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Electrodynamics

In this chapter we set up a Lagrangian for a field theory in which electrically charged
Dirac particles and antiparticles, for example electrons and positrons, interact with
and through the electromagnetic field. To facilitate reference to other texts, and
for conciseness, we work with four-component Dirac spinors and the matrices γ μ

introduced in Section 5.5.

7.1 Probability density and probability current

We have seen in previous chapters how conservation laws are associated with
symmetries of the Lagrangian. The Lagrangian density (5.31),

L = ψ̄(iγ μ∂μ − m)ψ,

is invariant under the transformation

ψ (x) → ψ ′ (x) = e−iαψ (x) , (7.1)

where α is a constant phase. These transformations form a group U(1) (see
Appendix B) and are said to be global: the same at every point in space and time.

If now we allow an arbitrary small space- and time-dependent variation in
α, α → α′ (x) = α + δα (x) , and if the fields satisfy the field equations, the cor-
responding first-order variation δS in the action must be zero, since S is stationary
for the actual fields. The variation comes from the operators ∂μ acting on e−iδα(x),
so that

∂S =
∫

ψ̄γ μψ i∂μe−iδαd4x

=
∫

ψ̄γ μψ∂μ (δα) d4x, to first order.
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68 Electrodynamics

Integrating by parts,

δS = −
∫

[∂μ(ψ̄γ μψ)]δα d4x .

This is zero for any arbitrary function δα(x) only if

∂μ(ψ̄γ μψ) = 0. (7.2)

At each point x of space and time, ψ̄ (x) γ μψ (x) transforms like a contravariant
four-vector (Section 5.5) and we may define the contravariant field

jμ (x) = ψ̄γ μψ = (P (x) , j (x)) (7.3)

where P (x) = ψ̄γ 0ψ = ψ†(y0)2ψ = ψ∗
a ψa =

4∑
a=1

|ψa|2. Then (7.2) takes the

familiar form

∂ P

∂t
+ ∇ · j = 0. (7.4)

If P(x) is interpreted as the particle probability density associated with the wave
function ψ(x) and j(x) as the probability current, (7.4) expresses local particle
conservation. Integrating over all space, and using the divergence theorem, it follows
that for fields that vanish at large distances

d

dt

∫
Pd3x = 0.

Hence ∫
P (t, x) d3x =

∫
ψ†ψ d3x

is a constant independent of time. With ψ(x) taken to be a normalised wave function
for a particle, the constant is unity, and we see that a wave function once normalised
stays normalised. In Chapter 8 we shall see that in a second quantised field theory,∫

P (t, x) d3x is an operator that counts the number of particles minus the number
of antiparticles, and thus this number is conserved.

We could have derived (7.2) from the field equation but the device introduced
here, whereby the conservation law appears as a consequence of the U(1) symmetry
(7.1), is both elegant and economical.

7.2 The Dirac equation with an electromagnetic field

In classical mechanics, the Hamiltonian for a particle carrying charge q moving in
an external electromagnetic field specified by the electromagnetic potentials (φ,A)
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7.2 The Dirac equation with an electromagnetic field 69

is obtained from the free particle Hamiltonian by the substitution in (3.8)

E → E − qφ, p → p − qA,

or, equivalently

pμ → pμ − q Aμ, (7.5)

where pμ = (E,p) is the energy-momentum four-vector of the particle. (See Prob-
lems 4.6 and 4.7.) With the quantisation rule pμ → i∂μ, (7.5) suggests that the
Dirac equation in the presence of an electromagnetic field should be

[γ μ(i∂μ − q Aμ) − m]ψ = 0, (7.6)

and there should be a corresponding substitution in the Lagrangian density.
Using (4.10) and (5.31), we take the Lagrangian density for the Dirac field

together with the electromagnetic field with external charge-current sources Jμ to
be

L = ψ̄[γ μ(i∂μ − q Aμ) − m]ψ − 1

4
Fμν Fμν − Jμ Aμ

(7.7)
= ψ̄[γ μi∂μ − m]ψ − 1

4
Fμν Fμν − (

Jμ + qψ̄γ μψ
)

Aμ.

