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Abstract. In thispaper,we investigate the actionoftheQ-cohomologyofthe compactdualbX ofa
compact ShimuraVariety S�G�on theQ-cohomology of S�G�under a cup product.We use this to
split the cohomologyofS�G� intoadirect sumof (notnecessarily irreducible)Q-Hodge structures.
As an application,weprove that for the class ofarithmetic subgroups oftheunitarygroupsU�p; q�
arising from Hermitian forms over CM ¢elds, the Mumford^Tate groups associated to certain
holomorphic cohomology classes on S�G� are Abelian. As another application, we show that
all classes of Hodge type (1,1) in H2 of unitary four-folds associated to the group U�2; 2� are
algebraic.
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0. Introduction

Let X be a Hermitian symmetric domain of noncompact type, G (the identity
component of) the group of holomorphic automorphisms of X and G a cocompact,
neat, arithmetic congruence subgroup of G. It is well known ([Baily-Borel]) that
S�G� � GnX is a smooth projective variety (a connected component of a `Shimura
Variety'). One has the `Matsushima Formula' for the (de Rham) cohomology of
S�G� with C coef¢cients:

Hi�S�G�;C� �
M

p�C��0
m�p� HomK �^

i
p; p�: �1�

We explain the notation: let g be the complexi¢ed Lie algebra of G;K a maximal
compact subgroup of G, k the complexi¢ed Lie algebra of K . One has the Cartan
decomposition g � k� p, where p is the complexi¢ed tangent space to X at
K�X � G=K�. Let p� and pÿ denote respectively the holomorphic and anti-
holomorphic tangent spaces to X at K , write p � p� � pÿ. Let C be the Casimir
of g (an element of the universal enveloping algebra of g), p a unitary irreducible
representation of G;m�p� the (¢nite) multiplicity with which p occurs in L2�GnG�
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(the space of functions on GnG which are square integrable with respect to a Haar
measure on GnG�. On the space of K-¢nite vectors in p, the operator C acts by
a scalar, which we denote by p�C�. In (1), p runs through those unitary
representations such that p�C� � 0.

On the other hand, one may consider the singular cohomology of S�G� with
coef¢cients in Q and (by de Rham's theorem) one has

Hi�S�G�;C� � Hi
sing�S�G�;Q� 
C:

If p is as above, denote by Hodi�p� the smallest Q-subspace of Hi
sing�S�G�;Q� whose

complexi¢cation (under the identi¢cation (1)) contains the component
m�p�HomK �^

i
p; p� � cdef�Hi�p;G�. If p is nontrivial, p�C� � 0, and

i � inf f j : HomK �^
j
p; p� 6� 0g we will refer to Hi�p;G� as the space of strongly

primitive cohomology classes of type p in Hi�S�G�;C�. These are ([Vog-Zuc], (6.19))
actually primitive classes in the Hodge decomposition of Hi�S�G�;C�.

(0.1) The representations occurring in the Matsushima formula have been classi¢ed
([Par 1], [Kum], [Vog-Zuc]). Suppose that p � Aq is associated to the y-stable
parabolic subalgebra q of g (for details see (1.1)), u the nil-radical of q, and let
i � dim �u \ p�. Let l be the Levi part of q chosen as in (1.1), L the subgroup of
G whose complex tangent space at the identity is l. Denote by E�G;L� the smallest
K-stable subspace of ^� p� (the full exterior algebra of p�) containing ^� �l \ p��.
We ¢rst prove

THEOREM 1. If p � Aq and p0 � Aq0 are two �g;K�-modules as above, such that
p � Aq has strongly primitive cohomology in degree i and if E�G;L� is not contained
in E�G;L0� (L as above and L0 chosen similarly for q0), then Hodi�p�\
Hodi�p0� � �0�: The same conclusion holds if both p and p0 have strongly primitive
cohomology in degree i and E�G;L� 6� E�G;L0�.

Remark. Suppose E and F are disjoint complex subspaces of W 
C whereW is a
Q-vector space. Suppose E1 and F1 are the smallest Q-subspaces of W whose
complexi¢cation contains respectively E and F. It is not always true that E1 and
F1 are disjoint. Therefore the conclusion of Theorem 1 is special to the situation
at hand.

We now explain the main ideas of the proof of Theorem 1.
If bX is the compact dual of the symmetric domain X , then the cohomology ring
A � H��bX ;Q� acts on the cohomology ringH��S�G�;Q� by cup product. A Theorem
of Kostant describes the cohomology of the compact dual bX in terms of `Schubert
cells'. We use this description and reinterpret the aforementioned action of
A � H��bX ;Q� in terms of continuous cohomology (see Lemmas (1.4) and (1.5)).
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This description allows us (essentially) to split the cohomology groupH��S�G�;Q�
into disjoint Q-Hodge structures W (these W need not be irreducible Q-Hodge
structures) such that for distinct W , the annihilators of W in the algebra A are dis-
tinct. Under the assumptions of Theorem 1, we observe (using Lemma (1.5)) that
the annihilators of Hi�G; p� and Hi�G; p0� are distinct. This allows us to conclude
that Hodi�p� and Hodi�p0� are disjoint (see (1.6) for the details of the proof).

(0.2) Now we specialise to the case G � U�p; q� (note that at the beginning of the
introduction, we had assumed that G was centreless, but we may add a compact
centre to G and keep the other hypotheses on G; the statements that follow are
unchanged). Assume that

2W pW q; put n � p� q; K � U� p� �U�q�:

Fix a totally imaginary quadratic extension E of a totally real number ¢eld F and an
n-dimensional E-vector space with a Hermitian form h (see (2.3) for details) and let
G � U�h� be the unitary group of h : G is an algebraic group over F . We choose
h so that (here d � degree�F=Q�)

G�F
Q R� � U� p; q� �U� p� q�dÿ1:

Let G � G�F � be a neat, congruence arithmetic subgroup. Assume that d > 1 (if
d > 1 then G is cocompact). By a slight abuse of notation, we will write G � U�p; q�.

Consider the modules Aq. Assume that u \ p � u \ p� (one says then that Aq is
holomorphic). Then, in the notation of (2.1), q � q�r; s� for some r; s, with
0W rW p; 0W sW q.

THEOREM 2. Assume either that s � 0 and 1W r < p=2�i � rq� or that
r � 0; 1W s < q=2�i � sp�. Then Hodi�Aq� has Abelian Mumford^Tate Group, for
the class of Arithmetic groups G considered above.

Remark. In the special case when �p; q� 6� �2; 2� and r � 0; s � 1 (then the degree
ps � p), this is already proved in [Clo-Ven] (see Theorem (6.2) of [Clo-Ven]).
One of the proofs of this in [Clo-Ven] was based on Lemma (5.8) (ibid.), which says
that if Z � X 
 Y , and X ;Y ;Z are irreducible pure Hodge structures of strictly
positive weight and nonnegative Hodge types, and if the only Hodge types of Z
are holomorphic and anti-holomorphic, then the Mumford^Tate groups of
X ;Y ;Z are all Abelian.

