d(t) = ∞, we have that there exists m0 ≥ n0 such that (d− g)(tn) ≥ 0 if n ≥ m0, and
limn→∞(d−g)(tn) = +∞. Since f (tn) is bounded, we obtain a contradiction. Hence,
if t �= s, necessarily t /∈ Γd. Let therefore t /∈ Γd. If d(t) ≤ g(t), then f (t) = 0 and
hence t ∈ Uk. Suppose that g(t) < d(t). As before, there exists n0 such that tn �= s if
n ≥ n0. Since g is continuous on ∂eSu \{s} we may also assume that g(tn) < g(t)+εn,
where εn is some real sequence that converges to zero. Therefore h(tn) < g(t) + εn,
and hence d(tn) = h(tn) + f (tn) < k + g(t) + εn. Since d is lower semicontinuous, this
implies that d(t) ≤ lim infn d(tn) ≤ k + g(t). Thus f (t) = d(t)− g(t) ≤ k. Therefore
h ∈ W d

0 (Su) and h(x) = ∞ precisely when x = s.
In order to construct c minimal non-zero closed ideals in M(A)/Ifin (A), we pro-

ceed as follows. Let s ∈ Γd. Let Is be the closed ideal of M(A) such that ψ
(

V (Is)
)

=
V (A) � Es, where

Es := { f ∈ W d
0 (Su) | f |Γd\{s} <∞}.

Since as we have shown, there exists a function in W d
0 (Su) which is infinite precisely

at one fixed point of Γd, we get that Is = It if and only if s = t , and that Ifin (A) � Is.
To see that Is is minimal containing Ifin(A), suppose that there exists a closed ideal

J ⊆ M(A) such that Ifin(A) ⊆ J � Is, and note that ψ
(

V ( J)
)

= V (A) � E, for some
E ⊆ W d

0 (Su). As V ( J) � V (Is), there exists a function f in (V (A)� Es) \ (V (A) � E),
and thus f (s) = ∞. Define f ′ : ∂eSu → (0,∞] by f ′(s) = 1 and f ′|∂eSu\{s} =
f |∂eSu\{s}. Then f ′ ∈ L(∂eSu)++ and f ′ + f = 2 f , so that f ′ ∈ W d

0 (Su). In fact,
f ′ ∈ Ifin . Let g ∈ E. If g(s) = ∞, then f + g = f ′ + g whence f ∈ V (A) � E,
a contradiction. Hence g(s) < ∞ and consequently g ∈ Ifin . Thus J = Ifin (A),
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proving that Is is minimal containing Ifin (A). Hence, {Is/Ifin (A)}s∈Γd forms a family
of c minimal non-zero ideals of M(A)/Ifin (A).

Let I be an order-ideal of V (A) � W d
0 (Su) which is minimal containing Ifin . To

see that I = Is for some s in Γd, it is enough to prove that, if f ∈ I \ Ifin , then f is
infinite at only one extreme point. Suppose that there exist elements s, s ′ in Γd such
that s �= s ′ and f (s) = f (s ′) = ∞. Define functions f ′, f ′ ′ in W d

0 (Su) by f ′(s ′) = 1
and f ′|∂eSu\{s ′} = f , and by f ′ ′(s) = 1 and f ′ ′|∂eSu\{s} = f . Then f ′ + f ′ ′ = 2 f
whence f ′, f ′ ′ ∈ I. Let I( f ), I( f ′) and I( f ′ ′) be the order-ideals of V (A) � W d

0 (Su)
generated by f , f ′ and f ′ ′ respectively. Then we have that

Ifin � Ifin + I( f ′) ⊆ Ifin + I( f ) ⊆ I.

Thus I = Ifin + I( f ′). Similarly I = Ifin + I( f ′ ′). Hence f ′ = g + h, for some g in Ifin

and h in I( f ′ ′). If h ∈ V (A), then writing x = h we have that f ′ = g + φu(x), which
gives a contradiction when we evaluate at s, since f ′(s) = f (s) = ∞. Thus h /∈ V (A),
so that there exist h1 in W d

0 (Su) and a natural number n such that h+h1 = n f ′ ′. Thus

f ′ + h1 = g + h + h1 = g + n f ′ ′.