The Lagrangian is still invariant under the transformation ψ (x) → ψ ′ (x) =
e−iαψ (x) with α constant, and this leads as before to particle conservation:

∂μ jμ = 0, jμ = ψ̄γ μψ. (7.8)

Variation of the fields Aμ in the action, as in Section 4.2, yields the Maxwell
equations, with charge-current density

Jμ + qψ̄γ μψ = Jμ + q jμ. (7.9)

In (7.8) and (7.9), jμ (x) is the conserved particle number density current (antiparti-
cles being counted as negative), and q jμ (x) is the conserved charge density current.
Thus the Lagrangian density (7.7) includes the electromagnetic field produced by
the charged particle current as well as the field produced by external sources.

Setting q = the electron charge = −e, and m to be the electron mass, the
Lagrangian (7.7) is, after quantisation, the Lagrangian of quantum electrodynamics.
With the external charge-current distribution Jμ (x) taken to be that of the atomic
nuclei, and including the dynamics of the nuclei as an assembly of point particles,
this is the basic Lagrangian that describes and explains most of chemistry and
materials science. We shall review some of the astounding successes of quantum
electrodynamics in the next chapter.
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70 Electrodynamics

7.3 Gauge transformations and symmetry

In Chapter 4 we stressed that the four-potential Aμ is not unique: the same physical
electric and magnetic fields are obtained after a gauge transformation

Aμ (x) → A′
μ (x) = Aμ (x) + ∂μχ (x)

where χ (x) is an arbitrary function of space and time.
If ψ is a solution of the Dirac equation with the four-potential Aμ, the corre-

sponding solution in the gauge with four-potential A′
μ is given by

ψ → ψ ′ = e−iqχψ.

This is easily verified:
(
i∂μ − q A′

μ

)
ψ ′ = e−iqχ

{
i∂μ + q∂μχ − q(Aμ + ∂μχ )

}
ψ

= e−iqχ (i∂μ − q Aμ)ψ.

Hence the Dirac equation (7.6) is equivalent to
[
γ μ(i∂μ−q A′

μ) − m
]
ψ ′ = 0.

The transformations:

Aμ (x) → Aμ (x) + ∂μχ (x) (7.10a)

ψ (x) → e−iqχ (x)ψ (x) (7.10b)

make up a general local gauge transformation.
The charge-current density q jμ = qψ̄γ μψ is invariant under the transformation

and so too is the action provided that (as in Section 4.3) ∂μ Jμ = 0. It is also
interesting to note that the phase of a charged Dirac field, for example that of an
electron, is a gauge artefact without physical significance: this phase cannot be
measured.

We can look at this transformation from a different point of view. The Lagrangian
(7.7) is invariant under the global U(1) transformation ψ → ψ ′ = e−iαψ where
α is constant. If we now ask for the Lagrangian to be invariant under a similar
but local transformation, ψ → ψ ′ (x) = e−iqχψ(x), where χ (x) is an arbitrary
function of space and time, we are forced into introducing the gauge field Aμ,
with the transformation property Aμ → A′

μ = Aμ + ∂μχ , in order to cancel out
the additional terms which arise.

From this point of view, the electromagnetic field appears as a consequence of
the invariance of the Lagrangian under a local symmetry transformation. This idea
will be generalised in later chapters.
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7.4 Charge conjugation 71

7.4 Charge conjugation

Charge conjugation is the operation of replacing matter by antimatter so that, for
example, an electron is interpreted as the antiparticle of the positron, which is then
the particle. This would be the natural point of view if the Universe contained anti-
matter rather than matter. An interchange is achieved if we replace the Dirac field
by its complex conjugate. Consider a positive energy solution of the field equation
that has a phase factor e−iEt . After complex conjugation it has a phase factor eiEt ,
and with the standard phase convention is a negative energy solution. In the ‘hole’
interpretation, negative energy solutions are associated with antiparticles. How-
ever, the operation of complex conjugation does not leave L invariant: additional
manipulations are needed to display the symmetry.

