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On the propagation, reflection,

and transmission of transient

cylindrical shear waves in

nonhomogeneous four-parameter

viscoelastic media

T. Bryant Moodie

The purpose of this paper i s to study the propagation of

cylindrical shear waves in nonhomogeneous four-parameter

viscoelastic plates of arbi trary thickness. The plates have a

transverse cylindrical hole and the i r material properties are

functions of the radial distance from the center of th is

opening. They are i n i t i a l l y unstressed and at r e s t . A suddenly

ris ing shearing tract ion is applied uniformly over the boundary

of the opening and para l le l to the faces of the plates and there-

after steadily maintained; they are otherwise free from loading.

We consider both the case of a f in i te plate with a s tress-free

cylindrical outer boundary, and an inf in i te plate composed of two

media in welded contact along a cylindrical surface symmetrical

with respect to the center of the opening. We find that a

reflected pulse i s produced at the outer boundary of the f in i t e

plate while reflected and transmitted pulses are produced at the

interface in the inf in i te bi -viscoelas t ic p la te . Ray techniques

are used throughout, and formal asymptotic wavefront expansions

of the solution functions are obtained.
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1. Introduction

Most of the problems involving l inear viscoelast ic waves that have

been solved expl ic i t ly are for one-dimensional waves in homogeneous and

isotropic media, for example, see the t rea t i ses by Bland [/] and Kolsky

[ / / ] , and the references contained therein; also the references contained

in the introduction of [5 ] . Recently some progress has been made in the

treatment of multi-dimensional viscoelast ic waves in homogeneous media,

tha t i s , see [Z] , [ 3 ] , [ 5 ] , [73], [ J5 ] , [ J9 ] , and the references contained

therein; To pa r t i a l l y overcome this lack of information concerning multi-

dimensional waves in viscoelastic-media, and in part icular for non-

homogeneous media, we present here a formal study of radial ly symmetric

shear waves in nonhomogeneous four-parameter viscoelastic plates of

arbi t rary thickness. The four-parameter model chosen for our study

exhibits an e l a s t i c , a viscous, and a retarded e las t ic response to shearing

s t r e s s . Our viscoelas t ic material thus closely approximates the actual

behaviour of a polymer [ 7 ] .

The asymptotic methods to be employed in th is paper originated in the

f ie ld of op t ics . Luneburg [76] constructed a formal asymptotic expansion

of the solution for the time-harmonic Maxwell equations, and demonstrated

that the leading term of th is expansion is the geometrical optics solution.

Several authors, 161, LSI, [ 9 ] , 1101, and [74], have shown that subsequent

terms account for diffraction effects, that i s , effects which cannot be

accounted for by c lass ica l geometrical optics . Friedlander [6] formulated

Luneburg's technique so that i t applies to general progressing waves. I t

i s Fried lander's formulation that we wi l l employ in this paper.

Karal and Keller [ 8 ] , using Friedlander's formulation to bypass the

often d i f f icul t Fourier synthesis, extended Luneburg's technique to t rea t

general progressing waves in nonhomogeneous isotropic e las t i c media. A

p a r t i a l j u s t i f i c a t i on , obtained by comparison with known solutions, has

been given for the Karal-Keller technique of elastodynamics [ 4 ] , [72],

[ J7 ] . Cooper and Reiss [5] extended the Karal-Keller technique to study

waves in l inear homogeneous isotropic viscoelast ic media, and Park and

Reiss [HI then applied th is extended Karal-Keller technique to study

osci l la tory impact of a standard nonhomogeneous viscoelastic rod. The

l a t t e r authors included a par t ia l jus t i f ica t ion of the method for
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homogeneous rods.

