Real Hypersurfaces in Complex Two-Plane Grassmannians with GTW Harmonic Curvature

Juan de Dios Pérez, Young Jin Suh, and Changhwa Woo

Abstract

We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians with harmonic curvature with respect to the generalized Tanaka-Webster connection if they satisfy some further conditions.

1 Introduction

The generalized Tanaka-Webster connection (GTW connection) for contact metric manifolds was introduced by Tanno [12] as a generalization of the connection defined by Tanaka in [11] and, independently, by Webster in [13]. The Tanaka-Webster connection is defined as a canonical affine connection on a non-degenerate, pseudoHermitian CR-manifold. A real hypersurface M in a Kähler manifold has an (integrable) CR-structure associated with the almost contact structure (ϕ, ξ, η, g) induced on M by the Kähler structure, but, in general, this CR-structure is not guaranteed to be pseudo-Hermitian. Cho defined the GTW connection for a real hypersurface of a Kähler manifold (see [4,5]) by

$$
\begin{equation*}
\widehat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y \tag{1.1}
\end{equation*}
$$

for any X, Y tangent to M, where ∇ denotes the Levi-Civita connection on M, A is the shape operator on M, and k is a non-zero real number. In particular, if the real hypersurface satisfies $A \phi+\phi A=2 k \phi$, then the GTW connection $\widehat{\nabla}^{(k)}$ coincides with the Tanaka-Webster connection (see [4]).

Let us denote by $G_{2}\left(\mathbb{C}^{m+2}\right)$ the set of all complex 2-dimensional linear subspaces in \mathbb{C}^{m+2}. It is known to be the unique compact irreducible Riemannian symmetric space equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} not containing J (see Berndt and Suh [2]). In other words, $G_{2}\left(\mathbb{C}^{m+2}\right)$ is the unique compact, irreducible Kähler, quaternionic Kähler manifold that is not a hyper-Kähler manifold.

[^0]Let M be a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ and let N be a local normal unit vector field on M. Also, let A be the shape operator of M associated with N. Then we define the structure vector field of M by $\xi=-J N$. Moreover, if $\left\{J_{1}, J_{2}, J_{3}\right\}$ is a local basis of \mathfrak{J}, we define $\xi_{i}=-J_{i} N, i=1,2,3$. We will call $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$.
M is called Hopf if ξ is principal, that is, $A \xi=\alpha \xi$. Berndt and Suh [2] proved that if $m \geq 3$, a real hypersurface M of $G_{2}\left(\mathbb{C}^{m+2}\right)$ for which both $[\xi]$ and \mathfrak{D}^{\perp} are A invariant must be an open part of either (A) a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, or (B) a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$. In this second case $m=2 n$.

Let S denote the Ricci tensor of the real hypersurface M. In [7] we proved the nonexistence of Hopf real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, with parallel Ricci tensor, that is $\nabla S=0$, if the Ricci tensor commutes with the structure tensor ϕ.

This result was improved by Suh [9] who proved that the second condition is redundant.

Recently, in [8], as a generalization of the notion of the parallelism of the Ricci tensor we have studied real hypersurfaces in a complex two-plane Grassmannian with GTW connection, obtaining the following non-existence theorem.

Theorem 1.1 There do not exist connected, orientable, Hopf, real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, whose Ricci tensor is parallel with respect to the GTW connection.

The tensor field T of type (1,1) on M is called of Codazzi type if $\left(\nabla_{X} T\right) Y=\left(\nabla_{Y} T\right) X$ for any X, Y tangent to M. In the case of the Ricci tensor S, if it is of Codazzi type, M is said to have harmonic curvature. Suh [10] has recently proved the following theorem.

Theorem 1.2 Let M be a Hopf real hypersurface of harmonic curvature with constant scalar and mean curvatures. If the shape operator commutes with the structure tensor ϕ on the distribution \mathfrak{D}^{\perp}, then M is locally congruent to a tube over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with radius $r, \cot ^{2}(\sqrt{2} r)=\frac{4}{3}(m-1)$.

In this paper we deal with the same conditions considering the GTW on M. We will say that M has GTW harmonic curvature if $\left(\widehat{\nabla}_{X}^{(k)} S\right) Y=\left(\widehat{\nabla}_{Y}^{(k)} S\right) X$ for any X, Y tangent to M. To prove this result, we need two geometric notions, mean and scalar curvature. Mean curvature h is the trace of the shape operator $h=\operatorname{Tr}(A)$ and scalar curvature r is defined by the trace of the Ricci tensor i.e., $r=\operatorname{Tr}(S)$. Thus, we will prove the following theorem.

Theorem 1.3 There do not exist Hopf real hypersurfaces of GTW harmonic curvature with constant scalar and mean curvatures in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, if the shape operator commutes with the structure tensor ϕ on the distribution \mathfrak{D}^{\perp}.

