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1. Introduction

The theory of multimeasures (set valued measures), has its origins in math-
ematical economics and in particular in equilibrium theory for exchange
economies with production, in which the coalitions and not the individual
agents are the basic economic units (see Vind [25] and Hildenbrand [15]).
Since then the subject of multimeasures has been developed extensively. Im-
portant contributions were made, among others, by Artstein [1], Coste [8],
[9], Coste and Pallu de la Barriere [10], Drewnowski [12], Godet-Thobie [13],
Hiai [14] and Pallu de la Barriere [17]. Further applications in mathematical
economics can be found in Klein and Thompson [16] and Papageorgiou [19].

In this paper we study multimeasures parametrized by the elements of a
measurable space (transition multimeasures). Such multimeasures turn out
to be the appropriate tool to establish the existence of a Markov temporary
equilibrium processes in dynamic economies (see Blume [6]).
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2. Preliminaries

In this section we establish our notation and terminology and we recall
some basic facts from the theories of multifunctions and multimeasures that
we will need in the sequel.

Let (Q, X) be a measurable space and X a separable Banach space.
Throughout this paper we will be using the following notations:

j ^ - {A C X: A is nonempty, closed, (convex)};

and

— {A c X: A is nonempty, {w) -compact, (convex)}.

Also by X\ we will denote the dual of X endowed with the weak*
topology and by P^iX^.) we will denote the nonempty, u;*-compact and
convex subsets of X*.

If A e 2X\{0}, we define \A\ = sup{||a||: a € A} (the "norm" of the set
A), a(x*, A) = sup{(;c*, a ) : a e A}, x* € X* (the "support function" of
A) and d(x, A) = inf{||x - a\\: a e A} (the "distance function" from A).

A multifunction F: O. —* Pj-(X) is said to be measurable, if for all x e X,
co —> d{x, F(co)). This definition is in fact equivalent to saying that there
exist fn: £2 —* X measurable functions such that for all co e Q, F(co) =
c\{fn{co)}n>l. Furthermore if there exists a complete cr-finite measure fi(-)
on Z, then both the above definitions are equivalent to saying that GTF =
{((D,x)eaxX:x€ F(co)} e l x B(X), B(X) being the Borel tr-field of
X (graph measurability) (for details we refer to Wagner [26]).

By Sl
F we will denote the set of integrable selectors of F(-), that is,

Sl
F = {/(•) e L,\X): f(co) e F(co) //-a.e.}. This set may be empty. A

straightforward application of Aumann's selection theorem tells us that if
F: Q —» Pj-{X) is measurable and co —> \F(co)\ belongs in Ll

+ (such an F(-)

is usually called "integrably bounded"), then SF ^ 0 . Having this set we
can define a set valued integral for F(-) as follows:

F(co) dn{co) = | ^ f(co) dfi(o>): 4 J .
The vector valued integrals of the right hand side are defined in the sense

of Bochner. This integral is known in the literature as Aumann's integral,
since it was first introduced by Aumann [4] as the natural generalization of
the Minkowski sum of sets.

Next let X by any Banach space. A multimeasure is a map M: Z —>
2X\{0} such that (i) M(0) = {0} and (ii) for every {An}n>i C I pairwise
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disjoint we have M(Uw>i An) = 12n>\ M(An). Depending on the way we in-
terpret this infinite sum we get different types of multimeasures. However all
these definitions coincide when M(-) is Pwkc(X)-va\ued (see Godet-Thobie
[13, Proposition 3] and Pallu de la Barriere [17]). This fact can be viewed as
the set-valued version of the well known Orlicz-Pettis theorem (see Diestel
and Uhl [11]). So for the needs of this work we can say that M: £ —> Pj{X)
is a multimeasure (set valued measure) if and only if for every x* e X*,
A —f o(x*, M(A)) is a signed measure. Similarly M: a —> Pkl{X*w.) is an
X\-valued multimeasure if and only if for all x e X, A —> a(x, M{A)) is
a signed measure.

If M(-) is a multimeasure and A e £ , then we define

\M\{A) = sup
* k

where the supremum is taken over all finite Z-partitions n = {Ak}
n

k=l of A .
If \M|(Q) < oo, then M(•) is said to be of bounded variation. Also by SM

we will denote all vector measures m: Z —»• X that are selectors of Af(-),
that is, m(A) e M{A) for all A e l .