In this paper we extend the work of Glauz and Lee [7] and consider

cylindrical pulse waves propagating in nonhomogeneous four-parameter

viscoelastic plates of arbitrary thickness. To use the inherent symmetry

of our problem and thereby simplify the analysis, we introduce the circular

cylindrical coordinates (r, 6, a) and let the plates under consideration

occupy r £ r £ r , \z\ £ d/2 , and r_ £ r < « , \z\ £ d/2 , for

finite and infinite plates, respectively, where i* is the radius of the

cylindrical opening in both plates, r is the outer radius of the finite

plate, and, in both cases, d is the arbitrary plate thickness. For both

plates the transverse cylindrical openings are subjected to shearing

tractions which are uniformly distributed over the boundaries of these

openings and act parallel to the faces of the plates. These tractions are

suddenly applied and thereafter steadily maintained. The finite plate has

a stress-free boundary at r (r.. > rQ) and the infinite plate has an

interface at r (r0 < v < °°) across which the properties of the medium

may be discontinuous. The only non-vanishing components of stress, strain,

velocity, and displacement are 8^- = s(r, t) , e „ i e(r, t) ,

va = v(r, t) , and ua i u{r, t) , respectively, where v = Su/St .

Because proofs are not provided, the methods presented in this paper

are formal. The expansions obtained are not necessarily convergent but

presumably are asymptotic to the solutions of the equations of motion for

our viscoelastic media. It is hoped that the results of this paper will

shed some light on the way in which a cylindrical pulse propagates through

a polymer and is reflected at a free surface or reflected and transmitted

at an interface between two media. To our knowledge this is the first time

that any attempt has been made to solve the problems posed in this paper.

2. Formulation

We formulate the problems to be discussed within the context of the

linear theory of viscoelasticity [/]. In a linear isotropic viscoelastic

material, each shear (deviatoric) component of strain is related by the

stress-strain law solely to the corresponding shear component of stress,
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and the relationship is the same for each component. We choose as a model

on which to base the behaviour of our viscoelastic material, a four-

parameter viscoelastic element which, when subjected to shearing stress,

exhibits an elastic, a viscous, and a retarded elastic response. This

four-parameter element must then consist of a two-parameter Maxwell element

in series with a two-parameter Voigt-Kelvin element [?] . The stress-strain

law for our four-parameter element, which exhibits the desired behaviour

under shearing stress, is

E = £ 1 + £ 2 + e 3 '

(1)

where e is the overall shear strain of the four-parameter element, s

the corresponding shear stress; e , e , and e_ are the shear strains

associated with the Maxwell spring, the two-parameter Voigt-Kelvin

element, and the Maxwell dashpot, respectively; y and u? are the

moduli of rigidity associated with the Maxwell and Voigt-Kelvin elements,

respectively, and ru and r)_ are the moduli of shear viscosity

associated with these elements. Assuming that the properties of the

smallest portions into which we can conceive our viscoelastic material to

be divided are the same as those of the substance in bulk, and eliminating

e , e , and e from equations ( l ) , we obtain the stress-strain relation

for our viscoelastic solid to be

(2) s t t + [(u1/n3) + (v1/n2) + (y2/n2)]st + ( u ^ A y ^ s

In equation (2), s is the non-vanishing component of shear stress

introduced in the preceding section, and e is the corresponding component

of strain. The subscript t appearing in equations (l) and (2) represents

partial differentiation with respect to time t . The moduli of rigidity

and viscosity are functions of the radial distance r from the center of

the cylindrical opening and are independent of t .
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The non-vanishing component of shear strain e can be expressed in

terms of the single non-vanishing component of displacement u by the

relation [77],

(3) e = 3u/9r - u/r .

New+on's second law gives the equation of motion for the viscoelastic

plates as (neglecting body forces)

(1*) ds/dr + 2s/r = putt ,

where p = p(r) is the variable mass density of the medium. Using (3) in

(2), and then eliminating u between the resulting expression and equation

(k), we obtain the par t ia l differential equation for s(r, t) , that i s ,

(5 ) sttt+ [K / i 3 ) + K/n2) + (u2/n2)]att+ (y1M2/n2n3)st

We now assume [6] that the solution s(r, t) of equation (5) may be

represented by the series

CO

(6) s *• I An{r)Fn[t-S{r)} , AQ * 0 ,

where the F 's are related by

(7) Fn=Fr^l ' " = 1 » 2 ' ••• '

and i t i s assumed that A i O for n < 0 . We further assume that the

derivatives of s may be obtained by term-wise differentiation in (6).