Theorem 2 will be proved in Section 2. By using Theorem 1 (and certain computa-
tions of [Clo-Ven]) we will ¢rst show (if q � q�0; s� in Theorem 2 and 2s < q ) that the
only Hodge types of the Hodge structure Hodps�Aq� are of the form �pu; p�sÿ u�� for
0W uW s. This is done in Lemma (2.2). Next, suppose Z is an irreducible Q-Hodge
structure in Hodps�Aq�. We will show (by using a result of [Clo-Ven]), that there
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exists a product G1 � G2 � G � U�p; q� such that G1 � U�a; s� and G2 � U�b; s�
(a� b � p) with the property that if Gi � Gi \ G (i � 1; 2), then
Z � Has�S�G1�� 
Hbs�S�G2��. By a generalisation of Lemma (5.8) of [Clo-Ven]
mentioned in the preceding paragraph, we will then conclude that the
Mumford^Tate group of Z is Abelian (see Equation (9) of Section 2).

(0.3) We will use Theorems 1 and 2 to prove

THEOREM 3. Let G � U�2; 2� and G any neat cocompact (arithmetic) subgroup.
Then H2�S�G�;Q� � X � Y where X and Y are 2 Q-Hodge structures such that
X 
C � X 2;0 � X 0;2;Y 
C � Y 1;1 (Moreover Y consists only of algebraic
classes). Furthermore, if G is specialised to be a congruence arithmetic subgroup
of the type considered in Theorem 2 then the Mumford^Tate group of
H2�S�G�;Q� is Abelian.

Remark. D. Blasius and the referee have remarked that in view of (a Theorem of
Faltings on) the existence of Hodge^Tate decomposition for the e'tale cohomology
of smooth projective varieties de¢ned over number ¢elds, Theorem 3 implies that
if G is any cocompact neat arithmetic subgroup of U�2; 2�, then the Tate classes
in H2

et�S�G�;Ql� are all algebraic. Indeed, by Theorem 3, the only Hodge^Tate types
of the quotient of H2

et�S�G� by the span Y 
Ql of algebraic cycles, are (2,0) and
(0,2), and hence there are no Tate classes outside Y 
Ql .

Theorem 3 is proved in Section 3. There exist (see (3.1)) three parabolic sub-
algebras qi�1W iW 3� of g � u�2; 2� 
C such that all the holomorphic cohomology
of the Shimura variety S�G� in degree 2 is of type Aqi with i � 1; 2 and such that
all the cohomology of S�G� of type (1,1) in the degree 2 is of type Aq3 (or else comes
from the compact dual bX ). We will show, by using Theorem 1, that for i � 1; 2,

Hod2�Aq3
� \Hod2�Aqi

� � 0:

This essentially yields Theorem 3.

Additional Remarks. (1) The analogue of Theorem 3 (viz. that if i � R-rank �G�, G
is simple, iX 2, then Hi�S�G�;Q� has Abelian Mumford^Tate group) is proved for
many classical groups G and for all U�p; q�; 2W pW q; q > 2 in [Clo-Ven]. The case
of U�2; 2� was excluded there.

(2) The Abelianness of the Mumford^Tate groups arising in Theorem 2 is pre-
dicted by certain conjectures of Langlands, Arthur and Kottwitz (see [Bla-Rog]).
That these conjectures imply Theorem 2 can be seen from the discussion in (4.2)
and (4.3.A) of [Clo-Van].

(3) Note that in Theorem 2 the module Aq contributes to cohomology in degree rq
(or sp) which is less than pq=2 and the latter is half the complex dimension of the
Shimura Variety S�G�. The conjectures alluded to in the previous remark seem
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to imply that in degrees less than half the complex dimension of these Shimura
Varieties, all the cohomology should be Abelian (e.g. should have Abelian
Mumford^Tate group).

1. Cup Products with Schubert Cycles and Proof of Theorem 1.

(1.1)DEFINITIONS ANDNOTATION. Let X ;G;K be as in the introduction. Let
T be a maximal torus inK . The spaceX � G=K is Hermitian symmetric. Therefore T
is a maximal torus in G. Fix a Borel subalgebra bK of k containing t � Lie�T � 
C.
Write F�bK ; t�; F�k; t�; F�p; t�, respectively, for the roots of t occurring in
bK ; k and p. Let g0 be the real Lie algebra of G�R�. De¢ne k0 and t0 similarly.

Fix X 2 iLie�T �. Then a�X � 2 R for all a 2 F�g; t�. Let

q � t
M

a�X �X 0

ga; l � t
M

a�X ��0
ga;

u �
M

a�X �>0
ga; uÿ �

M
a�X �<0

ga:

Clearly q; l; u are all y-stable (where y is the Cartan Involution on g with respect to k

(i.e. y is 1 on k and -1 on p)). Let i � dim�u \ p�;V �q� the K-submodule of ^i p

generated by the line e�q� � ^i �u \ p� (it is easy to see that V �q� is irreducible).
Then by [Vog-Zuc] (and by [Vog]) there exists a unique (unitary) �g0;K�-module

p � Aq such that p�C� � 0 and

Hi�g;K; p� � HomK �^
i
p; p� � HomK �V �q�; p� � C: �2�

Let ^p� denote the exterior algebra on the holomorphic part p� of p. The subalgebra
l of g is y-stable and is de¢ned overR, i.e. there exists a subalgebra l0 of g0 � Lie�G�
such that l0
RC � l. Let L be the subgroup of G with Lie algebra l0. Then it is
easily seen that L=L \ K is a Hermitian symmetric subdomain of G=K . We may
form the subspace E�G;L� of ^p�, which is by de¢nition, the K-span of the exterior
algebra ^�l \ p�� in ^p�.

Further, by [Vog-Zuc], section 6, the full cohomology ofAq is described as follows.
The group K \ L is the maximal compact subgroup of L. Let �^�l \ p��K\L be its
space of invariants in the exterior algebra of l \ p. Given x 2 �^m �l \ p��K\L, form
the vector e�q� ^ x 2 ^i�m p. Then it is easy to see that the K-span V �q; x� of this vector
(is irreducible and) is isomorphic to V �q�. Moreover, the isotypical component of
V �q� in ^i�m p is the sum of V �q; x�, the sum over all the x as above. One also has

Hi�m�g;K; p� � HomK � ^
i�m

p; p� �
X
x

HomK �V �q; x�; p� � Cdm �20�

where dm is the dimension of the space �^m �p \ l��L\K of L \ K-invariants in ^m �p \ l�.
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Remark. Suppose that the compact dual of XL � L=L \ K is denoted cXL. Suppose
that the restriction map H��bX � ! H��cXL� is surjective. Then, the previous para-
graph says that all the cohomology of p � Aq is obtained from the one-dimensional
cohomology Hi�p� by wedging with classes from H��bX � (note that by de¢nition
Hi�p� consists of strongly primitive classes). It is not always true that the above
restriction map is surjective. But we will see in (2.2) that if q � q�0; s� as in Section
2, then it is indeed surjective.