Taking the complex conjugate of the Dirac equation (7.6) gives

[(γ μ)∗(−i∂μ − q Aμ) − m]ψ∗ = 0.

Now in the chiral representation γ 0, γ 1 and γ 3 are real and (γ 2)∗ = −γ 2. Multi-
plying the equation above by γ 2 and using the anticommuting properties of the γ

matrices gives

[γ μ(i∂μ + q Aμ) − m](γ 2ψ∗) = 0,

or
[
γ μ

(
i∂μ − q Ac

μ

) − m
]

(γ 2ψ∗) = 0.

Hence if ψ is a positive energy solution of the Dirac equation for a particle carrying
charge q, (γ 2ψ∗) is a negative energy solution in the charge conjugate field Ac

μ =
−Aμ, which we introduced in Section 4.6.

There is some freedom of choice in the details of the transformation. We shall
define the charge conjugate field ψc by

ψc = − iγ 2ψ∗ (7.11a)

or, in terms of two-component spinors

ψc
L = −iσ 2ψ∗

R, ψc
R = iσ 2ψ∗

L. (7.11b)

Using
(
γ 2

)2 = −I,
(
γ 2

)∗ = −γ 2, we can invert the transformation (7.11a),
obtaining

ψ = −iγ 2 (
ψc

)∗
(7.12a)

or

ψL = −iσ 2 (
ψc

R

)∗
, ψR = iσ 2 (

ψc
L

)∗
. (7.12b)
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72 Electrodynamics

Then (noting (γ 2)† = −γ 2) we have

ψ† = −i(ψc)Tγ 2 (7.13a)

or

ψ
†
L = i

(
ψc

R

)T
σ 2, ψ

†
R = −i

(
ψc

L

)T
σ 2. (7.13b)

Let us see how the various terms in the Lagrangian density (7.7) transform. Con-
sider

ψ̄ψ = ψ†γ 0ψ = −(ψc)Tγ 2γ 0γ 2(ψc)∗ = −(ψc)Tγ 0(ψc)∗,

(using the properties of the γ -matrices).
To display the invariance of L we must anticipate Chapter 8. As operators,

spinor fields anticommute: if a product of two fields is interchanged, a minus
sign is introduced. For example, ψa

∗ψb = −ψbψa
∗. Thus in transposing the last

expression above we introduce a minus sign, and hence recover the form of the
original term:

ψ̄ψ = (ψ̄c)ψc

(since (γ 0)T = γ 0).
Other terms likewise acquire a minus sign:

ψ̄γ μψ = −(ψc)Tγ 2γ 0γ μγ 2(ψc)∗

= (ψc)†(γ 2γ 0γ μγ 2)T (ψc).

But, as the reader may verify,

(γ 2γ 0γ μγ 2)T = −γ 0γ μ.

Hence

ψ̄γ μψ = −(ψ̄c)γ μ(ψc).

Finally,

ψ̄γ μi∂μψ = −(ψc)Tγ 2γ 0γ μγ 2i∂μ(ψc)∗

= i∂μ(ψc)†(γ 2γ 0γ μγ 2)T(ψc)

= −i∂μ(ψc)†γ 0γ μ(ψc).

Integration by parts in the action allows us to replace this last term by (ψ̄c)γ μi∂μ(ψc)
in the Lagrangian density.