Evaluating again at s we get f ′ ′(s) = ∞, which is impossible.
We now check that the monoid V

(
M(A)

)
/V

(
Ifin (A)

)
is purely infinite. Identify

V
(
M(A)

)
with V (A) � W d

0 (Su). If f ∈ (
V (A) � W d

0 (Su)
) \ Ifin , then there exists s

in ∂eSu such that f (s) = ∞. Construct a function h in W d
0 (Su) such that h(t) = ∞

precisely when t = s. If we let h ′(t) = h(t) if t �= s and h ′(s) = 1, then h ′ + h = 2h
and so h ′ ∈ W d

0 (Su), and in fact h ′ ∈ Ifin . Notice that f + h = f + h ′. Thus
[ f ] + [h] = [ f ] in

(
V (A) � W d

0 (Su)
)
/Ifin with [h] �= 0. As in Proposition 6.5, this

implies that M(A)/Ifin (A) is purely infinite.

Observe that the conclusion achieved in Proposition 6.5 is a stronger form of pure
infiniteness for M(A)/Ifin (A) when RR

(
M(A)

)
= 0, in that we prove p ∼ p ⊕ p

for all projections p in M(A)/Ifin (A). We note that this stronger conclusion is not
available in the setting of Proposition 6.7. For, let A be a C∗-algebra that satis-
fies the hypotheses of Proposition 6.7 with ∂eQp = [0, 1] and RR

(
M(A)

)
= 0.

Then it is enough to construct a lower semicontinuous function f : [0, 1] → [0,∞]
(where the value ∞ is attained) such that there are no lower semicontinuous func-
tions g, h : [0, 1] → [0,∞) satisfying f + h = g on the set {x ∈ [0, 1] | f (x) < ∞}.
Once this function is constructed, let q1 be the projection in M(A) correspond-
ing to f via the isomorphism ψ : V

(
M(A)

) ∼= V (A) � W d
0 (Su). If π : M(A) →

M(A)/Ifin (A) is the natural quotient map and if q = π(q1), then it follows that
[q] + [q] �= [q] in V

(
M(A)/Ifin (A)

)
. To construct such a function f , set f (x) = ∞

if x = 0 or x /∈ Q , and set f (x) = q if x �= 0 and x = p/q with gcd(p, q) = 1.
Then f −1[0, α] is finite for all α < ∞, whence f is lower semicontinuous. Sup-
pose that there exist lower semicontinuous functions g, h : [0, 1] → [0,∞) such that
g(x) = f (x) + h(x) if f (x) is finite. Note that g−1[0, k] contains a non-empty open
set for some k (using Baire’s Theorem). Let x /∈ Q such that (x− ε, x + ε) ⊂ g−1[0, k]
for some ε > 0. Taking a sequence {xn} in (x−ε, x+ε)∩Q that converges to x, we get

https://doi.org/10.4153/CJM-2001-025-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-025-2


624 Francesc Perera

that f (x) + h(x) ≤ k, since f + h is lower semicontinuous and f (xn) + h(xn) = g(xn)
for all n, a contradiction to f (x) = ∞.

To conclude this section, we investigate the presence of uncountably many closed
ideals in M(A). Other instances of this phenomenon have been observed in [30,
Corollary 16.7] for algebras with bounded scale.

Theorem 6.8 Let A be a separable C∗-algebra in the class N and let p be a non-
zero projection in A. Suppose that ∂eQp is a (metrizable) compact Hausdorff space that
contains a non-isolated infinite quasitrace. Then there exist uncountably many (proper)
closed ideals between L(A) and M(A) that form a chain with respect to inclusion. The
same assertion holds if all the infinite extremal quasitraces in Qp are isolated, but there
are infinitely many of them.

Proof Let u = [p] ∈ V (A) and d = supφu

(
D(A)

)
. As in (the proof of) Proposi-

tion 6.7 we have an isomorphism V
(
M(A)

) ∼= V (A)�W d
0 (Su), and Γd = {s ∈ ∂eSu |

d0(s) = ∞}, where d0 = d|∂eSu . For the rest of the proof we shall write d instead of
d0. The hypothesis that ∂eQp contains a non-isolated infinite quasitrace means that
there is a non-isolated point s in Γd. If t ∈ ∂eSu, set g(t) = inf{1/δ(t, s), d(t)}, where
δ is the metric on ∂eSu. As in the proof of Proposition 6.7, we have that g ∈ W d