Now let (Q, Z) and [T ,£T) be measurable spaces and A' a separable
Banach space. A multivalued map M: il x ST —» Pj-(X) is said to be a
transition multimeasure if

(1) for all A e Z7~, co -» Af(ft), 4̂) is a measurable multifunction,
(2) for all coeCl, /I -*• Af (co, A) is a multimeasure,
A "selector transition measure" or simply a "transition selector" is a map

m: ftx/->I such that
(1) for all Ae T, co —• m(co, A) is Z-measurable,
(2) for all o) € fl, i4 -• m(co, A) is a vector measure,
(3) for all G) e Q and all A e ̂ , m(co, A) e M(co, A).
The set of all transition selectors of M(-, •) will be denoted by TSM.

Similarly we can define A^.-valued transition multimeasures M: Q x T —>
Pkc(X^.) and its set of transition selectors.

Let T be a Polish space and X a Banach space. By Cb(T) we will
denote the space of bounded continuous functions on T and by Cb(T) ® X
the space of bounded continuous functions with values in a finite dimensional
subspace of X. Also by Mb(T, X) we will denote the space of AT-valued
vector measures of bounded variation defined on (T, B(T)). Similarly we
define Mb(T, X^.) and Cb(T)®X* (see Saint-Beuve [23]). Finally if me

Mb(T, X) and B e B(T), then xB
m xs ^ e vector measure defined by

= m(AnB), AeB(T).
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3. Transition selectors

In this section we prove a theorem that establishes the existence of a tran-
sition selector for a transition multimeasure. Our result extends Theorem
2.3 of Hiai [14] to transition multimeasures and also it extends Theorem 5
of Godet-Thobie[13].

So assume that (ft, Z, ju) is a complete, finite measure space, T is a
Polish space with B(T) denoting its Borel cr-field and I is a separable
Banach space.

THEOREM 3.1. If M: QxB(T) —• Pkc(X^.) is a transition multimeasure of
bounded variation and h: ft —> X\ is a measurable map such that for some
A G B(T), h(co) G M((o, A), for all co G ft, then there exists m e TSM

such that for all co G ft, m(co, A) = h{co).

PROOF. Let RA: ft -» Mb(T, X\) be defined by

RA(co) = {me Mb{T, X*w.): m e S ^ . , , m(A) = h(co)}.

From Godet-Thobie [13, Theorem 1] (see also Hiai [14, Theorem 2.3]),
we know that for all co G ft, RA(co) ^ 0 .

Next let x e X and consider the function <pA x:£lx Mb(T, X\) -> 1

defined by <f>A x(co, m) = (x, m(A) - h(co)).

Since by hypothesis h() is w*-measurable, co -» (x, h(co)) is a mea-
surable R-valued function. On the other hand recall that by the defini-
tion of Cb{T) <g> X, the w(Mb(T, X\), Cb(T) <g> X)-topology is the weak-
est topology on M {T, X^.), for which m —• x o m is continuous from

M (T, X^.) into M (T) with the weak (narrow) topology (here x o m(-)
denotes the R-valued measure A —* (x, m{A))). Also from the Dynkin sys-
tem theorem, we deduce that for every C G B(T), the map X -* X(C) on
M (T) with the weak topology is measurable. Hence we finally conclude that
m -* (x o m){C) = {x, m(C)) is measurable. Therefore we see that

{co, /w)->(x, m(A))-(x, h(co)) = (/)A x(co, m)

is jointly measurable on ft x M (T, X^.) when Mb(T, X\) is endowed
with the w(Mb(T, X\), Cb{T) ® X)-topology.

By definition m is a measure selector of M(co, •) (denoted by m G
SM((O }) if and only if for all C G B(T), m(C) e M e M(co, C). Since
M(•,'•) is / y* ; . ) - va lued we have (x, m{C)) < a(x,M(co, Q) for all
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x e X and all C e B(T). Note that since M(•, •) is a transition multimea-
sure,

« —»• a{x, M(o), C))

is measurable while as above we can see that m —> (x, m{C)) is measurable
from Mb(T,X*.) with the w{Mb(T, X\), Cnb{T) <g> ^-topology into
R. Hence the map <pc x{(o, m) = a(x, M(co, C)) - (x, m(C)) is jointly
measurable.