2 Preliminaries

For the study of the Riemannian geometry of $G_{2}\left(\mathbb{C}^{m+2}\right)$, see [1]. All the notation we will use from now on are from $[2,3]$. We will suppose that the metric g of $G_{2}\left(\mathbb{C}^{m+2}\right)$ is normalized for the maximal sectional curvature of the manifold to be eight. Then
the Riemannian curvature tensor \bar{R} of $G_{2}\left(\mathbb{C}^{m+2}\right)$ is locally given by

$$
\begin{aligned}
\bar{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X \\
& -g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +\sum_{v=1}^{3}\left\{g\left(J_{v} Y, Z\right) J_{v} X-g\left(J_{v} X, Z\right) J_{v} Y-2 g\left(J_{v} X, Y\right) J_{v} Z\right\} \\
& +\sum_{v=1}^{3}\left\{g\left(J_{v} J Y, Z\right) J_{v} J X-g\left(J_{v} J X, Z\right) J_{v} J Y\right\}
\end{aligned}
$$

where $\left\{J_{1}, J_{2}, J_{3}\right\}$ is any canonical local basis of \mathfrak{J}.
Let M be a real hypersurface of $G_{2}\left(\mathbb{C}^{m+2}\right)$, that is, a submanifold of $G_{2}\left(\mathbb{C}^{m+2}\right)$ with real codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal vector field of M and A the shape operator of M with respect to N. The Kähler structure J of $G_{2}\left(\mathbb{C}^{m+2}\right)$ induces on M an almost contact metric structure (ϕ, ξ, η, g). More explicitly, we can define a tensor field ϕ of type (1,1), a vector field ξ and its dual 1-form η on M by $g(\phi X, Y)=g(J X, Y)$ and $\eta(X)=g(\xi, X)$ for any tangent vector fields X and Y on M. Then they satisfy

$$
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \text { and } \quad \eta(\xi)=1
$$

for any tangent vector field X on M. Furthermore, let $\left\{J_{1}, J_{2}, J_{3}\right\}$ be a canonical local basis of \mathfrak{J}. Then each J_{v} induces an almost contact metric structure $\left(\phi_{v}, \xi_{v}, \eta_{v}, g\right)$ on M in such a way that a tensor field ϕ_{v} of type (1,1), a vector field ξ_{v} and its dual 1-form η_{v} on M are defined by $g\left(\phi_{v} X, Y\right)=g\left(J_{v} X, Y\right)$ and $\eta_{v}(X)=g\left(\xi_{v}, X\right)$ for any tangent vector fields X and Y on M, respectively. Then they also satisfy

$$
\phi_{v}^{2} X=-X+\eta_{v}(X) \xi_{v}, \quad \phi_{v} \xi_{v}=0, \quad \eta_{v}\left(\phi_{v} X\right)=0, \quad \text { and } \quad \eta_{v}\left(\xi_{v}\right)=1
$$

for any tangent vector field X on M and $v=1,2,3$. Since \mathfrak{J} is parallel with respect to the Riemannian connection $\bar{\nabla}$ of $\left(G_{2}\left(\mathbb{C}^{m+2}\right), g\right)$, for any canonical local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} there exist three local 1-forms q_{1}, q_{2}, q_{3} such that

$$
\bar{\nabla}_{X} J_{v}=q_{v+2}(X) J_{v+1}-q_{v+1}(X) J_{v+2}
$$

for any X tangent to $G_{2}\left(\mathbb{C}^{m+2}\right)$, where subindices are taken modulo 3 .
From the expression of the curvature tensor of $G_{2}\left(\mathbb{C}^{m+2}\right)$ the Gauss equation is given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y \tag{2.1}\\
& +g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z \\
& +\sum_{v=1}^{3}\left\{g\left(\phi_{v} Y, Z\right) \phi_{v} X-g\left(\phi_{v} X, Z\right) \phi_{v} Y-2 g\left(\phi_{v} X, Y\right) \phi_{v} Z\right\}
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{v=1}^{3}\left\{g\left(\phi_{v} \phi Y, Z\right) \phi_{v} \phi X-g\left(\phi_{v} \phi X, Z\right) \phi_{v} \phi Y\right\} \\
& -\sum_{v=1}^{3}\left\{\eta(Y) \eta_{v}(Z) \phi_{v} \phi X-\eta(X) \eta_{v}(Z) \phi_{v} \phi Y\right\} \\
& -\sum_{v=1}^{3}\left\{\eta(X) g\left(\phi_{v} \phi Y, Z\right)-\eta(Y) g\left(\phi_{v} \phi X, Z\right)\right\} \xi_{v} \\
& +g(A Y, Z) A X-g(A X, Z) A Y
\end{aligned}
$$

for any X, Y, Z tangent to M. The Codazzi equation is also given by

$$
\begin{aligned}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X= & \eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \\
& +\sum_{v=1}^{3}\left\{\eta_{v}(X) \phi_{v} Y-\eta_{v}(Y) \phi_{v} X-2 g\left(\phi_{v} X, Y\right) \xi_{v}\right\} \\
& +\sum_{v=1}^{3}\left\{\eta_{v}(\phi X) \phi_{v} \phi Y-\eta_{v}(\phi Y) \phi_{v} \phi X\right\} \\
& +\sum_{v=1}^{3}\left\{\eta(X) \eta_{v}(\phi Y)-\eta(Y) \eta_{v}(\phi X)\right\} \xi_{v}
\end{aligned}
$$

for any X, Y tangent to M. The derivatives of the structure tensor ϕ and the Reeb vector field ξ in almost contact structure (ϕ, ξ, η, g) of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ can be respectively given by

$$
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \quad \text { and } \quad \nabla_{X} \xi=\phi A X
$$

