Note on Mr Tweedie's Theorem in Geometry.

By Peter Pinkerton, M.A.

Let $\mathrm{ABC}, \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ (Fig. 4) be two triangles equiangular in the same sense. Let $B C, B^{\prime} C^{\prime}$ meet in X. Describe circles round BXB', CXC' to meet again in O. Then it is easy to see that the triangles $B O C, C O A, A O B$ are equiangular in the same sense to the triangles $\mathrm{B}^{\prime} \mathrm{OC}^{\prime}, \mathrm{C}^{\prime} \mathrm{OA}^{\prime}, \mathrm{A}^{\prime} \mathrm{OB}^{\prime}$ respectively. Hence the triangles $\mathrm{AOA}^{\prime}, \mathrm{BOB}^{\prime}, \mathrm{COC}^{\prime}$ are similar ;

$$
\therefore \quad \frac{\mathrm{AA}^{\prime}}{\mathrm{AO}}=\frac{\mathrm{BB}^{\prime}}{\mathrm{BO}}=\frac{\mathrm{CC}^{\prime}}{\mathrm{CO}} ;
$$

$\therefore a . \mathrm{AA}^{\prime}, b . \mathrm{BB}^{\prime}, c . \mathrm{CC}^{\prime}$ are proportional to $a . \mathrm{AO}, b . \mathrm{BO}, c . \mathrm{CO}$, where a, b, c are the sides of the triangle $A B C$.

From O draw OP, OQ, OR perpendicular to $B C, C A, A B$ respectively.

$$
\text { Then } \begin{aligned}
\mathrm{QR} & =\mathrm{AO} \sin \mathrm{~A} \propto a . \mathrm{AO} \\
\mathrm{RP} & =\mathrm{BO} \sin \mathrm{~B} \propto b . \mathrm{BO} \\
\mathrm{PQ} & =\mathrm{CO} \sin \mathrm{C} \propto c . \mathrm{CO}
\end{aligned}
$$

$\therefore a . \mathrm{AA}^{\prime}, b . \mathrm{BB}^{\prime}, c . \mathrm{CC}^{\prime}$, being proportional to $a . \mathrm{AO}, b . \mathrm{BO}, c . \mathrm{CO}$, are proportional to $\mathrm{QR}, \mathrm{RP}, \mathrm{PQ}$.

But PQR is a triangle, unless O is on the circumcircle of $A B C$ when $P Q R$ is the Simson line of O.
$\therefore Q R+R P>P Q$, with two similar inequalities, except that one of the inequalities becomes an equality if O is on the circumcircle of ABC .
$\therefore a . \mathrm{AA}^{\prime}+b . \mathrm{BB}^{\prime}>c . \mathrm{CC}^{\prime}$, with two similar inequalities; one of the inequalities becoming an equality when O lies on the circumcircle of ABC .
Similarily in the case of an equality O lies also on the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$.

For the case of equilateral triangles $a=b=c$;
$\therefore \mathrm{AA}^{\prime}+\mathrm{BB}^{\prime}>\mathrm{CC}^{\prime}$, with two similar inequalities; one of the three inequalities becoming an equality when O lies on the circumcircles of $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

It is obvious that the theorem reduces to Ptolemy's Theorem or its converse.