Now let {xk}k>l be dense in X and let {Cn}n>x be a field generating
B(T), that is, a{{Cn}n>{) = B(T) (recall that since T is a Polish space,
B(T) is countably generated to such a countable field exists). Then by setting
(pAk{(orm) = {xk,m{A)-h{(o)) and q>nk{w,m) = o(xk, M{co, Cn)) -
(xk , m(Cn)), we can write

GTRA = f |{(co,m) e Q x Mb{T,X'w.): 4>Atk((o, m) = 0,<pnk{<o, m) > 0}
k>\

From Saint-Beuve [23, Theorem 3], we know that Mb(T, X^.) equipped
with the w(M (T, X^.), Cb{T) ® A")-topology is a Souslin space. Thus we
can apply Aumann's selection theorem (see Saint-Beuve [22, Theorem 3]), to
get r: £1 -* Mb(T, X^.) measurable such that for all (oeil, r{co) e R(co).
Set r(co){C) = m(co, C) for all (co, C) e Q x B{T). Then clearly m(-, •)
is a transition selector of M(-, •) and for all co € £2, m(<u, ,4) = h(co).

4. Integration with respect to a transition multimeasure

Now we turn out attention to integration with respect to a transition mul-
timeasure, extending the work of Coste [8].

Let / : Q x T -• R+ be a measurable function such that for all w s f l ,
f(co, •) e L1 (T, X). Motivated by the definition of the Aumann integral (see
Section 2), we define the integral of / ( • , •) with respect to a multimeasure
M(-, •), \M(co, )| < A //-a.e. as follows:

f f(co,t)M(co,dt) = iff(co,t)m(w,dt): meTSM\ , C € B(T).

Note that for every m e TSM, co —> fcf(co, t)m(co, dt) is measurable.
To see this let s n : f l x r - t R + be simple functions such that \sn(co, t)\ <
\f(co, 01 and sn(co, t) -> f(co, t)fixA-a.e. Clearly co -• fcsn(co, i)m{co, dt),
n > 1, are measurable and by the dominated convergence theorem we have
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that

/ sn((o, t)m{(o, dt) -> / f(co, t)m(co, dt) fi-a.e.
Jc Jc

Hence co —> Jcf(co, t)m{(o, dt) is measurable.
Assume that (Q, Z, n) is a complete, finite measure space with {co} e Z

for all co e Q, T is a Polish space with 5(T) its Borel a-field while A(-) is
a finite measure on (T, B{T)) and A" is a separable, reflexive Banach space.

THEOREM 4.1. If M: Hlx B(T) -> Pfc{X) is a transition multimeasure
such that M{co, C) c A(C)fT(o>) wifA W(<u) € Pwkc(X) for all coeQ. and
N(co, C) = fcf{co, t)M(co, dt), then N(-, •) is a Pwkc{X)-valued transition
multimeasure.

PROOF. From Theorem 3.1 we know that TSM ^ 0 and so N(-, •) has
nonempty values. Also since M(-, •) is convex valued, TSM is convex and
so N(-, •) is convex valued too.

Now note that since by hypothesis { w } e l for all co € £1, we have

{fccf(a>> t)m(co, dt):me TSM} = {^ / (G> , t)m(dt): me

Fix co e Q and consider a net {^Q}Q€/ c A (̂<y, C) such that xa +̂ x in
". Then by definition we have

= Jcf(co,t)ma(dt),

But from Godet-Thobie [13, Theorem 1], we know that

is compact for the topology of pointwise weak convergence, denoted by w =
w(Mb(T, X), 1.<S)X*). So we can find a subnet {Wo}«€/< of {ma}a€l such

that rhp ^* m e 5"^^ ( . We now claim that for each x* e X* and each
C G B(T), the map Jn —* (x*, Jc f{co, t)Jn(dt)) is continuous from SM,W >
with the w-topology into R. To see this let f(co, •) be the simple function
E L i akXBk(-) • T h e n w e h a v e Sc / ( w > t)m{dt) = E L i akm(CDBk) implies
Jn —> (x*, fcf(co, t)Jn(dt)) is continuous.

Now let sn(-) be simple functions on T such that \\f{co, •) -•sn() | | 1 —> 0
as n - t o o . Note that for all m e SM{(0<m) we have |(x*, m(C))\ < k(C) •
\\x*\\ • \W(co)\, x* e X*. So we get that '

A |/(eu, 0 - 5n(O|^|Jf* ° m|(rfr) = 0 uniformly in m e
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implies

lim / s(t)d{x* om){dt) = f f(co, t)d(x* °m){dt)
n—oojc " Jc

uniformly in m € SM,m ,y

Since the members of the uniformly convergent sequence are continu-
ous in Jn, we conclude that the limit is continuous in Jn, that is, Jn —»
fc f(w, t)d(x* o Tn){dt) = (x*, fc f(co, t)Jn(dt)) is continuous as claimed.
So we have

f f(co,t)mJdt)^ f f(co,t)m(dt)
Jc p Jc

implies x — fcf(co, t)fh{dt), m e SM,W >, which implies N(co, C) e
Pfc(X) for all (co,C)€£lxB(T).