0 (Su).
Since g is lower semicontinuous and ∂eSu is compact, there exists an ε > 0 such that
g ≥ ε. Define h : ∂eSu → (0,∞] by the rule h(s) = ∞ and h(t) = ε if t �= s. Now h is
upper semicontinuous and h ≤ g ≤ d. By the Sandwich Theorem (e.g. [25, 1.7.15]),
there exists a continuous function f : ∂eSu → [0,∞] such that h ≤ f ≤ g. Notice
that f is infinite precisely at s. Take Y = {t ∈ ∂eSu | f (t) ≤ 1}. Let 0 < α < 1
and define gα(t) = f (t)α if t ∈ ∂eSu \ Y , and gα(t) = f (t) if t ∈ Y . We use the
convention here that ∞α = ∞ so that gα(s) = ∞. Notice that gα ≤ f and, if α < β,
then gα ≤ gβ .

If t ∈ ∂eSu \ {s}, let w(t) = d(t) − f (t) and set w(s) = 0. Then w is lower
semicontinuous. To see this, let k ∈ R+ and Uk = {t ∈ ∂eSu | w(t) ≤ k}. If tn is a
sequence in Uk converging to some t in ∂eSu, then we have to check that w(t) ≤ k.
If t = s then t ∈ Uk since w(s) = 0. It follows from the definition of w and in a
similar way to Proposition 6.7 that, if t �= s, then t /∈ Γd. Since f is continuous
on ∂eSu, there is a real sequence εn converging to zero such that f (tn) < f (t) + εn

if n is large enough. Then d(tn) = w(tn) + f (tn) < k + f (t) + εn, and since d is
lower semicontinuous we get d(t) ≤ k + f (t), so w(t) ≤ k. Therefore w is lower
semicontinuous and so f ∈ W d

0 (Su). If 0 < α < 1, a similar argument shows that
there exist a function g ′

α in L(∂eSu)++ and n in N such that gα + g ′
α = n f , whence

gα ∈ W d
0 (Su) for all α.

Notice also that, if 0 < α < β < 1 the function gα can be completed to gβ , that
is, there exists hαβ in L(∂eSu)+ such that gα + hαβ = gβ . To prove this we proceed as
before, setting hαβ := gα − gβ on ∂eSu \ {s} and hαβ(s) = 0. Then, if k ∈ R+ and tn

is a sequence in ∂eSu that converges to some point t in ∂eSu different from s and such
that hαβ(tn) ≤ k for all n, we check that hαβ(t) ≤ k. If t ∈ Y , then hαβ(t) = 0 ≤ k.
If t /∈ Y then hαβ(t) = f (t)β − f (t)α. Since f is continuous on ∂eSu, there exists n0

such that tn /∈ Y and tn �= s if n ≥ n0. Thus hαβ(tn) = f (tn)β − f (tn)α converges to
hαβ(t) and since hαβ(tn) ≤ k for all n, we get that hαβ(t) ≤ k.
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If α ∈ (0, 1), let

Eα := {h ∈ W d
0 (Su) | h + h ′ = ngα for some h ′ in L(∂eSu)++ and n in N},

and let Iα be the closed ideal of M(A) such that ψ
(

V (Iα)
)

= V (A) � Eα, where ψ
is the isomorphism in the proof of Proposition 6.7. We have shown that Iα ⊆ Iβ
whenever α < β. We claim that the inclusion is proper. Let α < β and let n ∈ N.
Consider the difference (ngα− gβ)|∂eSu\Y . Let tk be a sequence in ∂eSu converging to s
with tk �= s for all k. Since Y is closed, there exists k0 such that tk /∈ Y if k ≥ k0. Thus
(ngα− gβ)(tk) = f (tk)α

(
n − f (tk)β−α

)
if k ≥ k0 and therefore limk(ngα− gβ)(tk) =

−∞. This shows that gβ /∈ V (A) � Eα and establishes the claim. Hence {Iα}α∈(0,1)

is a family of different closed ideals between L(A) and M(A) that form a chain with
respect to inclusion.