The prime in (7) denotes differentiation with respect to the entire

argument (t-S) , and (7) enables us to relate a l l of the F 's to F

(the waveform) by successive integrations. For example, i f FQ is the

Heaviside unit function H(t) defined by

(8) U(t) = 1 for t > 0 , H{t) = 0 for t < 0 ;

then, by successive integrations, we obtain

(9) Fn = (t-S)nH(t-S)/nl .

Note that FQ vanishes for negative argument, that is, in front of the
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wavefront whose equation is given by t = S{r) , where S is called, the

phase or eikonal function. For F given by (9), the coefficients A in

(6) are the Jump conditions for the stress and its derivatives across the

wavefront. Solutions of (5) in the form (6) offer a convenient device for

studying the propagation of stress discontinuities.

3. Solution

By seeking the solution of equation (5) in the form (6) [S], we find

that the phase function S satisfies the eikonal equation of geometrical

optics,

(10) (S 1) 2 = P/V^ = l/o2 ,

where a = e(r) is the variable wave velocity for elastic shear waves in a

medium whose rigidity is u . The amplitude functions A satisfy the

transport equations

(11) 2S'A'n + p(l/n2+l/n3)iln + S ' ( l / r -p ' /p )^ + S"An = Pn , n = 0, 1, . . . ,

P = A» + ffi _ £ l ]_ 2 A S 'L ' - pa*. + £[£ + fill
n n-l l(r pj d J V i [n3 r\r pj

+ U + X[ _ V [ + An-l nr-2 [r p J n-2 r [r p) n-2
\(r) = u2/n2 .

The eikonal equation (10) tells us that the stress discontinuities

propagate through the viscoelastic medium with the velocity e(r) . The

rays, which must cut the surfaces 5 = const, at right angles, are

straight lines. Integrating the eikonal equation along a ray we obtain

(12) S(r) = S[r) ± f

where the plus sign is associated with waves travelling in the direction of

increasing r , that i s , with outgoing waves, and the minus sign is

associated with waves travelling in the direction of decreasing r , that

i s , with •incoming waves. Equation (12) enables us to determine the phase

at any point on a ray in terms of i ts value at r = r . It is very

important when using our asymptotic method to choose the proper sign in
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equation (12) so that the direction of propagation is taken into account.

Our method is essentially one which reduces partial differential

equations to ordinary differential equations. Often the latter can be

solved to yield explicitly the desired asymptotic expansions. In some

cases, however, the ordinary differential equations cannot be solved

explicitly. This is"a limitation of the method which is often overlooked

1141.

The general solution of the transport equations (ll) is

(13) An{r) =An(rQ)[p

c(T)[p(r)/p(T)]%exp{± ())J() n= 0,

p(r) = pc/r , Y(r) = -f (^ +

where the upper signs in equation (13) are associated with waves travelling

in the direction of increasing r and the lower signs are associated with

+
waves travelling in the direction of decreasing r . The expression P

is obtained from P and equation (12), that is, when the plus sign is

used with S in the expression P we call it P , and when the minus

sign is used, P . Thus P is associated with outgoing waves and P

with incoming waves.

We consider the viscoelastic plates to be initially unstressed and at

rest. For t > 0 , the opening is subjected to a suddenly rising uniform

shearing traction so that e(r
n» *] i-s known. Thus, from equation (6), we

have for shearing tractions suddenly applied and thereafter steadily

maintained, that

CO

s{rQ, t) * I An{vQ)Fn[t-S{r0)} = sQH(t) ,

where s_ i s a constant measuring t h e s t r e n g t h of the source and H(t) i s

the Heaviside un i t function defined in ( 8 ) . Thus, we choose [ 4 ] , [ /7 ]
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8Q if n = 0 ,

(15) An(rQ) = •

0 if n > 0 or n < 0 ,

s(rQ) = 0 , FQ=H(t) .