Also note that

N(co, C) = Jcf((o, t)M(co, dt) C (_£/(«, t)X(dt)j W(a>) € Pwkc{X),

which implies N{(o, C) e Pwkc(X) for all (<o, C) eClx B(T).
Next let m e TSM and x* € X*. We have

(x\ Jcf((o, t)m((o, dt)\ = j f((o, t)d{x'om){(o, dt)

< f f(co,t)a(x*,M(co,dt))
Jc

which implies

a{x*, N{co, C)) < j f(co, t)a{x*, M(co, dt)).
Jc

Fix x* € X* and consider the following multifunction:

HH(co) = {m e SM(ai.y o{x*, M(co, Q) = (x*, m(C))}.

Consider a well order on X* (it exists by the well ordering principle) and
give X the corresponding lexicographic ordering (see for example Boubaki
[7]). Since by hypothesis M(-, •) is />

luJtc(^T)-valued, we can find a lexico-
graphic maximum m(C) of M{oi, C). Then

(x*,m(C)) = a(x\M(co,C)).

We will show that m(-) e SM^W ,. According to Godet-Thobie [13, Propo-
hsition 2], it is enough to show that rit(-) is additive. So let Bx, B2 be two

disjoint elements of B(T). Then, if by <L we denote the lexicographic
order, then for all b{ e B{ and all b2 e B2 we have bx <L m(B{) and
b2 <L m(B2).
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Since M{Bl l)B2) = M(B{) + M(B2), every element b e M(B{ U52) can
be written as b = b{+b2 with bx e M(B{) and fe2 e M(B2). Because the
lexicographic ordering is clearly compatible with vector addition, we have

=> m{Bx) + m(B2) is the lexicographic maximum of M(B{ u B2)

=> m(Bl U B2) = m{Bi) + m{B2)

=> m(-) is additive, and thus belongs in 5^((U .}

Hence for all w e f l , HH(co) ^ 0 . Then we have

= {m e ̂ / 6 ( r , X): <T(jc', M(ca, 5)) = (JC*

=• QrHH = {{to, m) 6 Q x Af 6 ( r , X): <x(;t*, M(w, 5)) = (x*, m{B)),

m(B)eM(co,B),B<EB(T)}

=> GTHH = f|{(o>, w) € fi x M * ( r , X): CT(JC* , Af(eo, 5n))

n>l

= (x*, w(fin)), (z*k, m{Bn)) < a{z\, M(co, BH))}

where {zl}k>i is dense in X* and {Bn}n>l is a field generating B(T), that
is, o{Bn: n > 1) = 5(T) (again since by hypothesis, T is a Polish space,
B{T) is countably generated and so such a countable field exists). Then, as
in the proof of Theorem 3.1, we get that GTHH€I.X B(Mb(T, X)) (recall
that Mb(T,X) is equipped with the w(Mb(T,X), C 4 ( r )® A")-topology).

But Mb{T,X) with this topology is Souslin (see Saint-Beuve [23]). So we
can apply Aumann's selection theorem and get m e TSM such that

a(x*,M(co,C)) = (x\m((o,C))

=> o(x*, N(to ,C))= f f(co, t)d(x* om)(co, dt)
Jc

=> co -* a(x*, N{co, C)) is measurable,

Observe that

Gr N(-, C) = f| {(co, y) e fl x X: (z\ , y) < a(z\, N(co, C))} e E x B(X)
k>\

and since (Q, Z, /<) is by hypothesis a complete, finite measure space, we
conclude (see Section 2), that N(-, C) is measurable for every C €. B(T).
Clearly C —> o(x*, N(co, C)) is a signed measure, and hence N(co, •) is a
multimeasure. Therefore we conclude that N(-, •) is a transition multimea-
sure with values in Pwkc(X).
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REMARK. An interesting and useful by-product of the proof of Theorem
4.1 is that under the hypotheses of that theorem, we have

a(x*, N(w,C))= [ f(a>, t)a(x*, M{w, dt)),
Jc

for all (to, C,x*)eilx B(T) x X*.
Next we will derive a useful characterization of the measure selectors of

the multimeasure N(co, •), w € f l .