The Lagrangian can be seen to be of exactly the same form after charge conjuga-
tion, provided that the charge conjugate potentials Ac

μ are defined to be Ac
μ = −Aμ

(as in Section 4.6) and any external charge-current density Jμ also changes sign. In
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7.6 Particles at low energies: Dirac magnetic moment 73

ordinary matter, where the Dirac particles are electrons, the external Jμ arise from
the atomic nuclei, and these currents also change sign under charge conjugation.

7.5 The electrodynamics of a charged scalar field

In Section 3.5 we introduced the Klein–Gordon equation,

−∂μ∂μφ − m2φ = 0,

which describes the motion of an uncharged scalar particle. The corresponding
equation for a charged scalar particle is obtained from the Klein–Gordon equation
by making the substitution (7.5), i∂μ → i∂μ − q Aμ, which gives

[(i∂μ − q Aμ)(i∂μ − q Aμ) − m2]� = 0. (7.14)

A solution of (7.14) is necessarily complex. Thus a charged particle of zero spin
in an electromagnetic field must be described by a complex, or two-component,
wave function � = (φ1 + iφ2)/

√
2. We introduced complex scalar fields in Section

3.7. A real Lagrangian density that yields (7.14) and is Lorentz invariant is

L = − [
(i∂μ + q Aμ)�∗] [

(i∂μ − q Aμ) �
] − m2�∗�. (7.15)

L is invariant under a local gauge transformation, � → e−iqχ�. Note that, since
zero spin particles are bosons, the fields � and �∗ commute.

Taking the complex conjugate of equation (7.14), we see that if � (x) is a solution
for a particle carrying charge q in a given external field, then �∗(x) is a solution
for a particle carrying a charge −q. We define the field �c (x) = �∗ (x) to be the
charge conjugate of �. The Lagrangian density (7.15) is invariant under charge
conjugation, � → �c, if the charge conjugate potentials are again defined to be
Ac

μ = −Aμ.
The charged π+ and π− mesons are composite, spin zero, particles whose overall

motion is described by the generalised Klein–Gordon equation (7.14). We shall
meet these particles and the fields � and �∗ in the phenomenological discussions
of Chapter 9.

7.6 Particles at low energies and the Dirac magnetic moment

In an electromagnetic field, the coupled Dirac equations (5.10) become

(i∂0 − q A0) ψL − σ i (i∂i − q Ai ) ψL − mψR = 0
(7.16)

(i∂0 − q A0) ψR + σ i (i∂i − q Ai ) ψR − mψL = 0

where the σ i are the Pauli spin matrices.
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74 Electrodynamics

From Section 6.1, solutions of the Dirac equation that correspond to particles
at low energies have ψL ≈ ψR. We shall now show that at low energies the two-
component wave function

φ = eimt (ψL + ψR) (7.17a)

corresponds closely to the Schrödinger wave function for the particle. The factor
eimt has been inserted so that, as in the Schrödinger equation, the rest mass energy
of the particle is omitted. If we define the orthogonal combination

χ = eimt (ψL − ψR) , (7.17b)

then by adding and subtracting the equations (7.16) we obtain an equivalent pair of
equations:

(i∂0 − q A0) φ − σ i (i∂i − q Ai ) χ = 0,

(i∂0 − q A0 + 2m) χ − σ i (i∂i − q Ai ) φ = 0.
(7.18)

The Schrödinger equation results if the term (i∂0 − q A0 + 2m) χ is replaced by
2mχ . This approximation is reasonable if the Coulomb potential energy q A0 and
the kinetic energy are small compared with the rest mass of the particle. Then

χ = (1/2m) σ i (i∂i − q Ai ) φ,

and by substitution

i
∂φ

∂t
=

[
1

2m
σ i (i∂i − q Ai ) σ j (i∂ j − q A j ) + q A0

]
φ. (7.19)

The Pauli spin matrices have the property

σ iσ j = iεi jkσ
k + δi jσ

0,

and from the antisymmetry of εi jk ,

εi jk∂i∂ jφ = 0, εi jk Ai A j = 0.