Let V0 be aQ-vector space, and V � V0
QC. We say that a complex subspaceW
of V is de¢ned overQ if there exists aQ-subspaceW0 of V0 such thatW �W0
QC.

LetGC be the algebraic group of adjoint type with Lie algebra gC � g0 
C (asG is
the connected group of automorphisms ofX ,GC is in fact the complexi¢cation ofG).
Let PÿC denote the parabolic subgroup of GC with Lie algebra pÿ � k;BG the Borel
subgroup of GC with Lie algebra pÿ � bK . Then the compact dual bX � GC=PÿC
of X is also Hermitian symmetric and the inclusion G=K � G=G \ PÿC � GC=PÿC
realises X as a bounded domain in bX (see [Borel 1], Section 5). Let gu � k0 � ip0
be the (real) subalgebra of the complex Lie algebra GC and Gu the (compact)
subgroup of GC with Lie algebra gu. Then bX � Gu=K . The restriction of the Killing
form k on gu restricted to ip0 is negative de¢nite and K-invariant; we thus get a
Gu-invariant metric on bX by translation. With respect to this metric, the space
of Harmonic forms on bX , denoted H��bX ;C� is (see [ Kostant 1])

HomK �^
� �ip0� 
C;C� � HomK �^p;C�:

If G is as in the introduction, we have an inclusion

j : H��bX ;C� � HomK �^p;C� ,!HomK �^p;C1�GnG��0�� � H��S�G�;C�
(the last equality being a version of the Matsushima formula (1); here C1�GnG��0��
denotes the space of smooth functions on GnG which are annihilated by the Casimir
of G.

It follows from the Hirzebruch Proportionality principle (see [Borel 2], Corollary
(7.3)) that

j�H��bX ;Q�� � H��S�G�;Q�: �3�

Note, moreover, that �p��� � pÿ. Further, there is a torus S � Gm � TC such that
KC � ZGC �S� and z 2 S acts by z on pÿ and zÿ1 on pÿ (see [Helgason], the chapter on
Hermitian symmetric domains). Therefore, the S-invariants in ^p � ^p� 
 ^pÿ are
sums of ^m p�
 ^m pÿ �mW dimp�� and we have

HomK �^p� 
 ^pÿ;C� �
Mdim�bX �
m�0

HomKC �^
m
p�;^m p�� �

MdimbX
m�0

H2m�bX ;C�: �4�

We denote by bXL � Lu=Lu \ K , the compact dual of XL � L=L \ K. Here
lu � l \ k0 � i�l \ p0�, and Lu the subgroup of Gu with Lie algebra lu.
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The space bX � GC=PÿC has a cellular decomposition whose cells (the Schubert
Cells) generate the homology group of bX over Q. The Schubert Cells are
parametrised by the coset space W �W �GC;TC�=W �KC;TC� where W �GC;TC�
(resp. W �KC;TC�) is the Weyl group of GC (resp. KC) with respect to TC. If
w 2W , let Xw � BGwPÿC be the corresponding Schubert Cell. As in [Kostant 1],
we choose representatives w of least length and [ibid., Remark following (5.13)]
in a coset class, there is exactly one element of this length. Given Xw (w of least
length), denote by lw 2 H2i�bX ;Q� its Poincarë dual. If d � dim�bX �, then i � d-length
of �w�. From (4), we may think of lw as an element of HomKC�^

i
p�;^i p�). We now

recall some results of [Kostant 2].

(1.2) A THEOREM OF KOSTANT. (I) As a representation of K;^i p� is a direct
sum of irreducible representations, each occurring exactly once. Write Yi for the
set of irreducible representations of K occurring in ^i p� and write

^i p� �
M
E2Yi

E: �5�

(II) The Poincarë dual lw of the Schubert cell Xw, where w is of length d ÿ i (see the
end of (1.1) for notation), is a nonzero scalar multiple, for some E 2 Yi, of

lE 2 HomK �E;E� � HomK �^
i
p�;^i p��; here lE is the identity transformation in

HomK �E;E�. Moreover, for every E 2 Yi, the corresponding lE is the Poincarë dual
of Xw for some w. In particular, HomK �E;E� � H2i�bX ;Q� 
C is de¢ned over Q.

As a consequence of the inclusion (3) and part (II) of Kostant's Theorem, we see
that the space

fx 2 H��S�G�;C�; j�lE� ^ x � 0g �6�
is de¢ned over Q. Here ^ denotes the cup product.

The action of the torus T on the space p is completely reducible and we have a
decomposition p � u \ p� l \ p� uÿ \ p as T-modules. Given a vector space W
denote by W � its dual. We have then a decomposition p� � �u \ p�� � �l \ p��
��uÿ \ p��, again of T-modules. We also note that the element X 2 t acts by strictly
negative (resp.positive) eigenvalues on �u \ p�� (resp. on �uÿ \ p��) and by zero
eigenvalue on �l \ p��.

Before starting on the proof of Theorem 1, we prove a few lemmas.

(1.3) LEMMA. Let �u; q;T � be as in (1.1) and let e�q�� �^i �u \ p��. Consider the
restriction map B : �^p��T ! �^�l \ p���T and the cup-product A : �^p��T ! ^p�
given by y 7! y ^ e�q��. Then the kernels of A and B are the same.

Proof. As i � dim�u \ p�, it follows that e�q�� is a line. Therefore y ^ e�q�� � 0 if
and only if y 2 �u \ p�� ^ �^p�� for any y 2 ^p�, and in particular for any
y 2 �^p��T . Let q � q�X �. Then the eigenvalues of X on u \ p are positive (by
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the de¢nition of u) whereas X has strictly negative eigenvalues on �u \ p��.
Moreover, on l;X has all eigenvalues 0 (by the de¢nition of l). Hence, if

y 2 �^p��T \ �u \ p�� ^ �^p��, then y cannot lie in ^j �u \ p�� 
 �^�l \ p����j > 0�,
i.e. Ker�A� � �^p��T \ ��u \ p�� ^ �^p��� �T-invariants in �u \ p�� ^ �uÿ \ p��^
�^p��.