Moreover, the derivatives of the structure tensor ϕ_{v} and the structure vector fields $\xi_{v}, v=1,2,3$ in almost contact metric 3-structure $\left(\phi_{v}, \xi_{v}, \eta_{v}, g\right)$ of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ are respectively given by

$$
\begin{aligned}
\left(\nabla_{X} \phi_{v}\right) Y & =-q_{v+1}(X) \phi_{v+2} Y+q_{v+2}(X) \phi_{v+1} Y+\eta_{v}(Y) A X-g(A X, Y) \xi_{v} \\
\nabla_{X} \xi_{v} & =q_{v+2}(X) \xi_{v+1}-q_{v+1}(X) \xi_{v+2}+\phi_{v} A X
\end{aligned}
$$

From (2.1) the Ricci tensor S of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is given by

$$
\begin{align*}
S X= & \sum_{i=1}^{4 m-1} R\left(X, e_{i}\right) e_{i} \tag{2.2}\\
= & (4 m+7) X-3 \eta(X) \xi+h A X-A^{2} X \\
& +\sum_{v=1}^{3}\left\{-3 \eta_{v}(X) \xi_{v}+\eta_{v}(\xi) \phi_{v} \phi X-\eta\left(\phi_{v} X\right) \phi_{v} \xi-\eta(X) \eta_{v}(\xi) \xi_{v}\right\}
\end{align*}
$$

for any X tangent to M, where h denotes $\operatorname{Tr}(A)$.

From (2.2) we can compute the derivative of the Ricci tensor S as follows (see [7]):

$$
\begin{align*}
& \left(\nabla_{X} S\right) Y=-3 g(\phi A X, Y) \xi-3 \eta(Y) \phi A X \tag{2.3}\\
& \qquad \begin{aligned}
- & 3 \sum_{v=1}^{3}\left\{q_{v+2}(X) \eta_{v+1}(Y)-q_{v+1}(X) \eta_{v+2}(Y)+g\left(\phi_{v} A X, Y\right)\right\} \xi_{v} \\
- & 3 \sum_{v=1}^{3} \eta_{v}(Y)\left\{q_{v+2}(X) \xi_{v+1}-q_{v+1}(X) \xi_{v+2}+\phi_{v} A X\right\} \\
+ & \sum_{v=1}^{3}\left\{X\left(\eta_{v}(\xi)\right) \phi_{v} \phi Y+\eta_{v}(\xi)\left\{-q_{v+1}(X) \phi_{v+2} \phi Y\right.\right. \\
& \left.+q_{v+2}(X) \phi_{v+1} \phi Y+\eta_{v}(\phi Y) A X-g(A X, \phi Y) \xi_{v}\right\} \\
& +\eta_{v}(\xi)\left\{\eta(Y) \phi_{v} A X-g(A X, Y) \phi_{v} \xi\right\}-g\left(\phi A X, \phi_{v} Y\right) \phi_{v} \xi \\
& +\left\{q_{v+1}(X) \eta\left(\phi_{v+2} Y\right)-q_{v+2}(X) \eta\left(\phi_{v+1} Y\right)\right. \\
& \left.\quad-\eta_{v}(Y) \eta(A X)+\eta\left(\xi_{v}\right) g(A Y, X)\right\} \phi_{v} \xi \\
& \quad \eta\left(\phi_{v} Y\right)\left\{q_{v+2}(X) \phi_{v+1} \xi-q_{v+1}(X) \phi_{v+2} \xi\right. \\
\quad & \left.\quad \phi_{v} \phi A X-\eta(A X) \xi_{v}+\eta\left(\xi_{v}\right) A X\right\} \\
& \left.\quad g(\phi A Y, X) \eta_{v}(\xi) \xi_{v}-\eta(Y) X\left(\eta_{v}(\xi)\right) \xi_{v}-\eta(Y) \eta_{v}(\xi) \nabla_{X} \xi_{v}\right\} \\
+ & (X h) A Y+h\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A^{2}\right) Y
\end{aligned}
\end{align*}
$$

for any X, Y tangent to M, where the subindices are taken modulo 3.
For a real hypersurface of type (A) (resp., (B)), we recall two propositions due to Berndt and Suh [2] as follows.

Proposition $A \quad$ Let M be a connected real hypersurface of $G_{2}\left(\mathbb{C}^{m+2}\right)$. Suppose that $A \mathfrak{D} \subset \mathfrak{D}, A \xi=\alpha \xi$, and ξ is tangent to \mathfrak{D}^{\perp}. Let $J_{1} \in \mathfrak{J}$ be the almost Hermitian structure such that $J N=J_{1} N$. Then M has three (if $r=\pi / 2 \sqrt{8}$) or four (otherwise) distinct constant principal curvatures

$$
\alpha=\sqrt{8} \cot (\sqrt{8} r), \quad \beta=\sqrt{2} \cot (\sqrt{2} r), \quad \lambda=-\sqrt{2} \tan (\sqrt{2} r), \quad \mu=0
$$

with some $r \in(0, \pi / \sqrt{8})$. The corresponding multiplicities are

$$
m(\alpha)=1, \quad m(\beta)=2, \quad m(\lambda)=2 m-2=m(\mu)
$$

and the corresponding eigenspaces are

$$
\begin{aligned}
& T_{\alpha}=\mathbb{R} \xi=\mathbb{R} J N=\mathbb{R} \xi_{1}=\operatorname{Span}\{\xi\}=\operatorname{Span}\left\{\xi_{1}\right\}, \\
& T_{\beta}=\mathbb{C}^{\perp} \xi=\mathbb{C}^{\perp} N=\mathbb{R} \xi_{2} \oplus \mathbb{R} \xi_{3}=\operatorname{Span}\left\{\xi_{2}, \xi_{3}\right\}, \\
& T_{\lambda}=\left\{X \mid X \perp \mathbb{H} \xi, J X=J_{1} X\right\}, \\
& T_{\mu}=\left\{X \mid X \perp \mathbb{H} \xi, J X=-J_{1} X\right\},
\end{aligned}
$$