THEOREM 4.2. If the hypotheses of Theorem 4.1 hold, then for all COGCI,

we have

m e TSM \ •

PROOF. Recall that

« . t)m(co, dty.me TSM\

= {«(•) = ff(a>, t)m(dt): m € SM((a ., j = r(co).

Clearly for all co e Q , T{oi) is convex. Also in the proof of Theo-
rem 4.1 we saw that m —* (x*, fnf(co, t)m{dt)) is continuous on 5"^^ ̂
with the topology of pointwise weak convergence (that is, with the w -
w(Mb(T, X), I ® A^-topology). Furthermore recall that SM(Q) } is w =

w(Mb(T, X), Z <g> X*)-compact. Combining these two facts, we can easily
check that F(GJ) is i&-closed in M (T, X).

Next let vx, V2E T(w). By definition we have

v{{B)= f f(a),t)mx{dt), w1E5JV(a,>.), BeB(T),

and

v2(B) = Jf(a>, t)m2(dt), m2 e SM{W .,, B e B(T).

Then if (Bl, B2) is a Borel partition of T, we have

iXBv{+XBv2){-) = Jf(co, t)mo(dt)

where m0 = ^ m , + ^ m 2 . Clearly m0 € SM{(0 _., and so ^ v , + ^ « 2 e
T(OJ) . Hence for every w 6 Q , r(eo) is a nonempty, it)-closed, convex
and decomposable subset of Mb{T,X). Thus Theorem 2 of Pallu de la
Barriere [17], tells us that r(tu) = SN (<B)(0 , where JV, (&>)(•): 5 ( r ) - • P / c ( ^ )
is a multimeasure. But clearly F(<y) c SN((O j implies Ar,(<y)() c N((o, •) ,
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which implies N{((o)(-) is Pwkc(X)-valued. Also from Theorem 1 of Godet-
Thobie [13], we know that for all C e B(T), we have

U f(co, t)m(dt): m e SM(W \ = if f(co, t)m{(o, dt): m e TSM\

=>Nl(a>)(C)= I f(co,t)M(co,dt)
Jc

=> JV,(CB)(C) = N(OJ, C) for all ( ( o , C ) e f l x B(T)

=> F((y) = S ^ > for all <y e ft, as claimed by the theorem.

An immediate interesting consequence of Theorem 4.2 is the following
fact.

COROLLARY. If the hypotheses of Theorem 4.2 hold, h: Q —> X w
surable and if for some C € B(T), h(co) e N(co, C) for all co e Cl, then
there exists m e TSM such that for all COEH, h(co) = fc f(co, t)m(co, dt).

PROOF. From Theorem 3.1 we know that there exists n € TSN such
that n{(o, C) = h(co) for all co e Q. Then applying Theorem 4.2, we
get that for some m e TSM and for all B e B{T), we have n(a>, B) =
fBf(co, t)m((o, dt), which implies h(co) = fcf{co, t)m(co, dt) with m e

5. The multivalued Feller property

In this section we turn our attention to transition multimeasures, for which
the parameter varies over a topological space. Hence instead of simple mea-
surability with respect to that parameter, we can require a continuity type
property. Recall (see Klein and Thompson [16]), that if Y, Z are Haus-
dorff topological spaces, then a multifunction G: Y —> 2Z\{0} is said to
be upper semicontinuous (u.s.c.) if and only if for every nonempty, open
U c Z , G+(U) = {y E Y: G{y) C U} is open in Y. So if Z is a Pol-
ish space, Theorem 4.2 of Wagner [26] tells us that an u.s.c. multifunction
G: Y -» Pf(Z) is automatically 5(y)-measurable.

If Y, Z are separable metric spaces, m(y, dz) is a continuous stochastic
kernel (that is, a continuous transition measure) and / e C ( F x Z ) , then
according to Feller's property y —» n(y) = fzf(y, z)m(y, dz) is contin-
uous. Feller's property is crucial in establishing the existence of invariant
probability measures for transition probabilities.

Our next theorem derives a multivalued version of Feller's property. So
assume that (i) 5 is a Polish space with a Radon measure fi{-) and B(S)
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denotes the completion of the Borel er-field B(S) with respect to /*(•), (ii) T
is another Polish space, with Borel a-field B(T) and A() a Radon measure
on (T, B(T)), and (iii) X is a separable reflexive Banach space. Also a
transition multimeasure M: S x B(T) —> /^(X) which is u.s.c. in the s-
variable from S1 into Xw , will be called a "u.s.c. transition multimeasure."
Finally we will say that M(-, T) is scalarly continuous, if for all x* e X*,
s -* a(x*, M(s, T)) is continuous. This is trivially satisfied if for instance
M(s, T) is independent of s.