Again, y 2 Ker�B� if and only if y, thought of as an element of ^p� �
^�u \ p�� 
 ^�uÿ \ p�� 
 ^�l \ p��, does not have a pure ^�l \ p�� term i.e.
Ker�B� is the space of invariants in �u \ p�� ^ �uÿ \ p�� ^ �^p�� under the action
of T . This completes the proof. &

(1.4) LEMMA. Fix z 2 �^p��K and let x 2 Hi�Aq;G� ÿ �0� (here i � dim�u \ p� and
hence x is strongly primitive). Then

z ^ x � 0, z 2 Ker: H��bX ;C� ÿ!Res
H��bXL;C�

where Res is the restriction map.
Proof. Now x 2 HomK �V �q�; C1�GnG��0��, with V �q� as in Section (1). Therefore

z ^ x � 0, z ^ V �q�� � 0. Since V �q�� is generated by e�q�� as a K-module, and
z is K-invariant, it follows that z ^ V �q�� � 0, z ^ e�q�� � 0. This is equivalent
to the statement that A�z� � 0, A as in Lemma (1.3). By the Lemma (1.3),
A�z� � 0 if and only if B�z� � 0. But B�z� � 0 if and only if z is in the kernel of
the restriction map

HomK �^p;C� ! HomK\L�^p�L;C�
�pL � l \ p�. This yields the Lemma.

NOTATION. Let Hu be any semisimple subgroup of Gu such that Hu=Hu \ K is a
Hermitian symmetric subspace of Gu=K . Let p�H � p�\ (Lie �Hu� 
C� and let
E�G;H� denote the K-span of ^p�H in ^p�. For a given integer m similarly write

E�G;H;m� for the K-span of ^m p�H in ^m p�. There is a K-invariant metric on p�

induced by the restriction of the negative of the Killing form k on p0 given by
u 7! ÿ k�u; u� �u 2 p�� whence there is a K-invariant metric on ^p� (and in

particular on ^m p�). Let E�G;H�? (resp. E�G;H;m�?) denote the perpendicular

to E�G;H� (resp. to E�G;H;m�) in ^p� (resp. in ^m p�) with respect to this metric.
Consider the Matsushima formula

H��S�G�;C� � HomK�^p;C1�GnG��0��:
The K-invariant metric on ^p and the L2 metric on C1�GnG� yields a metric on
the right-hand side of the Matsushima formula. Let L be the Lefschetz class
of the smooth projective variety S�G� which arises from the Killing form
on G (i.e. the restriction of the Killing form to p� 
 pÿ [where p� is the holo-
morphic tangent space to G=K at the identity coset] de¢nes, by translation, a
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G-invariant closed form of type (1,1) on G=K and, hence, a cohomology class on
S�G�; it is proportional to a rational class L). Assume that S�G� has complex
dimension d.

OnHi�S�G�;Q�we may de¢ne a pairing ha; bi � a ^ �b (the pairing takes values in
the top-dimensional cohomology of S�G� which may be identi¢ed with Q). Here, �
denotes the star operator on the cohomology group of S�G� associated to the metric
coming from the Killing form as above. Note that the star operator is de¢ned over
Q (see [Kleiman], Section 4) in the sense that it takes rational vectors into rational
vectors. Note also (ibid. Section 4) that if b 2 Hi

prim�S�G�;Q� then
�b � b ^ Ldÿi 2 H2dÿi�S�G�;Q�. Here, the notion of primitive classes is as in
[Kleiman] (namely the orthogonal complement of classes which come from wedging
with L). As we observed before, the strongly primitive classes are indeed primitive
([Vog-Zuc], Section 6).

The metric on the right-hand side of the Matsushima formula, restricted to
Hi�S�G�;Q�, is proportional to this pairing, as may be readily checked. Note that
a ^ �b 2 H2d�S�G�;C� is equal to the inner product �a0; b0� of a0 and b0 with respect
to the metric on the right-hand side (here a, b are in Hi�S�G�;C� and a0 and b0

are their images under the Matsushima isomorphism) in the right-hand side of
the Matsushima formula. The formula a ^ �b � �a0; b0� is immediate from the
de¢nition of �.

LEMMA. With the foregoing notation, the kernel of the restriction map

Res : H��Gu=K;C� ! H��Hu=Hu \ K;C�

contains the `Schubert cell' lE if and only if E � E�G;H�?.
Proof. Suppose lE � o and Res�o� � 0, where o 2 H2m�bX ;C�. Now the space

H2m�bX ;C� � Hom�^m p�
 ^m pÿ;C�. View o as a homomorphism in the latter space.

Then, by the de¢nition of lE ,o�x
 y� (with x 2^m p� and y 2^m pÿ) is obtained by ¢rst

projecting x 2^m p� to E (and similarly, projecting y 2^m pÿ to the complex conjugate
E of E) and then evaluating the resulting element of E 
 E under the unique (upto
scalar multiples) K invariant linear form on the space E 
 E.

Now, being of type �m;m�, the class o vanishes on ^2m pH if and only if it vanishes

on the component ^m p�H
 ^
m
pÿH . The linear form o lives only on the space E 
 E

and is positive on vectors of the form z
 z for z 2 E. Consequently, o vanishes
on ^2m pH if and only if the projection to E of ^m p�H vanishes.

Since the projection map to E from ^m p� is K equivariant, this is equivalent to
saying that the projection of E�G;H;m� to E is zero. By the Multiplicity One
Theorem of Kostant, this is equivalent to the assertion E � E�G;H;m�?. This
completes the proof. &
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(1.6) We now commence the proof of Theorem 1. With the notation of (1.1) and
(1.2), let E 2 Yi. Then by (6),

Ker�lE� � fx 2 H��S�G�;C�; j�lE� ^ x � 0g

is de¢ned overQ. Now let x 2 Hi�Aq;G� be a strongly primitive class of type Aq. We
seek fE 2 Yi; j�lE� ^ x � 0g. From Lemmas (1.4) and (1.3), this is the set
fE 2 Yi; ResbXL

�lE� � 0g. From Lemma (1.5) we thus have:

Hi�Aq;G� �
\

E�E�G;L�?
Ker�lE�

(where Ker�lE� � fu 2 H��S�G��; j�lE� ^ u � 0g�. From (6), we obtain that Ker�lE� is
de¢ned over Q. Hence

Hodi�Aq� 
C �
\

E�E�G;L�?
Ker�lE�:

Suppose E�G;L0� does not contain E�G;L� (as is assumed in Theorem 1). Then there
exists some E � E�G;L0�? ÿ E�G;L�? i.e. E � E�G;L� \ E�G;L0�?. Hence wedging
with lE is nonzero on Hodi�Aq�. But the equation �20� shows that wedging with
lE is 0 on Hi�Aq0 ;G� (in the equation �20�, we replace i by i0 � dim�u�q0� \ p� and
m by i ÿ i0). To see this ¢rst observe that j�lE� ^ e�q0�� � 0 because of Lemmas (1.5)
and (1.3). Therefore e�q0�� ^ �x�� ^ j�lE� � 0 for all �x�� 2 �^�l \ p���L\K (see (20)).
Thus wedging by lE is zero on Hodi�Aq0 � as well.

Consider

Ker�lE� � fx 2 �Hi�Aq00 ;G�; j�lE� ^ x � 0g:
Here the summation is over Aq00 which contribute to cohomology in degree i (in
particular, dim�u�q00� \ p�W i ). Write x �P x�q00� accordingly. Let W �q00� be the
isotypical component of V �q00� in ^i p. Thus j�lE� ^ x � 0, lE ^ �

P
W �q00�� � 0.