Suppose now that all the infinite quasitraces in ∂eQp are isolated, but there are
infinitely many of them. Then Γd consists of infinitely many isolated points. Since
∂eSu is compact and all the points in Γd are isolated, there exists a sequence tn in Γd

whose limit is a point s in ∂eSu \ Γd. Since d ∈ L(∂eSu)++ and ∂eSu is compact, there
exists 0 < ε < 1 such that ε < d(t) for all t in ∂eSu. For 0 < α < 1, define functions
gα : ∂eSu → (0,∞) by the rule gα(tn) = nα and gα(t) = ε if t �= tn. Let λ ∈ R+,
and suppose that λ ≥ ε. Note that, if n is large enough, then gα(tn) > λ. Therefore
gα−1(−∞, λ] equals the complementary set (in ∂eSu) of a tail of the sequence {tn}.
Since all the points in {tn} are isolated, we conclude that g−1

α (−∞, λ] is closed. If,
on the other hand, λ < ε, then g−1

α (−∞, λ] = ∅. So gα ∈ L(∂eSu)++. Notice that
(d − gα)(tn) = +∞ and (d − gα)(t) = d(t) − ε if t �= tn, whence d − gα ∈ L(∂eSu)++.
Thus gα ∈ W d

0 (Su) for all α. Now gα ≤ gβ whenever 0 < α < β < 1. Note
also that (gβ − gα)(tn) = nα(nβ−α − 1) and (gβ − gα)(t) = 0 if t �= tn, and that
limn(gβ − gα)(tn) = +∞. Therefore gβ − gα ∈ L(∂eSu)+. Define

Eα = {h ∈ W d
0 (Su) | h + h ′ = ngα for some h ′ in L(∂eSu)++ and n in N}

and let Iα be the closed ideal of M(A) such that ψ
(

V (Iα)
)

= V (A) � Eα, as before.
We have shown that Iα ⊆ Iβ if α < β.

Finally, if k ∈ N and 0 < α < β < 1, we see that limn(kgα−gβ)(tn) = −∞, so that
the inclusion Iα ⊆ Iβ is proper and we get an uncountable chain {Iα | 0 < α < 1}.

7 Separativity and Stable Rank

Rieffel has shown in [45, Proposition 6.5] that, if a C∗-algebra B with unit contains
two isometries with orthogonal ranges, then sr(B) = ∞. This is the case, for ex-
ample, for B(H) where H is an infinite dimensional separable Hilbert space. This
fact would seem to preclude any stable rank finiteness condition on the multiplier
algebra M(A) of a simple C∗-algebra A. In the same paper, Rieffel asks for finite-
ness conditions on M(A) (or on A itself) to ensure that sr

(
M(A)

)
= sr(A) ([45,

Question 4.16]).
In the present section we provide a direct way to compute the stable rank of the

multiplier algebra M(A) in terms of the scale of A. We still assume that A belongs to
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the class N consisting of simple, σ-unital (non-unital), non-elementary C∗-algebras
with real rank zero, stable rank one and strict unperforation on V (A). We will also
assume that RR

(
M(A)

)
= 0. We therefore obtain that the only possible values for

sr
(
M(A)

)
are either 2 or ∞, which do not coincide in any case with sr(A), even

when M(A) is stably finite.

Definition 7.1 ([13], [3]) Let M be an abelian monoid. We say that M is separative
if a + a = a + b = b + b implies a = b, for all elements a, b in M. A C∗-algebra A is
separative if the associated monoid V (A) is separative.

As is seen in [3], separativity is a key to a number of problems concerning can-
cellation of finitely generated projective modules over regular rings and C∗-algebras
of real rank zero. The importance of this concept in our situation is recorded in the
following lemma.

Lemma 7.2 Let A be a simple σ-unital non-unital C∗-algebra with real rank zero,
stable rank one, and with V (A) strictly unperforated. Then M(A) is separative.

Proof We only need to show that the monoid V
(
M(A)

)
is separative. If A ∼= K(H)

for some infinite dimensional separable Hilbert space H, then M(A) ∼= B(H). Since
V

(
B(H)

) ∼= Z+ ∪ {∞} with ∞ + x = x + ∞ = ∞ for all x, it is clear that M(A)
is separative. Thus we may assume that A is non-elementary. Choose a non-zero
element u in V (A) and set d = supφu

(
D(A)

)
. Then V

(
M(A)

) ∼= V (A) � W d
σ(Su),

by Theorem 3.9. Let a, b ∈ V (A) �W d
σ(Su), and assume that a + a = a + b = b + b.