The solution of equation (5), for outgoing waves generated by the above

boundary stress, is given by

CO

(16) s * I A (r)[t-S(r)]nH[t-S(r)]/nl ,
n=0

-I. d-zM-z)

where the A are given recursively by (13) (with the upper signs) in

conjunction with (15)- The solution (16) applies up until the outgoing

wave strikes either a boundary or an interface. We will show that

reflected waves are produced at a boundary while both reflected and

transmitted waves are produced at an interface between two media. The

first-term approximation to our solution is

s w- J:
where 5 is given in (l6). This represents a transient stress wave which

starts out from the opening at r = iv. with amplitude sn and progresses

in the direction of increasing r with velocity e(r) . It is modulated

by the factor (p(r)/p(rQ)] expj- y(a)da> . Further terms in the

approximation may be obtained recursively from (13)-

4. The finite plate

We consider the nonhomogeneous finite viscoelastic plate

rQ £ r ~ r , \z\ 5 d/2 , with a stress-free boundary at v = r. , to

have the surface of its cylindrical opening subjected to a suddenly rising

uniform shearing traction of the type described in the preceding section.

A transient stress is produced which leaves the boundary of the hole at
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time t = 0 and travels with the velocity e(r) in the direction of

increasing r . This outgoing wave has been discussed in the preceding

section and its asymptotic representation is given by (l6) with the

amplitude functions A being given by (13) and (15), where the upper

signs in (13) are chosen to correspond to an outgoing wave. From now on we

will denote this outgoing wave by s and i ts amplitude and phase

functions by A and S , respectively, implying that i t is the wave

which is incident at the stress-free boundary r = r .

We now assume that at the stress-free boundary there is produced a

reflected wave s which can be represented by

GO

(17) sr -v I Ar{r)FJt-Sr(r)'] , Ar = 0 for n < 0 .
n=0

The amplitude functions A in (17) satisfy the transport equation ( l l ) .

Its solution for an incoming wave which leaves r = r and proceeds in the

direction of decreasing r is given by (13) with the lower signs, and r

replacing rQ . The phase function SP is given by equation (12) with the

minus sign, and r. replacing *> . We justify our assumption that a

reflected wave is produced at r = r by demonstrating that the boundary

condition on r, can be satisfied by s = s + 8 . The boundary

condition will also give the necessary ini t ia l conditions for the eikonal

and transport equations thereby enabling us to formally determine the

reflected wave.

Up until time t = S [r ) the solution is given by the incident wave

sV which has been completely determined in the preceding section. At

t = 5 (r.) the incident wave has arrived at the boundary r = r , and

applying the boundary condition of vanishing stress we obtain
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(18) A'irJ ="<(r1) , «= 0, 1, 2

Then, because An(r^) and S (r ) are known from the work of the

preceding section, the reflected wave may be completely determined. I t is

given by (17) with the A and Sr being given by

(19) Ar
n(r) = -A^rJ (p(r)/p(r1)]*expj+ I y(a)da\

+ (%) e(T)[p(r)/p(x)] expj- y(a)da>P (T)C2T , n = 0, 1, ,

and

(20) Sr(r) = ( p - ^ ](<*T/O(T)) .

The solution sr will then app^r for S1 ( r j = ^ ( r ) < t < 5^(r0) . At

time t = £> [rQ] the reflected wave s arrives at r = rQ and the

boundary conditions there must be satisfied. The process is then repeated

and in this way any number of reflections can be treated in a straight-

forward manner. The first-term approximation to the reflected wave is

where o is given by equation (20). Further terms in this approximation

may be obtained recursively from (19) •

5. The bi-viscoelastic infinite plate

We consider the in f in i t e nonhomogeneous plate rQ 5 r < °° ,

| s | £ d/2 , composed of two adjoining four-parameter viscoelastic media

which we ca l l medium "a" and medium "b" . The interface between these

two media i s at r = r . We denote the wave speed and density of the two
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media by o , o, , p , and p, , and functions evaluated at the interface