where $\mathbb{R} \xi, \mathbb{C} \xi$, and $\mathbb{H} \xi$ denote the real, complex, and quaternionic spans of the structure vector field ξ, respectively, and $\mathbb{C}^{\perp} \xi$ denotes the orthogonal complement of $\mathbb{C} \xi$ in $\mathbb{H} \xi$.

Proposition B Let M be a connected real hypersurface of $G_{2}\left(\mathbb{C}^{m+2}\right)$. Suppose that $A \mathfrak{D} \subset \mathfrak{D}, A \xi=\alpha \xi$, and ξ is tangent to \mathfrak{D}. Then the quaternionic dimension m of $G_{2}\left(\mathbb{C}^{m+2}\right)$ is even, say $m=2 n$, and M has five distinct constant principal curvatures

$$
\alpha=-2 \tan (2 r), \quad \beta=2 \cot (2 r), \quad \gamma=0, \quad \lambda=\cot (r), \quad \mu=-\tan (r)
$$

with some $r \in(0, \pi / 4)$. The corresponding multiplicities are

$$
m(\alpha)=1, \quad m(\beta)=3=m(\gamma), \quad m(\lambda)=4 n-4=m(\mu)
$$

and the corresponding eigenspaces are

$$
\begin{aligned}
& T_{\alpha}=\mathbb{R} \xi=\operatorname{Span}\{\xi\}, \\
& T_{\beta}=\mathfrak{J} J \xi=\operatorname{Span}\left\{\xi_{\nu} \mid v=1,2,3\right\}, \\
& T_{\gamma}=\mathfrak{J} \xi=\operatorname{Span}\left\{\phi_{\nu} \xi \mid v=1,2,3\right\}, \\
& T_{\lambda}, \quad T_{\mu},
\end{aligned}
$$

where

$$
T_{\lambda} \oplus T_{\mu}=(\mathbb{H} \mathbb{C} \xi)^{\perp}, \quad \mathfrak{J} T_{\lambda}=T_{\lambda}, \quad \mathfrak{J} T_{\mu}=T_{\mu}, \quad J T_{\lambda}=T_{\mu}
$$

The distribution $(\mathbb{H C} \xi)^{\perp}$ is the orthogonal complement of $\mathbb{H C} \xi$, where

$$
\mathbb{H C} \xi=\mathbb{R} \xi \oplus \mathbb{R} J \xi \oplus \mathfrak{J} \xi \oplus \mathfrak{J} J \xi
$$

3 Proof of the Theorem 1.3

The GTW parallel Ricci tensor is defined by

$$
\begin{aligned}
\left(\widehat{\nabla}_{X}^{(k)} S\right) Y= & \widehat{\nabla}_{X}^{(k)}(S Y)-S \widehat{\nabla}_{X}^{(k)} Y \\
= & \nabla_{X}(S Y)+g(\phi A X, S Y) \xi-\eta(S Y) \phi A X-k \eta(X) \phi S Y \\
& -S \nabla_{X} Y-g(\phi A X, Y) S \xi+\eta(Y) S \phi A X+k \eta(X) S \phi Y
\end{aligned}
$$

And from (1.1), as we suppose that M has GTW harmonic curvature, we have

$$
\begin{align*}
\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X= & -g(\phi A X, S Y) \xi+\eta(S Y) \phi A X+k \eta(X) \phi S Y \tag{3.1}\\
& +g(\phi A X, Y) S \xi-\eta(Y) S \phi A X-k \eta(X) S \phi Y \\
& +g(\phi A Y, S X) \xi-\eta(S X) \phi A Y-k \eta(Y) \phi S X \\
& -g(\phi A Y, X) S \xi+\eta(X) S \phi A Y+k \eta(Y) S \phi X
\end{align*}
$$

for any X, Y tangent to M. Thus, by using (2.3), (3.1) can be written as follows:

$$
\begin{aligned}
(3.2) & -3 g(\phi A X, Y) \xi-3 \eta(Y) \phi A X \\
& -3 \sum_{v=1}^{3}\left\{q_{v+2}(X) \eta_{v+1}(Y)-q_{v+1}(X) \eta_{v+2}(Y)+g\left(\phi_{v} A X, Y\right)\right\} \xi_{v} \\
& -3 \sum_{v=1}^{3} \eta_{v}(Y)\left\{q_{v+2}(X) \xi_{v+1}-q_{v+1}(X) \xi_{v+2}+\phi_{v} A X\right\} \\
& +\sum_{v=1}^{3}\left\{X \left(\eta_{v}(\xi) \phi_{v} \phi Y+\eta_{v}(\xi)\left\{-q_{v+1}(X) \phi_{v+2} \phi Y\right.\right.\right. \\
& \left.+q_{v+2}(X) \phi_{v+1} \phi Y+\eta_{v}(\phi Y) A X-g(A X, \phi Y) \xi_{v}\right\} \\
& +\eta_{v}(\xi)\left\{\eta(Y) \phi_{v} A X-g(A X, Y) \phi_{v} \xi\right\}-g\left(\phi A X, \phi_{v} Y\right) \phi_{v} \xi \\
& +\left\{q_{v+1}(X) \eta\left(\phi_{v+2} Y\right)-q_{v+2}(X) \eta\left(\phi_{v+1} Y\right)-\eta_{v}(Y) \eta(A X)\right. \\
& \left.+\eta\left(\xi_{v}\right) g(A X, Y)\right\} \phi_{v} \xi-\eta\left(\phi_{v} Y\right)\left\{q_{v+2}(X) \phi_{v+1} \xi\right. \\
& \left.-q_{v+1}(X) \phi_{v+2} \xi+\phi_{v} \phi A X-\eta(A X) \xi_{v}+\eta\left(\xi_{v}\right) A X\right\} \\
& \left.-g(\phi A X, Y) \eta_{v}(\xi) \xi_{v}-\eta(Y) X\left(\eta_{v}(\xi)\right) \xi_{v}-\eta(Y) \eta_{v}(\xi) \nabla_{X} \xi_{v}\right\} \\
& +X(h) A Y+h\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A^{2}\right) Y \\
& +3 g(\phi A Y, X) \xi+3 \eta(X) \phi A Y \\
& +3 \sum_{v=1}^{3}\left\{q_{v+2}(Y) \eta_{v+1}(X)-q_{v+1}(Y) \eta_{v+2}(X)+g\left(\phi_{v} A Y, X\right)\right\} \xi_{v} \\
& +3 \sum_{v=1}^{3} \eta_{v}(X)\left\{q_{v+2}(Y) \xi_{v+1}-q_{v+1}(Y) \xi_{v+2}+\phi_{v} A Y\right\} \\
& -\sum_{v=1}^{3}\left\{Y \left(\eta_{v}(\xi) \phi_{v} \phi X+\eta_{v}(\xi)\left\{-q_{v+1}(Y) \phi_{v+2} \phi X\right.\right.\right. \\
& \left.+q_{v+2}(Y) \phi_{v+1} \phi X+\eta_{v}(\phi X) A Y-g(A Y, \phi X) \xi_{v}\right\} \\
& +\eta_{v}(\xi)\left\{\eta(X) \phi_{v} A Y-g(A Y, X) \phi_{v} \xi\right\}-g\left(\phi A Y, \phi_{v} X\right) \phi_{v} \xi \\
& +\left\{q_{v+1}(Y) \eta\left(\phi_{v+2} X\right)-q_{v+2}(Y) \eta\left(\phi_{v+1} X\right)-\eta_{v}(X) \eta(A Y)\right. \\
& \left.+\eta\left(\xi_{v}\right) g(A Y, X)\right\} \phi_{v} \xi-\eta\left(\phi_{v} X\right)\left\{q_{v+2}(Y) \phi_{v+1} \xi\right. \\
& \left.-q_{v+1}(Y) \phi_{v+2} \xi+\phi_{v} \phi A Y-\eta(A Y) \xi_{v}+\eta\left(\xi_{v}\right) A Y\right\} \\
& \left.-g(\phi A Y, X) \eta_{v}(\xi) \xi_{v}-\eta(X) Y\left(\eta_{v}(\xi)\right) \xi_{v}-\eta(X) \eta_{v}(\xi) \nabla_{Y} \xi_{v}\right\} \\
& -Y(h) A X-h\left(\nabla_{Y} A\right) X+\left(\nabla_{Y} A^{2}\right) X \\
= & -g(\phi A X, S Y) \xi+\eta(S Y) \phi A X+k \eta(X) \phi S Y \\
& +g(\phi A X, Y) S \xi-\eta(Y) S \phi A X-k \eta(X) S \phi Y+g(\phi A Y, S X) \xi-\eta(S X) \phi A Y \\
& -k \eta(Y) \phi S X-g(\phi A Y, X) S \xi+\eta(X) S \phi A Y+k \eta(Y) S \phi X
\end{aligned}
$$

for any X, Y tangent to M.
We can write $\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}$, where X_{0} is a unit vector field in \mathfrak{D}. Suppose that $A \xi=\alpha \xi$ and that $\eta\left(X_{0}\right) \eta\left(\xi_{1}\right) \neq 0$.

Bearing in mind that

$$
\begin{aligned}
\eta_{v}\left(\phi X_{0}\right) & =0 \quad \text { for } \quad v=1,2,3 \\
S \xi & =\left(4 m+4+h \alpha-\alpha^{2}\right) \xi-4 \eta\left(\xi_{1}\right) \xi_{1} \\
\eta\left(\phi_{1} \phi X_{0}\right) & =\eta\left(X_{0}\right) \eta\left(\xi_{1}\right) \\
\eta\left(\phi_{v} \phi X_{0}\right) & =0 \quad \text { for } \quad v=2,3 \\
\xi\left(\eta_{1}(\xi)\right) & =g\left(\xi, \nabla_{\xi} \xi_{1}\right)
\end{aligned}
$$

by putting $X=\xi, Y=\phi X_{0}$ in (3.2) and taking scalar product of (3.2) with ξ, we get

$$
\begin{equation*}
4(\alpha-k) \eta^{2}\left(\xi_{1}\right) \eta\left(X_{0}\right)-16 \eta\left(\xi_{1}\right) g\left(A \phi X_{0}, \phi_{1} \xi\right)+\left(\phi X_{0}\right)\left(\alpha^{2}-\alpha h\right)=0 \tag{3.3}
\end{equation*}
$$