The K-invariance of lE and the independence of the W �q00� now imply that
lE ^ x � 0, lE ^ x�q00� � 0 for all q00 with x�q00� 6� 0. We have thus proved that

Ker�lE� � ��Ker�lE� \Hi�Aq00 ;G�� ���
where the sum is over all q00 with lE ^ w � 0 for some nonzero element w 2W �q00�.

Note that if the isotypical component W �q00� is irreducible, then the K invariance
of lE implies that if lE ^ w 6� 0 for some nonzero w 2W �q00� then lE ^ w 6� 0 for
all nonzero w 2W �q00�.

Now V �q� occurs with multiplicity one in ^i p (this follows, for example, from (2)).
As E � E�G;L�, it now follows, from Lemmas (1.5), and (1.4), and from the previous
paragraph, that wedging with lE is injective onHi�Aq;G�. Thus, q is not one of the q00
which occur in the decomposition ���. Hence Hi�Aq;G� is orthogonal to Hi�Aq00 ;G�
for all q00 as in ���. In particular, Hi�Aq;G� � Ker�lE�?:
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But we know that if V � Hi�S�G�;C� is de¢ned over Q, then V? is also de¢ned
over Q: if a; b 2 Hi�S�G�;Q�, then the Q-linear pairing

ha; bi � a ^ �b 2 H2d �S�G�;Q�
is the metric de¢ned in the paragraph preceding Lemma (1.5). Therefore Ker�lE�? is
de¢ned over Q and therefore: Hodi�Aq� � Ker�lE�?. In particular

Hodi�Aq� \Hodi�Aq0 � � �0�:
This proves Theorem 1.

(1.7) Remark. We have proved a stronger statement, namely that for the natural
inner product (de¢ned over Q) on the cohomology of S�G�, the spaces Hodi�Aq�
and Hodi�Aq0 � are actually orthogonal. We are grateful to the referee for pointing
this out and also for indicating a simpler argument to prove the weaker statement
of Theorem 1.

2. Proof of Theorem 2

2.1. DEFINITIONS AND NOTATION

Let p; qX 1 be integers, put n � p� q. On Cn ¢x the standard basis E1; � � � ; En. With
respect to this basis, denote z 2 Cn; z �Pi ziEi by z � �z1; � � � ; zn�. Consider the
Hermitian form h1 : Cn �Cn ! C such that

h1�z;w� � l1z1w1 � � � � � lpzpwp � m1zp�1wp�1 � � � � � mqznwn

where l1; � � � ; lp are real numbers, all strictly greater than 0, and m1; � � � ; mq are real
numbers, all strictly less than 0. The subgroup of GLn�C� preserving this Hermitian
form is denoted U�p; q�. We will assume from now on that 2W pW q. Let
K � U�p� �U�q�;T = Diagonals in K . Now t � Lie�T � 
C is the set of diagonals
in Mn�C�; we will view elements of it as n complex numbers Y � �y1; � � � ; yn� 2 t.
Then i t0 � i Lie�T � � f�x1; � � � ; xp; y1; � � � ; yq�; xi; yi 2 Rg. Choose BK � KC �
GLp�C� �GLq�C� to be the subgroup of matrices of KC which are upper triangular
in GLp�C� and lower triangular in GLq�C� and set bK � Lie�BK �. Then

F�bK ; t� � fxi ÿ xj : 1W i < jW pg [ fyj ÿ yi; 1W i < jW qg:

If X 2 i t0 is such that a�X �X 0 for a 2 F�bK ; t�, then it satis¢es the inequalities

x1 X � � � X xp; yq X yqÿ1 X � � � X y1:

Consider ¢rst the parabolic subalgebras q � q�X �which contribute to holomorphic
cohomology i.e. u \ pÿ � 0. Then xi ÿ yj X 0 for all iW p; jW q. As in [Clo-Ven],
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(3A1) we ¢x 0W rW p; 0W sW q such that the inequalities

: x1 X � � � X xr > xr�1 � � � � � xp � yq � � � � � ys�1 > ys X � � � X y1; ���r;s
hold . Write q�r; s� for q�X � if X satis¢es ���r;s. We consider only those q�X � for which
rs � 0.

If r � 0, then

X � �a; � � � ; a|����{z����}
pÿtimes

; y1; � � � ; ys; a; � � � ; a|����{z����}
�qÿs�ÿtimes

�; and y1 W � � � W ys < a:

Let q � q�X �; l � l�q�. Then

L=L \ K � U�p; qÿ s�
U�p� �U�qÿ s� ; Lu=Lu \ K � U�p� qÿ s�

U�p� �U�p� :

Further, dim�u \ p� � dim�u \ p�� � ps.
Suppose q0 � q�X 0� be another parabolic subalgebra as in (1.1), such that Aq0

has strongly primitive (but not necessarily holomorphic) cohomology in degree
ps (i.e. dim�u�q0� \ p� � ps�. As before, write X 0 � �a01; � � � ; a0p; b01; � � � ; b0q�. Let
u0 � u�q0�; l0 � l�q0�;L0 � L�q0�. De¢ne the partition I1

`
I2
` � � �` I` of f1; � � � ; pg

by the conditions

(1) a0i � a0j for all i; j 2 Im �m � 1; 2; � � � ; `�,
(2) a0i > a0j for all i 2 Im; j 2 Im�1 �m; 1; 2; � � � ; `ÿ 1�.

Let F � f j; 1W jW q; b0j 6� a0i for any i, with 1W iW pg. De¢ne the partition
J1
` � � �` J` of f1; 2; � � � ; qg ÿ F by the conditions

Jm � f j; 1W jW q and b0j � a0i for all i 2 Img:

Let im � Card�Im�; jm � Card�Jm�. Then it is easy to see that

L0=L0 \ K �
Ỳ
m�1

U�im; jm�=U�im� �U�jm�;

L0u=L
0
u \ K �

Ỳ
m�1

U�im � jm�=U�im� �U�jm�:

Here U�im� � U�p� is the subgroup which ¢xes the elements fEk; k 62 Im; 1W kW pg
and similarly U� jm� � U�q� ¢xes fEk�p; k 62 Jm; 1W kW qg.

(2.2) LEMMA. With the above notation, suppose that E�G;L� � E�G;L0�, that
Aq0 contributes to strongly primitive cohomology in degree i � ps and that
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r � 0W s < q=2. Then ` � 1 and

dim�u0 \ p�� � pu; dim�u0 \ pÿ� � p�sÿ u�

for some u with 0W uW s.
IfG is any cocompact arithmetic subgroup ofU(p,q) as in the introduction, then the

only Hodge types of the Hodge structure Hodi�Aq� are of the form �pu; p�sÿ u��.
Proof. We use some computations from [Clo-Ven]. Suppose H=K \ K is a

Hermitian symmetric subdomain of the Hermitian symmetric domain G=K , and
E�G;H; r� the K-span of ^rp�H in ^rp�. Let q0 � g be a standard y-stable parabolic
subalgebra associated to an element X0 2 it0 : q0 � q�X0� is associated to

X0 � �c1; � � � ; cp; d1; � � � ; dq�

with c1 X � � � X cp; dq X � � � X d1. Suppose that dim�u0 \ p� � dim�u0 \ p�� � r. As
usual, denote by V �q0� the K-span of ^r�u0 \ p�� in ^r�p��.