will be denoted by a bar, that i s , SV{r) = S . The boundary conditions

at the interface require that I = i, and V = 53, .
a b a b

At the boundary of the cylindrical opening we apply the suddenly

rising uniform shearing traction discussed in the preceding sections. A

transient stress wave is produced which leaves the boundary of the opening

at time t = 0 and travels with the velocity a (r) in the direction of

increasing r through medium a . This wave has been discussed in Section

3 and the solution given there will be valid up until such time as the

outgoing wave meets the interface r = ? between medium a and medium

b . We assume that when the incident wave strikes the interface r = r ,

there is produced both a reflected wave which travels in the direction of

decreasing r into medium a , and a transmitted wave which proceeds from

the interface into medium b . Due to the linearity of the equations , the

stress field can be obtained by superposition. We assume that

8, = I A*F ft-S*) ,b nto nn

n=0 n=0

where the superscripts i, r , and t refer to incident, reflected, and

transmitted waves, respectively. The form for the velocity field in (2l)

implies that the A3 and 2r are related by
n n

(22) BJ
n = -(l/p)fsJ"^-/l^1-(2/z')^_1j , n = 0, 1 j = i, r, t ,

7* -1 V -1

where Sr = a for the outgoing waves and S° = -c for the incoming

wave; equation (22) yields the well-known resul t from the conservation of
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momentum across a steadily moving discontinuity, that is, Az. = pcB~ ,

Inserting (20), (21), and (22) in the boundary conditions s = i,

and V = V, , we find that
a b

(23) s1 = r = s* ,

and

where

f
Solving the system given by equations (2l+) we have

(26) ^

2*= FaJ*-?* - y 1+iy*

Thus, since 5 and A are known, the initial values at the interface

are known, and the procedures of the preceding section may be applied to

obtain the formal solution for the reflected and transmitted waves.

One interesting result from (26) is that, in the limiting case of

1=1 (that is, p 3 = Px,c, ), there is no reflected wave only if

? i = 7 l ~ ^ l f o r k11 n - 1 ' T h u s > even though the impedance is

continuous at r i t is s t i l l possible that a wave will be reflected. Note

that, in the case 2 = 1 , the reflected wave has no discontinuity since

i4_ = 0 . This was pointed out for the case of one-dimensional elastic

waves by Cooper [4].

6. Discussion

We have presented a formal technique for obtaining asymptotic
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representations of the solution functions for radially symmetric transient

stress waves in nonhomogeneous four-parameter viscoelastic media. Methods

for treating reflection at a free surface and reflection and transmission

at an interface between two media were also presented. The asymptotic

method is direct and involves only ordinary differentiation, integration,

and algebra. Because of its directness it is invariably true that it is

much simpler than the procedure which involves first finding the exact

solution, and then its asymptotic expansion. Also, our technique does not

depend on separation of variables.

When uniform shearing tractions are suddenly applied to the boundary

of a transverse cylindrical opening in a nonhomogeneous viscoelastic plate

and thereafter steadily maintained, it is found that a cylindrical shear

wave of stress discontinuity is produced. This wave propagates outwards

from the opening with a variable velocity which depends only on the

rigidity u. . It is modulated by a factor which depends on the moduli of

shear viscosity and the modulus of rigidity associated with the Maxwell

part of our four-parameter element (that is , u ) . When this outgoing

wave meets a stress-free boundary a reflected wave is produced which then

travels in the opposite direction. If this outgoing wave meets an

interface between two nonhomogeneous media, both a reflected and a

transmitted wave are produced. The method of treating this interface may

be used to treat multiple interfaces. One interesting result was that

reflected waves may be generated at an interface between two different

nonhomogeneous media even though the impedances at the interface are

matched. In this case the reflected wave does not possess a discontinuity.
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