By using

$$
\phi_{1} \xi=-\frac{\eta\left(X_{0}\right)}{\eta\left(\xi_{1}\right)} \phi X_{0} \quad \text { and } \quad A \phi X_{0}=-\frac{\eta\left(\xi_{1}\right)}{\eta\left(X_{0}\right)} A \phi_{1} \xi
$$

(3.3) becomes

$$
4(\alpha-k) \eta^{2}\left(\xi_{1}\right) \eta\left(X_{0}\right)+16 \eta^{2}\left(\xi_{1}\right) g\left(A \phi \xi_{1}, \phi \xi_{1}\right)+\eta\left(\xi_{1}\right)\left(\phi \xi_{1}\right)\left(\alpha h-\alpha^{2}\right)=0 .
$$

Since the shape operator A commutes with the structure tensor ϕ on the distribution \mathfrak{D}^{\perp}, we have

$$
g\left(A \phi \xi_{1}, \phi \xi_{1}\right)=g\left(\phi A \xi_{1}, \phi \xi_{1}\right)=g\left(A \xi_{1}, \xi_{1}\right)-\alpha \eta^{2}\left(\xi_{1}\right)
$$

Thus, we arrive at

$$
\begin{aligned}
4(\alpha-k) \eta^{2}\left(\xi_{1}\right) \eta^{2}\left(X_{0}\right)+16 \eta^{2}\left(\xi_{1}\right) g\left(A \xi_{1},\right. & \left.\xi_{1}\right) \\
& -16 \alpha \eta^{4}\left(\xi_{1}\right)+\eta\left(\xi_{1}\right)\left(\phi \xi_{1}\right)\left(\alpha h-\alpha^{2}\right)=0
\end{aligned}
$$

Let $\left\{E_{i}\right\}_{i=1, \ldots, 4 m-1}$ be an orthonormal basis of eigenvectors of M. If we develop a contracted formula $\sum_{i=1}^{4 m-1} g\left(\left(\nabla_{E_{i}} S\right) Y-\left(\nabla_{Y} S\right) E_{i}, E_{i}\right)$ in (3.1), the left side of the equality (3.2) yields for $Y=\xi$ (see [10, (5.4)]),

$$
\begin{aligned}
&-3 \sum_{v=1}^{3} g\left(\phi_{v} A \xi_{v}, \xi\right)+\alpha \xi(h)-\xi(h) h+h(\xi(\alpha)-\xi(h)- \\
&\operatorname{tr}(A \phi A)) \\
&-\left(\xi\left(\alpha^{2}\right)-\operatorname{Tr}\left(A^{2} \phi A\right)-\xi\left(\operatorname{Tr}\left(A^{2}\right)\right) .\right.
\end{aligned}
$$

On the other hand, the contracted formula in the right side of (3.1), bearing in mind that $g(\phi S Y, \xi)=0, g\left(\phi A E_{i}, E_{i}\right)=0$, because E_{i} is principal and $g(\xi, \phi S Y)=0$, gives

$$
-g(A \phi Y, S \xi)-\eta(Y) \sum_{i=1}^{4 m-1} g\left(S \phi A E_{i}, E_{i}\right)-k g(\xi, S \phi Y)+2 k \eta(Y) \sum_{i=1}^{4 m-1} g\left(S E_{i}, \phi E_{i}\right)
$$

Now we get

$$
\begin{aligned}
g(S \xi, A \phi Y) & =-4 \eta\left(\xi_{1}\right) g\left(\xi_{1}, A \phi Y\right), \\
\sum_{i=1}^{4 m-1} g\left(\phi A E_{i}, S E_{i}\right) & =4 \sum_{v=1}^{3} g\left(\xi_{v}, A \phi \xi_{v}\right), \\
g(S \xi, \phi Y) & =-4 \eta\left(\xi_{1}\right) g\left(\xi_{1}, \phi Y\right) .
\end{aligned}
$$

From this, together with inserting $Y=\xi$ in above formula, the right side of the contracted formula becomes $-4 \sum_{v=1}^{3} g\left(\xi_{v}, A \phi \xi_{v}\right)$. Then both sides of the contracted formula in (3.2) can be given by

$$
\begin{equation*}
h \xi(\alpha)-\xi\left(\alpha^{2}\right)+\xi\left(\operatorname{Tr}\left(A^{2}\right)\right)=-7 \sum_{v=1}^{3} g\left(\xi_{v}, A \phi \xi_{v}\right)=0 \tag{3.4}
\end{equation*}
$$

where we have applied that h is constant and ϕ and A commute on \mathfrak{D}^{\perp}.
If r denotes the scalar curvature of M,

$$
r=\sum_{i=1}^{4 m-1} g\left(S E_{i}, E_{i}\right)=16 m^{2}+24 m-19+h^{2}-h_{2}
$$

where $h_{2}=\operatorname{Tr}\left(A^{2}\right)$; see [10]. As r is constant, h_{2} is also constant. Thus, (3.4) yields $\xi\left(\alpha h-\alpha^{2}\right)=0$. This gives us either $\xi(\alpha)=0$ or $h=2 \alpha$.