First note that a ∈ V (A) if and only if b ∈ V (A). Hence, if a ∈ V (A), then a = b
since V (A) is cancellative.

Secondly, suppose that neither a, nor b, belong to V (A). Set a = f and b = g for
some functions f , g in W d

σ(Su). The equality 2 f = 2g implies that f is infinite at the
same points as g. In particular we get f = g, and thus a = b.

It has been shown in [3] that an appropriate notion of stable rank for elements in
the monoid V (R) of isomorphism classes of finitely generated projective right mod-
ules over a ring R provides information about the stable rank for a large class of rings.

Definition 7.3 ([3]) Let M be a monoid, let a ∈ M and n ∈ N. Say that a satisfies
the n-stable rank condition if the following holds: Whenever na + h = a + y for some
elements h, y in M, then there exists an element e in M such that y = h + e and
na = a + e. The stable rank of a, which is denoted by sr(a) is the least positive integer
n such that a satisfies the n-stable rank condition (if such an n exists), or ∞ (if no
such n exists).

The following proposition is known. A ring-theoretic version of it may be found
in [3, Section 3].

Proposition 7.4 Let M be a monoid and let a ∈ M.

(1) Suppose that M is conical. Then sr(a) = 1 if and only if a cancels from sums in M.
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(2) Suppose that M is separative. Then sr(a) is either 1, 2 or ∞.

Proof (1). Suppose that M is conical. If a cancels from sums in M, then clearly
sr(a) = 1. Conversely, assume that sr(a) = 1 and that a + y = a + h for some y, h in
M. Then there exists e in M such that y = h + e and a = a + e. Applying again that
sr(a) = 1 to the equality a + e = a + 0 we get an element e ′ in M such that a = a + e ′

and 0 = e + e ′. Since M is conical, this implies that e = 0 and thus y = h, as desired.
(2). Now suppose that M is separative and that sr(a) ≤ n for some natural num-

ber n. If 2a + h = a + y for some h, y in M, then by adding (n − 1)y to this equality
we get na+(a+nh) = a+ny. Since sr(a) ≤ n, there exists e in M such that na = a+e
and ny = (a + nh) + e, whence a ≤ ny. Applying [3, Lemma 2.1(iv)] to the equation
a + (a + h) = a + y we get that a + h = y. It follows that sr(a) ≤ 2.

Theorem 7.5 Let A be a separable C∗-algebra in the class N such that M(A) has real
rank zero. Then sr

(
M(A)

)
= 2 if and only if A has finite but not continuous scale; and

sr
(
M(A)

)
= ∞ if and only if A has either continuous scale or if the scale is not finite.

Proof By Lemma 7.2, M(A) is separative. Therefore the only possible values for the
stable rank of the elements of V

(
M(A)

)
are 1, 2 or ∞, according to Condition (2)

in Proposition 7.4. Notice that M(A) is an exchange ring (in the sense of [51]) be-
cause it has real rank zero (see [3, Theorem 7.2]). Therefore the stable rank of M(A)
equals the stable rank of the element [1M(A)] in V

(
M(A)

)
, by [3, Theorem 3.2]. Let

u ∈ V (A)∗ and set d = supφu

(
D(A)

)
. By Theorem 3.9, there exists a monoid iso-

morphism ϕ from V
(
M(A)

)
onto V (A)�W d

σ(Su) such that ϕ([1M(A)]) = d. Hence
sr[1M(A)] = sr(d).

Note that sr(d) ≥ 2. To see this we characterize the elements in V (A) � W d
σ(Su)

with stable rank one as the elements in V (A). Since V (A) � W d
σ(Su) is a conical

monoid, an element has stable rank one if and only if it cancels from sums in V (A)�
W d

σ(Su), by Condition (1) in Proposition 7.4. Let x ∈ V (A) and assume that x + f =
x + g for some functions f , g in W d

σ(Su). Then f is infinite precisely when g is, and if
f (s) < ∞ for some s in Su, then s(x) + f (s) = s(y) + g(s), whence f (s) = g(s). Thus
f = g. Assume conversely that sr(x) = 1 and that x /∈ V (A). Then x ∈ W d

σ(Su). Take
any z in V (A)∗ and observe that z + x = φu(z) + x, which contradicts the fact that x
cancels from sums in V (A) �W d