Also εi jk[∂i (A jφ) + Ai∂ jφ] = εi jk[∂i (A jφ) − A j∂iφ] = εi jk(∂i A j )φ, and recall-
ing Aμ = (φ, −A), εi jk(∂i A j ) = Bk = −Bk gives the magnetic field B. Using
these results, we write (7.19) as

i
∂φ

∂t
=

[
1

2m
(−i∇−qA)2 + q A0 −

(qσ

2m

)
· B

]
φ. (7.20)

Without the term − (qσ/2m). B, this would be the Schrödinger equation for a
charged particle in an electromagnetic field. The additional term we interpret as the
energy in a magnetic field of an intrinsic magnetic moment associated with a Dirac
particle. This is another remarkable consequence of the Dirac equation. For an
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electron, with q = −e, the magnetic moment is the Bohr magneton μB = eh/2m,
anti-aligned with the electron spin. The observed magnetic moment agrees to better
than 1% (cf. Section 8.5).

At the level of approximation of (7.20), the magnetic moment would play no
role in a purely electrostatic field A0. In better approximations, or indeed solving
the Dirac equation directly, ‘spin–orbit coupling’ terms appear, which are of some
importance in atomic physics and materials science.

Problems

7.1 Using the plane wave expansion (6.24), show that the conserved particle number can
be written

∫
P

(
x0, x

)
d3x =

∫
ψ†ψd3x =

∑
p,ε

(b∗
pεbpε + dpεd∗

pε).

7.2 Show that the charge conjugation operation acting on the positive energy solutions
(7.12) and (7.13) yields the negative energy solutions (7.17).

7.3 Show that, taking the fields to be anticommuting and neglecting the neutrino mass,
the neutrino Lagrangian density

L = iψ†
Lσ̃ μ∂μψL

is invariant under the combined operations of parity and charge conjugation. (Note
equations (5.26) and (5.27).)

7.4 Show that iσ 2ψ∗
R transforms like a left-handed spinor under a Lorentz transformation.

7.5 Obtain the Klein–Gordon equation (7.14) from the Lagrangian density (7.15).

7.6 Using the method of Section 7.1, show that the global U(1) symmetry � → eiα� of
the Lagrangian density (7.15) leads to a conserved charge density current

q jμ = iq[�∗(∂μ�) − (∂μ�∗)�] − 2q2 Aμ�∗�.

(Note that, in contrast to the result (7.9) for the Dirac Lagrangian, the current of a
complex scalar field contains a term proportional to Aμ.)

7.7 Show that for the positive energy solutions (6.12) and (6.13) of the Dirac equation,

q jμ = −eψ̄γ μψ = −e (cosh θ, 0, 0, sinh θ ) = − (eE/m) (1, 0, 0, υ)

and also for the ‘negative energy’ solutions (6.17),

q jμ = − (eE/m) (1, 0, 0, υ) .
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76 Electrodynamics

With Dirac’s interpretation, the hole that remains when this state is removed from
the sea corresponds to a particle carrying charge e moving with velocity v along the
z-axis.

7.8 Show that after the operation of charge conjugation a proton has negative charge and
an electron has positive charge.

7.9 How do the electromagnetic potentials transform under the operation of time reversal,
t → t ′ = −t? Show that γ 1γ 3ψ∗ (t) is a solution of the time reversed Dirac equation,
if ψ (t) is a solution of the Dirac equation.

7.10 Show that, for a Dirac particle in a magnetic field B given by the vector potential A,
both ψL and ψR satisfy the equation[

− ∂2

∂t2
− (−i∇ − qA)2 − m2 + qσ · B

]
ψ = 0.

Note that this differs from the Klein–Gordon equation for a charged scalar particle
in a magnetic field, by the additional term qσ · B.

7.11 Using the parity transformations (4.18) and (5.27), show that the Lagrangian density
(7.7) is invariant under space inversion.
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