According to [Clo-Ven], the space E�G;H; r� containsV �q0� in the following cases.

Case (1). Suppose G � U�p; q� and H � U�p; b� with b < q . Here H is the
subgroup of G which ¢xes the last qÿ b elements of the basis E1; � � � ; En (n � p� q).
Assume that pbX r. Choose X0 � �c1; � � � ; cp; d1; � � � ; dq� with c1 � � � � � cp �
dq � � � � � dm�1 > dm X dmÿ1 X � � � X d1. In the notation of (2.1), q0 � q�0;m�. Note
that r � dim�u0 \ p�� � pmW pb. By (3.A.5) of [Clo-Ven], V �q0� � E�G;H; pm�.

Case (2). G � U�p; q� and H � U�p1; q1� � . . .�U�pl; ql� with
P

pi W p andP
qi W q. Let q0 � q�0;m� be as in Case (1). By (3.A.8) of [Clo-Ven],

E�G;H; pm� � V �q0� if and only if
P

pi � p and qi Xm for each i with 1W iW l.

Now take H � L and H 0 � L0 in the last two paragraphs. Suppose that
m � qÿ s�� b�. By Case (1) of the foregoing, E�G;L; p�qÿ s�� � V �q0�. By the
assumptions of the Lemma, E�G;L0; p�qÿ s�� � E�G;L; p�qÿ s�� � V �q0�. By (2)
of the last paragraph, this implies that qi X qÿ s for each i, i.e.,
l�qÿ s�W P

qi W q. Thus, sX q�1ÿ 1=l�. As s < q=2 by assumption, we get l � 1
and p1 � p.

In the notation preceding (2.2) (esp. the inequalities 1 and 2), we get
I1 � �1; 2; � � � ; p� from the fact that l � 1. Now X 0 � �a01; � � � ; a0p; b01; � � � ; b0q� is
such that a01 � � � � � a0p � a0. Now b0q X :::X b01. Write, as before, J1 �
fj; 1W jW q; b0j � a0g. Then, J1 � fu� 1; u� 2; � � � ; qÿ vg for some u; v with
uW qÿ vÿ 1. Thus, u0 \ p� is spanned by the root spaces corresponding the roots
xi ÿ yj, where jW u and i is arbitrary. The dimension of u0 \ p� is therefore equal
to pu. Similarly, we get dim�u0 \ pÿ� � pv. Since dim�u0 \ p� � ps, we obtain that
u� v � s. This proves the ¢rst part of the Lemma.
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As to the second part, note that if q0 is any parabolic subalgebra such that E�G;L�
is not contained in E�G;L0�, then by Theorem 1, Hodi�Aq0 � lies in the orthogonal
complement to Hodi�Aq�. On the other hand, if E�G;L� � E�G;L0� then exactly
the same proof as in the ¢rst part of our Lemma (note that we did not need that
q0 had strongly primitive cohomology in degree i to conclude that l � 1 and that
p1 � p) shows that L0 � U�p; q1�. Thus, the compact symmetric space associated
to L0 is the Grassmannian Gp;b�p of p planes in Cb�p. Now, the compact dual bX
is Gp;p�q.

Now, the restriction map from the cohomology of Gp;p�q to that of Gp;p�b is
surjective (e.g. see [Par 2]). Therefore, if E�G;L� � E�G;L0� and o0 is a (not
necessarily strongly primitive ) cohomology class in degree i � ps of type Aq0 , then,
by the remark following �20� of (1.1), the class o0 is of the form o0 � o00 ^ a where
o00 is strongly primitive and a 2 Hk�bX �. Hence, Hodi�Aq0 � is contained in the image
of wedging with Hk�bX �. However, the classes in Hi�Aq� are holomorphic and hence
strongly primitive. If kX 1 then the image Ik of wedging with Hk�bX � cannot contain
any strongly primitive class. Hence, the orthogonal complement of Ik (is de¢ned over
Q and) contains Hi�Aq� and therefore contains Hodi�Aq�.

Therefore, if Hodi�Aq0 � and Hodi�Aq� are not orthogonal, it means that
E�G;L� � E�G;L0� (Theorem 1) and also that q0 contributes to strongly primitive
cohomology in degree i � ps. Now we can apply the result of the ¢rst part of
our Lemma to conclude that the Hodge types of Hi�Aq0 ;G� are of the form
�pu; p�sÿ u�� for some uW s. This proves the second part of the Lemma.

(2.3) NOTATION. In this section, we specify the kind of discrete subgroups G of
G � U�p; q� which we will consider in Theorem 2. Let F=Q be a totally real number
¢eld of degree dX 2. Let E=F be a totally imaginary quadratic extension, we denote
by z 7! z the nontrivial automorphism of E ¢xing F pointwise. Let V be an
n-dimensional E-vector space with n � p� q, and let h: V � V ! E be a Hermitian
form de¢ned as follows: ¢x an in¢nite place of F and let �R '�F1 the resulting
completion. Let l1; � � � ; lp; m1; � � � ; mq 2 F be such that l1; � � � ; lp are all positive
in all the real completions of F ; m1; � � � ; mq are all positive in all the real completions
of F except F1 where they are all negative. Fix a basis e1; � � � ; ep; f1; � � � ; fq of
V and if z � �z1; � � � ; zp; zp�1; � � � ; zn� 2 V �E�, set

h�z; z� � l; z1z1 � � � � � lpzpzp � m1zp�1zp�1 � � � � � mqznzn:

Then SU�h�, the unitary group of h, is an algebraic group over F ; clearly

U�h��F
QR� � U�p; q� �U�p� q�dÿ1:

Then a congruence subgroup G of U�h��F � which is neat (when projected to
U�F1� � U�p; q�� gives a cocompact lattice in U�p; q� verifying the hypothesis of
the Introduction. These are the G0s considered in Theorem 2.
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(2.4) We now begin the proof of Theorem 2. Assume that the y-stable parabolic
subalgebra is of the form q � q�0; s� with 0 < s < q=2. Fix a > 0; b > 0 with
a� b � p (since pX 2, this is possible). Put q1 � q2 � s. As 2s < q, we get
q1 � q2qÿ 1. Let G1 � U�a; q1�;G2 � U�b; q2�, where G1 (resp. G2) is the sub-
group of U�p; q� which ¢xes the vectors Ej if a� 1W jW p or if
p� q1 � 1W jW n � p� q (resp. the vectors Ej if 1W jW a, or p� 1W jW p� q1
or p� q1 � q2 � 1W jW n). Then Gi � G \ Gi is cocompact in Gi�i � 1; 2�. By
[Clo-Ven] (3A8),Hps;0�G;Aq� injects into a sum ofHas;0�S�G01�� 
Hbs;0�S�G02��, where
G01;G

0
2 are subgroups of G1;G2 commensurate to G1;G2.