THEOREM 5.1. If M: S x B(T) -> Pfc{X) is a u.s.c. transition multi-
measure such that M(s, A) C k(A)W(s) for all (s, A) e S x B(T), with
W{s) € Pwkc{X), and M{-, T) is scalarly continuous, f: S xT -> R+ is a
u.s.c, bounded above function such that for all s e S, f(s, •) € Ll(T) and
for all (s,C)eSxB(T), N(s, C) = fc f(s, t)M (s, dt), then N{-, •) is a
u.s.c, Pwkc(X)-valued transition multimeasure.

PROOF. That N(-, •) is a Pwkc-valued transition multimeasure, follows
immediately from Theorem 4.1. Also from the same theorem (see the remark
following the proof), for any x* e X* we have

o(x*, N(s ,C))= ( f{s, t)o{x*, M(s, dt)).
Js

Let <t>x: S —> Mb(S) be denned by <£,(.?) = Ss, where Ss(-) is the Dirac
point mass measure at s € S. It is clear that ^(-) is continuous from S
into Mb{S) with the weak topology. Also let 02: S -> Ml\T) be defined
by </>2(s) = o{x*, M(s, •)). If sn —*• s in 5 and K is a closed subset of T,
from the upper semicontinuity of M(•, K) we have

fim<7(x*, M(sn, K)) < a(x*, M(s, K))

(see, for example, Aubin and Ekeland [3, Proposition 2, page 122]). Since K
was any closed subset of T and o(x*, M(s, T)) -> o{x*, M(s, T)) (M{-, T)
being by hypothesis scalarly continuous), we deduce that

o{x*, M(sn , •)) ^ o{x*, M(s, •)) in Mb(T)

=> <p2(') is continuous into M (T) with the weak topology.

Therefore the map
4>:S->AJb(S)xMb(T)

defined by <j>(s) = (0,(5), </>2(s)) is continuous into Mb(S) x Mb(T) with
the product weak topology.

Now let <p: Mn(S)xMb(T) -+ Mb(SxT) be defined by <p(m,n) = m®n.
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From Billingsley [5, Theorem 3.2, page 21], we know that cp is continuous
for the weak topology. So h = <p o <j>: S —* Mb{S x T) is continuous. Also
let pf:Mb(SxT)^R be denned by

f(s,t)dv.
SxC

Recall that the upper semicontinuity and boundedness from above of
/(• ,•) is equivalent to the existence of fn{-, •) e Cb(S x T) such that fn [ f
(consider for example the "Weierstrass needle functions"

fn(s, t) = sup [f(s , t') - nds(s, s') - ndT(t, t')]).
(s' ,t')€SxT

Pfn(v)=[ fn(s,t)dv.
J' JSxC

Then let

Pf » =
•'•" JSxC

Clearly from the definition of the weak topology on Mb(S x T), we have
that for all n > 1, Pfn(-) is continuous. Then by the monotone convergence
theorem we have pCr n ipj and so conclude that pcA-) is u.s.c. Hence the
composite map pC

f{h(s)) = fcf(s, t)a(x*, M{s, dt)) = a{x*, N(s, C)) is
u.s.c. in s. Since N(-, •) is Pwkc(X)-valued, [3, Theorem 10, page 128] tells
us that 7V(-, C) is u.s.c. from S into Xw .

REMARKS. (1) If / e Cb(S x T), dimX < oo and M{-, •) is as in The-
orem 5.1, then N{-, C) is continuous in the Hausdorff metric. This follows
from [24, Corollary 3A].

(2) This result can be useful in establishing the existence of stochastic
equilibria in dynamic economies.

6. Integration with respect to the parameter

As stochastic kernels act upon probabilities on the parameter space, by
integration with respect to the parameter, a similar action can be denned
for transition multimeasures. So for a transition multimeasure M: S x
J*" —» Pf{X) and for C e B(S) x / we consider the Aumann integral
fsM(s, C(s))dn(s), where C(s) is the section of C by 5 and //(•) is a
measure on (S, B(S)). To guarantee that the above set valued integral will
be nonempty, we need to know that the multifunction 5 —• M(s, C(s)) is
measurable.