If $h=2 \alpha$ and α is constant, then from Berndt and Suh [2] we may use the following

$$
Y(\alpha)=\xi(\alpha) \eta(Y)-4 \sum_{v=1}^{3} \eta_{v}(\xi) \eta_{v}(\phi Y)
$$

for any $Y \in T M$. This yields $\phi_{1} \xi=0$, which gives a contradiction.
Suppose now that $\xi(\alpha)=0$. As above, $Y(\alpha)=4 \eta_{1}(\xi) g\left(Y, \phi \xi_{1}\right)$. Thus,

$$
\left(\phi \xi_{1}\right)(\alpha)=4 \eta\left(\xi_{1}\right)\left(1-\eta^{2}\left(\xi_{1}\right)\right)=4 \eta\left(\xi_{1}\right) \eta^{2}\left(X_{0}\right)
$$

and

$$
\left(\phi \xi_{1}\right)\left(\alpha h-\alpha^{2}\right)=(h-2 \alpha)\left(\phi \xi_{1}\right)(\alpha)=4(h-2 \alpha) \eta\left(\xi_{1}\right) \eta^{2}\left(X_{0}\right)
$$

From (3.4) we obtain

$$
\begin{align*}
0 & =4(h-k-\alpha) \eta^{2}\left(X_{0}\right)+16 g\left(A \xi_{1}, \xi_{1}\right)-16 \alpha \eta^{2}\left(\xi_{1}\right) \tag{3.5}\\
& =4(h-k-\alpha) \eta^{2}\left(X_{0}\right)+16 \alpha \eta^{2}\left(X_{0}\right) \\
& =4(h-k+3 \alpha) \eta^{2}\left(X_{0}\right) .
\end{align*}
$$

We also have $g\left(\nabla_{X} \operatorname{grad}(\alpha), Y\right)=g\left(\nabla_{Y} \operatorname{grad}(\alpha), X\right)$ for any X, Y tangent to M. Bearing in mind that $\operatorname{grad}(\alpha)=4 \eta_{1}(\xi) \phi_{1} \xi$ and taking $X=\xi$, we get $g\left((\nabla \xi \phi) \xi_{1}, Y\right)+$ $g\left(\phi \nabla_{\xi} \xi_{1}, Y\right)=g\left(\left(\nabla_{Y} \phi\right) \xi_{1}, \xi\right)$, where we have applied that $\eta\left(\xi_{1}\right)=\eta_{1}(\xi) \neq 0$. If we apply the formulas in Section 2 for $Y=\xi_{1}$, we obtain $g\left(A \xi_{1}, \xi_{1}\right)=\alpha$. Introducing this in (3.5) we have $4(h-k+3 \alpha)=0$. Thus, α is constant, and, as above, we arrive to a contradiction.

Thus, we have obtained that either $\xi \in \mathfrak{D}$ or $\xi \in \mathfrak{D}^{\perp}$.
If $\xi \in \mathfrak{D}, M$ is locally congruent ([6]) to a type (B) real hypersurface. If we bear in mind the principal curvatures of such a real hypersurface in order our conditions to be satisfied, we should have $A \phi \xi_{2}=0=\phi A \xi_{2}=2 \cot (2 r) \phi \xi_{2}$. This yields $2 \cot (2 r)=$ $\cot (r)-\tan (r)=0$. Thus, $r=\frac{\pi}{4}$, which is impossible.

Now we suppose $\xi \in \mathfrak{D}^{\perp}$ and write $\xi=\xi_{1}$. If we take the scalar product of (3.2) with ξ, we get

$$
\begin{align*}
& -3 g((A \phi+\phi A) X, Y)-3 g\left(\left(\phi_{1} A+A \phi_{1}\right) X, Y\right)-6 \eta_{2}(Y) \eta_{3}(A X) \tag{3.6}\\
& +6 \eta_{3}(Y) \eta_{2}(A X)-4 \eta_{2}(X) \eta_{3}(A Y)+4 \eta_{3}(X) \eta_{2}(A Y) \\
& +2(h-\alpha)\left\{2 \eta_{2}(X) \eta_{3}(Y)-2 \eta_{2}(Y) \eta_{3}(X)-g\left(\phi_{1} X, Y\right)-g(\phi X, Y)\right\} \\
& -2 \alpha g(A \phi A X, Y)+g((A \phi+\phi A) A X, A Y) \\
& \quad=-g((S \phi A+\phi A S) X, Y)+g(S \xi, \xi) g((\phi A+A \phi) X, Y)
\end{align*}
$$

for any X, Y tangent to M.
If we change X and Y in (3.6) and add the result to (3.6), we obtain

$$
\begin{array}{r}
-10 \eta_{2}(Y) \eta_{3}(A X)+10 \eta_{3}(Y) \eta_{2}(A X)-10 \eta_{2}(X) \eta_{3}(A Y)+10 \eta_{3}(X) \eta_{2}(A Y) \tag{3.7}\\
=-g((S \phi A+\phi A S) X, Y)+g((A \phi S+S A \phi) X, Y)
\end{array}
$$

for any X, Y tangent to M.
Taking $Y=\xi_{2}, X \in \mathfrak{D}$ in (3.7) we have

$$
\begin{aligned}
-10 \eta_{3}(A X) & =-g\left((S \phi A+\phi A S) X, \xi_{2}\right)+g\left((A \phi S+S A \phi) X, \xi_{2}\right) \\
& =-g\left(\phi A X, S \xi_{2}\right)+g\left(A \phi X, S \xi_{2}\right)=0
\end{aligned}
$$

due to the fact that $A \phi X=\phi A X$ for any tangent vector field X. Thus, $\eta_{3}(A X)=0$ for any $X \in \mathfrak{D}$, and analogously for $Y=\xi_{3}$, we obtain $\eta_{2}(A X)=0$. From these facts, we conclude that M is locally congruent to a type (A) real hypersurface. Bearing in mind that these real hypersurfaces have constant principal curvatures and that $A \phi=\phi A$ on them, they have constant mean and scalar curvatures.