Note that for any smooth projective variety X, the holomorphic partHi;0�X � of the
cohomology lies in the primitive part of the cohomology of the Lefschetz decompo-
sition of Hi�X ;C� (see [Kleiman] for a de¢nition). This primitive part Hi

prim�X �,
is de¢ned over Q. Therefore, the last sentence of the foregoing paragraph
implies that Hodps�Aq� injects (under the restriction map) into a sum of
Has

prim�S�G01�� 
Hbs
prim�S�G02��.

Suppose now that Z � Hod�Aq� is an irreducible Q-Hodge structure. Then
Zps;0 6� 0, for, otherwise Z? 
C contains Hps;0�S�G�;C� � Hps;0�Aq;G� and so,
Z? � Hod�Aq� (since Hod�Aq� is the smallest Q-Hodge structure whose complex
points contain Hps�Aq;G��, but Z \ Z? � 0 whence this is impossible.

Now Hodps�Aq� is disjoint from Hodps�Aq0 � if q0�6� q� contributes to holomorphic
cohomology in degree ps � R. To see this, suppose q0 � q�r0; s0�. If r0 � 0, then
the primitive cohomology of Aq0 is in degree ps0 � ps i.e. s0 � s and q0 � q. We
may thus suppose that r 6� 0. Then L0 � U�pÿ r0; qÿ s� with pÿ r0 < p, and
L � U�p; qÿ s� with qÿ s > s. Since q � q�0; s�, it follows from (3A5) of [Clo-Ven]
that E�G;L; s� � V �q�. But, by (3A5) of [Clo-Ven] again, E�G;L0; s�? � V �q� (since
pÿ r0 < p ). Therefore, E�G;L; s� 6� E�G;L0; s�. Now, both Aq and Aq0 contribute
to strongly primitive cohomology in degree i � ps. Thus, by Theorem 1, we obtain
that Hodps�Aq� is disjoint from Hodps�Aq0 �.

In conclusion, Zps;0 � Hps;0�Aq;G� and therefore Zps;0 injects into some product
Has;0�S�G1�� 
Hbs;0�S�G2�� by (3 A 8) of [Clo-Ven]. As observed before, the latter
is a subspace of Has

prim�S�G1�� 
Hbs
prim�S�G2��.

From (2.2) and Theorem 1, it follows that if p0 � Aq0 contributes to cohomology in
degree ps (and p � Aq), then the Hodge types of Hps�Aq0 ;G� are of the form
�pu; p�sÿ u�� unless Hodps�p0� and Hodps�p� are disjoint Hodge structures. By
assumption, Z is an irreducible Hodge structure. Therefore, the only Hodge types
of Z are of the form Zpu;p�sÿu��0W uW s� and

Zpu;p�sÿu� � �Xa;b 
 Y g;d �7�
with a� b � as; g� d � bs; a� g � pu; b� d � p�sÿ u�.

(2.5) LEMMA. a � au; g � bu.
Proof. To see this, ¢rst note that if q0 is as in (2.1) such that the image of the

cohomology group Hpu;p�sÿu��Aq0 ;G� in Has
prim�S�G1�� 
Hbs

prim�S�G2�� is nonzero, then
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theKC-span of^
as
pG1

 ^bs pG2

must contain V �q0�. For, otherwise, thisKC -span lies in
the orthogonal complement of V �q0�. Now, a form o0 on S�G� of type Aq0 restricted to
the product of S�G1� with S�G2� vanishes on the tangent space to the identity coset in
the product (since the tangent space is in the orthogonal complement of V �q0�). This
is true of any G�Q�- translate of the form o0 (this translate is a form on some ¢nite
covering of S�G�). The density of G�Q� in G�R� (and arguments similar to those
in [Clo-Ven], section 1), then imply that the restriction of the differential form
o0 to the product vanishes. This contradicts our assumption that the image of
o0 in Has

prim�S�G1�� 
Hbs
prim�S�G2�� is non-zero.

If o 2 Z, then write it as a sum of forms of type o0 as in the Matsushima decompo-
sition (1). Here each o0 is of type Aq0 for some q0. We restrict our attention only on
those o0 which are nonzero. Since Z is irreducible, and injects into the cohomology
of the product of S�G01� with S�G02�, it follows that all these o0 also are nonzero
in Has

prim�S�G01� 
Hbs
prim�S�G02��. Therefore, the conclusions of the last paragraph hold

for these q0. Note also that o0 is strongly primitive, because of (2.2) (see the last
paragraph of the proof of (2.2)).

Let us now prove Lemma (2.5). Let o be an element of the left hand side of �7�.
Write o as a sum of o0 as in the preceding paragraph. Fix a o0 and the corresponding
q0. Then,

u�x1 � � � � � xp� �
X

mij�xi ÿ xj� � u1x1 � � � � � uaxa � v1xa�1 � � � � � vbxa�b �8�

with
P

ui � a;
P

vi � g and mij X 0. For, let q1; q2 be parabolic subalgebras of
Lie�G1� 
C and Lie�G1� 
C contributing to cohomology in degrees �as� and
�bs� respectively, and let e�q1� and e�q2� be the analogues of e�q� for the pairs
�G1; q1� and �G2; q2�. Now ^as�p1� (respectively ^bs�p2� contains a subrepresentation
(cf. Equation �20�) isomorphic to V �q1� (resp. V �q2�). Let e1 be the vector in
^as�p1� corresponding to e�q1� in this subrepresentation. Similarly de¢ne e2.

Consider the projection p0 of E�G;G1 � G2; ps� to V �q0� and look at the image v0 of
�e1 
 e2� under p0. After applying an element a 2 U�bK � to v0 we get e�q0� because e�q0�
is the unique highest weight vector of V �q0�. Since u�bK \ Lie�G1� 
C� and
u�bK \ Lie�G2� 
C� ¢x the lines e1 and e2, by the Poincare-Birkhoff-Witt Theorem,
we may assume that

a 2 u�b3�; b3 � span of Eij�iW a < j� � bK :

Thus e�q0� � a�p0�e1 
 e2�� and we may assume that a is a weight vector for T . By
comparing the T -weights in this equation, we get (8) (Cf. (3.6) and (3.7) in (3A8)
of [Clo-Ven]).