σ(Su). Since d /∈ V (A), we conclude that sr(d) ≥ 2.
Suppose now that A has finite but not continuous scale. Then d|∂eSu is finite and

not continuous. In order to see that sr(d) = 2, it suffices to check that d satisfies the
2-stable rank condition. Suppose that, for some elements y, h in V (A) �W d

σ(Su), we
have that 2d + h = d + y. If y ∈ V (A), then the equality 2d + h = d + φu(y) says
that d + h = φu(y), and this implies that d is continuous, a contradiction. Therefore
y /∈ V (A). In this case (d + h)|∂eSu = y|∂eSu , whence d + h = y and we are done if we
choose e = d. Consequently sr(d) ≤ 2 and since as we have shown, sr(d) ≥ 2, we get
sr(d) = 2. Therefore sr

(
M(A)

)
= 2.

Conversely, assume that sr
(
M(A)

)
= 2. Then sr(d) = 2. If d is a continuous

affine function, then d is bounded, so d � (m + 1)φu(u) for some m in N. Let
x = mu and note that 0 � d � φu(x) + 1 = φu(x + u). Let y = x + u and choose h
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in Aff(Su)++ such that d + h = φu(y). Then 2d + h = d + φu(y) = d + y, and since
h /∈ V (A) there is no e in V (A)�W d

σ(Su) satisfying y = h+e. Hence d does not satisfy
the 2-stable rank condition, a contradiction. If, on the other hand, there exists s in
∂eSu such that d(s) = ∞, we distinguish two possibilities: first, if d|∂eSu is identically
infinite, then it is easy to see that sr(d) = ∞ (since in this case W d

σ(Su) = LAff(Su)++)
and so d does not satisfy the 2-stable rank condition, contradicting our hypothesis;
second, if d|∂eSu is finite at some point but d(s) = ∞, then by using the techniques
of Corollary 4.13 there exists y in W d

σ(Su) with y(s) = 1/2 and y|{s} ′ = (d + 1)|{s} ′ ,
where {s} ′ denotes the complementary face of {s} in Su. Thus 2d + h = d + y, with
h = 1. If there exists an element e in V (A)�W d

σ(Su) such that y = h + e, then 1 ≤ y,
which is impossible since y(s) = 1/2. Therefore d does not satisfy the 2-stable rank
condition, and this contradicts our assumption that sr(d) = 2.

It is clear that the complementary conditions characterize the multiplier algebras
with infinite stable rank.

It has been proved in [54, Corollary 1.6] that, in case A is a simple σ-unital C∗-
algebra with real rank zero and continuous scale (that is, the quotient M(A)/A is
simple), then M(A)/A contains two isometries with orthogonal ranges, so in partic-
ular sr

(
M(A)/A

)
= ∞ by [45, Proposition 6.5]. The following corollary deals with

the case when M(A)/A is not simple.

Corollary 7.6 Let A be a separable C∗-algebra in the class N and assume that M(A)
has real rank zero. Then sr

(
M(A)/A

)
= 2 if and only if sr

(
M(A)

)
= 2.

Proof Suppose that sr
(
M(A)

)
= 2. Then sr

(
M(A)/A

) ≤ sr
(
M(A)

)
= 2, by [45,

Theorem 4.3]. Since every projection in M(A)/A is infinite ([54, Theorem 1.3(a)])
we have that V

(
M(A)/A

)
is not cancellative, whence sr

(
M(A)/A

)
= 2.

Conversely, assume that sr
(
M(A)/A

)
= 2. Since sr(A) = 1 we get that

sr
(
M(A)

) ≤ max
{

sr(A), sr
(
M(A)/A

)
+ 1

}
= 3,

using [45, Corollary 4.12]. Since the stable rank of M(A) is finite, we conclude from
Theorem 7.5 that sr

(
M(A)

)
= 2.

Finally, we note that M(A) is stably finite whenever the scale is not identically
infinite (that is, when A is not stable, by [38, Proposition 1.14]). This can be derived
again from the corresponding notion stated for monoids. Observe, though, that if d
is the scale corresponding to A, then nd is the scale corresponding to Mn(A) and thus
A is stable if and only if Mn(A) is stable for some (hence all) natural numbers n. It
follows then from [49, Theorem 3.5] that if A is not stable, then M(A) is stably finite.
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