So assume that (i) S is a Polish space, (ii) (T, *f) is a measurable space,
and (iii) X is a separable Banach space.
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THEOREM 6.1. / / M: 5 x . / -» Pwkc(X) is a transition multimeasure, C e
B(S) x y and C{s) = {t eT: (s, t) e C} , then s -> f c ( j ) - M(s, C(s)) is
a measurable multifunction.

PROOF. From Fubini's theorem, we know that for all s & S, C(s) e J*".
So M(s, C{s)) = Fc(s) is well defined.

Next consider the family

-£* = {C € B(S) x y-. Fc(-) is a measurable multifunction}.

Clearly C = 5 x T e 5?. Also assume that C,, C2 € -2" and C2 c C,.
Then for ;t* € A"*, we have

*, M(s, C, (*))) = CT(X* , A/(5, C, (J)\C2(5))) + a(x*, M(s, C2(s)))

=> a(x*, M(s, C,(s)\C2(5))) = o(x*, M(s, C^s))) - a{x*, M(s, C2(s)))

=> s - o(x*, M(s, C , ( S ) \ C 2 ( J ) ) )

is measurable.
Since Af(-, •) is PU)/tc(A

r)-valued, as in the proof of Theorem 4.1, we get
that 5 —• M(s, C!(5)\C2(5)) is measurable.

Finally let {Cn}B>1 c L, C, c C2 c • • • . Then for each n > 1 and each
x* e X*, s -* a(x*, M(s, Cn(s))) is measurable. Let D^s) = C{(s) and
Dn(s) = CB(5)\Cw_1(j), « > 2 . Then we have

G(X\M(S, \JCn(s)))=o(x*,M(s, \jDn(s)))

n>\

= a(x*, M(s, C,(s))) + ^ ( f f (x* , M( 5 , Cn(5))) - a(x*, M(s, Cn_,
n>2

c I x*, Af ( s , U Cn(5) J j is measurable

Af(s, [J Cn(s)j) is measurable

Thus we conclude that Sf is a Dynkin system (see Ash [2]). Clearly Jz? c
/? = {Ex x E2: E{ € B(S), E2eJr} . Therefore invoking the Dynkin system
theorem (see Ash [2, Theorem 4.1.2]), we conclude that a(R) = 5(5) x ^ " c
J ? implies s —> Fc(s) is measurable for all C e B(S) x J2".

Now we can integrate with respect to the parameter s € S.
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THEOREM 6.2. If the hypotheses of Theorem 6.1 hold and in addition fi(-)
is a measure on (S, B(S)), A() is a measure on (T, Jr) and for all Ce
S , M{s,C)c X{C)W{s) with W.S^ Pwkc{X) integrably bounded, then
N(C) = fsM(s, C(s))dfi(s) is a multimeasure with values in Pwkc{X).

PROOF. From Theorem 6.1 and our boundedness hypothesis on M(-, •),
we deduce that s —• M(s, C(s)) is an integrably bounded multifunction. So
the corollary to [18, Proposition 3.1] tells us that N(C) = fc M(s, C{s)) ds e
Pwkc{X). Then for x* e X* we have that

a{x', N(C)) = f o(x', M{s,
Js

(see [20, Proposition 2.1]), from which we deduce that a(x*, N(-)) is a
signed measure, and hence N(-) is a multimeasure.

We can characterize the measure selectors of N(-) using the elements of
TSM. So assume the following: (i) S is a Polish space with Borel ff-field
B(S) and a Radon measure /*(•) on (S, B(S)); (ii) T is a Polish space with
Borel cr-field B(T) and a Radon measure A(-) on (T, B(T)); and (iii) X
is a separable, reflexive Banach space.

THEOREM 6.3. If M: S x B(T) - • Pwkc{X) is a transition multimeasure
such that, for all C € B{T), M(s, C) C X{C)W{s), W(s) e Pwkc(X) and
for some (A,B) e B(S) x B(T), x e N{A x B) = JAM(s, B)dn(s), then
there exists m e TSM such that x = fA m(s,

PROOF. From the definition of the Aumann integral, we have

x= f f(s)dn(s), f&Sl
M,B).

J A

Applying Theorem 3.1 we can find m € TSM such that m(s, B) = f(s).
Hence x - JA m(s, B) dfi{s).