Now (8) shows that ui W uW vj. By switching the roles ofG1 andG2 (this is possible
by conjugating by a permutation matrix in K and, hence, does not affect our
conclusions), we obtain that vj W uW ui, whence ui � vj � u for all i; j, and so,
a��P ui� � au; g � �P vj� � bu. This completes the proof of Lemma (2.5).
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(2.6). HODGE STRUCTURES. Before continuing the proof of Theorem 2, we
introduce some notation. If V is a Q-Hodge structure, let GV be its Mumford^Tate
group, gV its Lie algebra. Since gV � V 
 V�; gV also has a Q-Hodge structure.
If V 
C �Lm

r�0V
r;mÿr, then

�V 
 V�� 
C �
M

mX r;sX 0

Vr;mÿr 
 �V��ÿs;sÿm

�
M
jujWm

�V 
 V��u;ÿu:

If Z � X 
 Y is a Q-Hodge structure in a product of Q-Hodge structures X ;Y ,
we have surjections (de¢ned over Q) from GX�Y onto GX ;GY and GZ.

We return to our Z � Hodps�Aq�. By (2.2) (cf. the discussion preceding the
equation (7)), the Hodge types of Z are of the form �pu; p�sÿ u��, whence those
of Z 
 Z� are

�Z�pu;p�sÿu� 
 �Z���ÿps;ÿp�sÿv�� �
M
jwjW s

�Z 
 Z��pw;ÿpw:

Hence gZ 
C �LjwjW sg
�ÿpw;pw�
Z . The surjection gX�Y ! gZ is a morphism of Hodge

structures, hence g�ÿpw;pw�X�Y maps onto g
�ÿpw;pw�
Z . Applying g

�ÿpw;pw�
X�Y to the inclusion (7)

we obtain

g
�ÿpw;pw�
Z �LHS� � �g�ÿpw;pw�X �Xa;b� 
 Y g;d

�X a;b 
 g
ÿpw;pw
Y �Y g;d�: �9�

By the Lemma (2.5) proved above, a � au; g � bu. On the other hand,

g
�ÿpw;pw�
Z �Zpu;p�sÿu�� � Zpuÿpw;p�sÿu��pw

is contained in a direct sum of X E;j 
 Yc;Z such that E � a�uÿ w� and c � b�uÿ w�,
again by the Lemma (2.5). Therefore, we must either have

E � a�uÿ w� � aÿ pw � auÿ pw i:e: bw � 0 and w � 0

(if the left-hand side of equation (9) projects nontrivially to the ¢rst part of the direct
sum on the right-hand side of (9)) or we must have

c � buÿ bw � gÿ pw � buÿ pw i:e: aw � 0 and w � 0

(if the left-hand side of (9) projects nontrivially to the second part of the direct sum
on the right-hand side of (9)).

Thus gZ 
C � g0;0Z . Therefore C� is contained in the centre of GZ. However, the
centre ofGZ is aQ-algebraic group containingC�; by the de¢nition of theMumford-
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^Tate group, GZ � centre of GZ i.e. GZ is Abelian. In conclusion, Hodps�Aq� has
Abelian Mumford^Tate group.

A similar proof shows that if q � q�r; 0� with r < p=2 then Hodqr�Aq� has Abelian
Mumford^Tate group. This completes the proof of Theorem 2.

3. Proof of Theorem 3

(3.1)NOTATION.We keep the notation of (2.1). The group now is G � U�2; 2�. Let
q1 � q�0; 1�; q2 � q�1; 0� and q3 � q�X3�;X3 � �a; b; b; a� with a < b. Then it is easily
checked that Aq1 ;Aq2 ;Aq3 have primitive cohomologies of type (2, 0), (2, 0) and
(1, 1), respectively. We see that if ui � u�qi��i � 1; 2; 3�, then

u1 \ p �
0 0 � 0
0 0 � 0
0 0 0 0
0 0 0 0

0BB@
1CCA; u2 \ p �

0 0 � �
0 0 0 0
0 0 0 0
0 0 0 0

0BB@
1CCA;

u3 \ p �
0 0 � 0
0 0 0 0
0 0 0 0
0 � 0 0

0BB@
1CCA:

If li � l�qi��i � 1; 2; 3�, then

l1 \ p �
0 0 0 �
0 0 0 �
0 0 0 0
� � 0 0

0BB@
1CCA; l2 \ p �

0 0 0 0
0 0 � �
0 � 0 0
0 � 0 0

0BB@
1CCA;

l3 \ p �
0 0 0 �
0 0 � 0
0 � 0 0
� 0 0 0

0BB@
1CCA:

It is clear that E�G;L1; 2� contains V �q1� but does not contain V �q2�. Similarly
E�G;L2; 2� contains V �q2� but does not contain V �q1� (for proofs, see (3A5)
[Clo-Ven] for L1 and (3A6), [ibid] for L2). Further, E�G;L3; 2� contains both
V �q1� and V �q2� ((3A8) of [Clo-Ven]).

Set Ei � V �qi��i � 1; 2�. If lE1 ; lE2 are as in (1.2), then, by Lemma (1.5) we get

Kerprim�lE1 � 
C � H2�Aq2 ;G� �H2�Aq2 ;G�

Kerprim�lE2 � 
C � H2�Aq1 ;G� �H2�Aq1 ;G�:
Therefore,H2�S�G�;Q�, for any cocompact torsion-free discrete subgroup of U�2; 2�,
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has the decomposition into Q-Hodge structures:

H2
prim � Kerprim�lE1 � �Kerprim�lE2� � Z

where Z 
C � H2�Aq3 ;G� � H1;1�Aq3 ;G� � H1;1�S�G�;C�. Here, the subscript prim
refers to the intersection of the relevant space with the space of primitive classes (i.e.
the orthogonal complement toH��S�G�� ^ L inH��S�G��, with respect to the natural
inner product on H��S�G��). By the Lefschetz theorem on rational classes of type
(1,1), we have: Z is spanned by algebraic classes. This proves the ¢rst part of
Theorem 3, namely, that the classes of type (1,1) lie in the complex points of a
rational Hodge structure disjoint from a Hodge structure whose complexi¢cation
contains all classes of type (2,0) and (0,2).

(3.2) We now prove the second part of Theorem 3. Assume that G is a congruence
arithmetic subgroup of the kind considered in (2.3). Let X � Kerprim�lE1�;
Y � Kerprim�lE2 �. We have assumed that G is of the kind described in (2.3). Let
G1 (resp. G2) denote the subgroup of G � U�2; 2� which leaves the subspace
Ke2 � Kf2 �resp: Ke1 � Kf1� pointwise invariant. Then, by [Clo-Ven], (3A8), any
irreducible Hodge substructure X 0 of X injects into H1�S�G1�� 
H1�S�G2�� for some
congruence subgroups G1 of G1 \ G and G2 of G2 \ G. By the Lemma (5.8) of
[Clo-Ven] ^ since X 0 
C � �X 0��2;0� � �X 0�0;2 ^ the Mumford^Tate group of X 0 is
Abelian, whence so is that of X . This ¢nishes the proof of Theorem 3.
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