Taking $X=\xi_{3}$ and $Y=\xi_{2}$ in (3.6) we obtain

$$
\begin{align*}
-4(h-\alpha)-2 \beta^{2}(\alpha-\beta)-2 \beta= & 2 \beta\left(4 m+h \alpha-\alpha^{2}\right) \tag{3.8}\\
& -\beta g\left(\xi_{2},(4 m+6) \xi_{2}+h A \xi_{2}-A^{2} \xi_{2}\right) \\
& -\beta g\left(\xi_{3},(4 m+6) \xi_{3}+h A \xi_{3}-A^{2} \xi_{3}\right)
\end{align*}
$$

where we have applied that

$$
\left\{\begin{array}{l}
S \xi=\left(4 m+h \alpha-\alpha^{2}\right) \xi \\
S \xi_{2}=(4 m+6) \xi_{2}+h A \xi_{2}-A^{2} \xi_{2} \\
S \xi_{3}=(4 m+6) \xi_{3}+h A \xi_{3}-A^{2} \xi_{3} .
\end{array}\right.
$$

As $A \xi_{2}=\beta \xi_{2}$ and $A \xi_{3}=\beta \xi_{3}$, (3.8) becomes

$$
\beta\left(h \alpha-\alpha^{2}-5\right)+(h-\alpha)\left(2-\beta^{2}\right)=0
$$

From this it follows that

$$
\begin{equation*}
(h-\alpha)\left(2-\beta^{2}+\alpha \beta\right)-5 \beta=0 \tag{3.9}
\end{equation*}
$$

Bearing in mind the values of α and β, we have $\alpha-\beta=\sqrt{8} \cot (\sqrt{8} r)-\sqrt{2} \cot (\sqrt{2} r)$ and $\sqrt{8} \cot (\sqrt{8} r)=\sqrt{2}(\cot (\sqrt{2} r)-\tan (\sqrt{2} r))$. So it follows that $\beta(\alpha-\beta)=-2$. From this, together with (3.9), we conclude that $\beta=0$, which is impossible. This completes the proof of our main theorem in the introduction.

References

[1] J. Berndt, Riemannian geometry of complex two-plane Grassmannians. Rend. Sem. Mat. Univ. Politec. Torino 55(1997), no. 1, 19-83.
[2] J. Berndt and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127(1999), no. 1, 1-14. http://dx.doi.org/10.1007/s006050050018
[3] ,Isometric flows on real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 137(2002), no. 2, 87-98. http://dx.doi.org/10.1007/s00605-001-0494-4
[4] J. T. Cho, CR structures on real hypersurfaces of a complex space form. Publ. Math. Debrecen 54(1999), 473-487.
[5] , Levi parallel hypersurfaces in a complex space form. Tsukuba J. Math. 30(2006), no. 2, 329-344.
[6] H. Lee and Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47(2010), no. 3, 551-561. http://dx.doi.org/10.4134/BKMS.2010.47.3.551
[7] J. D. Pérez and Y. J. Suh, The Ricci tensor of real hypersurfaces in complex two plane Grassmannians. J. Korean Math. Soc. 44(2007), no. 1, 211-235. http://dx.doi.org/10.4134/JKMS.2007.44.1.211
[8] J. D. Pérez, H. Lee, C. Woo, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor in generalized Tanaka-Webster connection. Submitted.
[9] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. Royal Soc. Edinb. 142A(2012), no. 6, 1309-1324. http://dx.doi.org/10.1017/S0308210510001472
[10] , Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J. Math. Pures Appl. 100(2013), no. 1, 16-33. http://dx.doi.org/10.1016/j.matpur.2012.10.010
[11] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. 20(1976), no. 1, 131-190.
[12] S. Tanno, Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314(1989), no. 1, 349-379. http://dx.doi.org/10.1090/S0002-9947-1989-1000553-9
[13] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface. J. Diff. Geom. 13(1978), no. 1, 25-41.

Departamento de Geometria y Topologia, Universidad de Granada, 18071-Granada, Spain e-mail: jdperez@ugr.es
Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea e-mail: yjsuh@knu.ac.kr legalgwch@knu.ac.kr

[^0]: Received by the editors August 29, 2014; revised February 3, 2015.
 Published electronically July 14, 2015.
 This work was supported by grant Proj. No. NRF-2015-R1A2A1A-01002459 from the National Research Foundation of Korea. The first author is partially supported by MCT-FEDER Grant MTM201018099, the second author by Grant Proj. No. NRF-2012-R1A2A2A-01043023, and the third author by Fostering Core Leaders No. NRF-2013-H1A8A1004325.

 AMS subject classification: 53C40, 53C15.
 Keywords: real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, generalized Tanaka-Webster connection, harmonic curvature.