7. Radon-Nikodym theorem for transition multimeasures

The Radon-Nikodym theorem for transition multimeasures is an interest-
ing problem and can have useful applications, like the corresponding result
for regular multimeasures (see Hildenbrand [15], the core of economies with
production and with a continuum of agents). This section was suggested by
the referee who was also kind enough to provide an outline of the proof. For
this we are deeply grateful.
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So assume that (i) (£2, 1 , n) is a complete <x-finite measure space, (ii)
T is a Polish space with a cr-finite measure A(-) on B(T), and (iii) X is a
separable, reflexive Banach space. We start with a proposition that we will
need in the proof of the main theorem.

PROPOSITION 7.1. If m: Qx B(T) —> X is a transition measure of bounded
variation such that m(co, •) < A n-a.e. \m(co, )| < a(a>) fi-a.e. a(-) e L}+,
then there exists f:£lxT—>X,a measurable function, and « e l with
/n(N) = 0 such that f(co, •) e Ll(T, k, X) for every co e Q and m(co, C) =
Jc f(co, t)k{dt) for all co e Q.\N and all CeB(T).

PROOF. Since by hypothesis m((o, •) is of bounded variation, m{co, •) <
A for all co € Q\N, ^(A^) = 0 and X is reflexive (hence has the Radon-

lNikodym property (RNP)), for co e Q\N there exists f(co, •) G Ll (T, A, X)
such that m{co, C) = fcf(a>, t)X(dt). By redefining co -> / ( w , •) on N,
we may assume that f(co, •) &Ll (X) for all co e Q. Then for every JC* e X*
and C e 5(T) we have (f(co, •), xc

x*) = (x* > w(<^> O ) where (• , )
denotes the duality brackets for the pair {LX{T, k, X), L°°(T,k, X*) =
[Ll(T, k, X)]*). Hence co —> (/(to, •), Xc

x*) i s measurable. Since count-
ably valued functions are dense in L°°(T, k, X*) (see Diestel and Uhl [11,
page 42, Corollary 3]), we deduce that co —• {f{co, •), M) is measurable for
all u e L°°(T, k, X*), which implies co -> f(co, •) is weakly measurable
from Q, into Ll(T,k, X) and since Ll{T,k,X) is separable, by the Pet-
tis measurability theorem (see Diestel and Uhl [11, page 42], we have that
co -f f(co, •) is measurable from Q into L ^ T , A, X), and hence /(• ,•) is
measurable from Q x T into X.

Now we can state the Radon-Nikodym theorem for transition multimea-
sures. The hypotheses on the spaces remain the same as in Proposition 7.1.

THEOREM 7.1. If M: ilxB(T) -> Pwkc(X) is a transition multimeasureof
bounded variation such that \M\(co, •) <c A fi-a.e. \M(co, )| < a(co) /i-a.e.
a(-) e L,\, then there exists a measurable multifunction F: ClxT -> Pwkc{X)
and N € Z with n(N) — 0 such that F(co, •) is integrably bounded by every
coeQ. and M(co,C) = JcF(co, t)k{dt), coe£l\N, CeB(T).

PROOF. Let hn: Q -> X be measurable functions such that M(co, T) =
cl{hn(co)} for all co e il. Invoking Theorem 3.1 of this paper, we know that
we can find mn e TSM such that hn(co) = mn(co, T) for n > 1 and for all
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co € Q . Then for every C G B{T) we have

,>, , T) = M(co, C) + M(co, Cc)

and

Cconv{mn((o, C)}n>, + conv{wn(&;, Cc)}n>v

Since mn G r S ^ , n > 1, we deduce that

n n , , C).

Applying Proposition 7.1 above, we have that there exist N € X with
= 0 and / n : D, x T —» X, measurable, such that for all n > 1,

fn(co, •) e L ' ( r , A, X) for all w G Q and /«„(<», C) = /c/f l(<u,
for every co e Cl\N and every C eB(T). Set

Clearly then F i Q x T ^ ^ c W is measurable and

Since ^l^*"'1? e L.\{T), we deduce that F(<y, •) is integrably bounded
/i-a.e. and by redefining it on the /i-null set we can have that F(co, •) is
integrably bounded for all co e Q. Finally using [20, Proposition 2.3], we
have

= com\( fn(co,t)X{dt)\
(JC )n>\

= [ conv{fn(co,t)}n>ll(dt)
Jc
[
c

= f F(co,t)k{dt), coe£l\N,
Jc

for all C G

REMARK. If f: 0.x T —> R is a bounded measurable function, then we
have

f f(a>, t)M{co, dt) = [ f(a>, t)F(co, t)X{dt)
Jc Jc

for all coeil\N, C G B{T).
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