Mode Selection Mechanism in B-Type Pulsators: Observational Clues

Mikołaj Jerzykiewicz

Wrocław University Observatory, ul. Kopernika 11, 51-622 Wrocław, Poland

Abstract. Linear nonadiabatic calculations for models of B-type pulsators predict many more unstable modes than actually observed, therefore a mode selection mechanism must operate in these stars. To investigate this problem quantitatively, available data for singly-periodic and multi-periodic β Cephei variables are compared. No clear-cut differences are found. The slight difference in [m/H], noted recently by Daszyńska et al. (2003), may indicate the solution.

1. Introduction

For models of B-type pulsators, linear nonadiabatic calculations predict many more unstable modes than actually observed. An example of this is given in Fig. 1 for a multiperiodic β Cep star 16 (EN) Lac. Thus, a mode selection mechanism must operate in these stars. Identifying an observed feature or parameter which is correlated with the number of modes observed in a star may provide a clue to the nature of the mechanism. A somewhat less demanding approach consists of finding a difference (other than the number of observed modes) between the singly-periodic variables and the multiperiodic ones. This is what we attempt here.

2. The Data

The singly-periodic β Cephei variables are listed in Table 1. The table is divided into three parts. The upper part contains stars with stable light-curves. The middle part contains stars which have unstable light-curves; in case of EW CMa and V986 Oph this may be connected with their fast rotation. In the last row of the table there is the large-amplitude variable BW Vul, unique in several respects. Among Slowly Pulsating B stars, singly-periodic variables may also exist (Molenda-Zakowicz 2000). However, their census is uncertain at present. In the following we shall limit ourselves to the five singly-periodic β Cep stars with stable light-curves.

3. Discussion

The five singly-periodic variables with stable light-curves (upper part of Table 1) do not differ from other β Cep stars in (1) their periods, (2) their effective

267

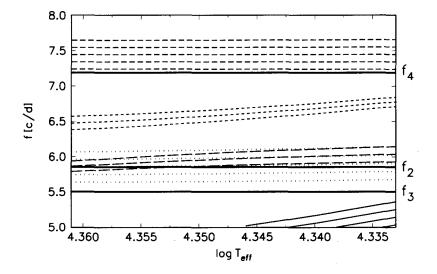


Figure 1. Frequencies of modes with $\ell = 1$ (short- and long-dashed lines) and $\ell = 2$ (medium-dashed, dotted and thin-solid lines) for models in the 9 to $10 \,\mathrm{M_{\odot}}$ mass range plotted as a function of effective temperature. The rotational frequency splitting was calculated assuming $v_{\rm rot} = 40$ km s-1. The three horizontal solid lines represent the observed frequencies f_2 , f_3 , and f_4 for 16 Lac. The model parameters were interpolated so that the fundamental radial mode frequency is exactly equal to the observed frequency, $f_1 = 5.9112 \,\mathrm{d^{-1}}$ (not shown). From Dziembowski & Jerzykiewicz (1996).

temperatures (as measured by c_0), and (3) their luminosities (as indicated by β). Thus, their position in the HR diagram is not a clue to the mode selection mechanism.

All five stars except for V2052 Oph have small $v_{rot} \sin i$. V2052 Oph is the only star in Table 1 that has been observed to have a (dipole) magnetic field (Neiner et al. 2002). However, among multiperiodic β Cep stars slow rotators also occur; ν Eri is an example. Moreover, a dipole magnetic field has been discovered in β Cep itself, which is multiperiodic.

Except for τ^1 Lup, the singly-periodic variables with stable light curves are radial pulsators. However, a radial mode is dominant in several multiperiodic variables; ν Eri is again an example.

Finally, the singly-periodic variables all have a negative [m/H], while for multiperiodic β Cep variables the mean value of [m/H] amounts to 0.0. This has already been noted by Daszyńska et al. (2003).

Name	m_V	MK	P d	<i>c</i> 0	β	$rac{v_{ m rot}\sin i}{ m kms^{-1}}$	l	[m/H]
$\gamma \operatorname{Peg}$	2.8	B2 IV	0.15175	0.117	2.626	10	0	-0.1
$\delta \operatorname{Cet}$	4.1	B2IV	0.16114	0.092	2.619	12	0	-0.2
$\xi^1{ m CMa}$	4.3	B1 III	0.20958	-0.028	2.588	10	0	-0.3
$ au^1 { m Lup}$	4.6	B2 IV	0.17735	0.122	2.622	20	1	-0.2
m V2052Oph	5.8	B2 IV-V	0.13989	0.089	2.630	85	0	-0.2
15 EY CMa	4.8	B1 III	0.18456	-0.022	2.594	40	1	0.1
$27\mathrm{EW}\mathrm{CMa}$	4.7	$B3 III_P$	0.0918	0.157	2.569	155	?	0.0
V986 Oph	6.1	B0 IIIn	0.303	-0.170	2.565	295	?	0.1
BW Vul	6.4	B2 III	0.20104	0.006	2.611	38	0	0.1

Table 1. The singly-periodic β Cephei stars

Note to Table 1: The sources of the data are: The visual magnitude, m_V , the MK type, the period, P, and the Strömgren indices, c_0 and β , are from Sterken & Jerzykiewicz (1993); the projected velocity of rotation, $v_{\rm rot} \sin i$, is from Głębocki & Stawikowski (2000) for all stars except V2052 Oph, for this star the $v_{\rm rot} \sin i$ is from Neiner et al. (2002); the spherical harmonic degree, ℓ , is from Cugier et al. (1994); and the metallicity parameter, [m/H], is from Daszyńska et al. (2003).

4. Conclusions

A β Cephei star's position in the HR diagram is not a clue to the mode selection mechanism. The singly-periodic β Cephei variables have lower photospheric metallicity than the multiperiodic ones. This may be a promising clue to the mode-selection mechanism provided that metallicity in the driving region is correlated with the photospheric metallicity. In addition, the singly-periodic variables are predominantly radial pulsators and all but one have small $v_{\rm rot} \sin i$. The significance of these facts is not clear.

Acknowledgments. This research was supported by KBN grant 5 P03D 014 20.

References

Daszyńska, J., Niemczura, E., Cugier, H. 2003, Adv. Space Res., 31, 387

Dziembowski, W.A., Jerzykiewicz, M. 1996, A&A, 306, 436

Głębocki, R., Stawikowski, A. 2000, AcA, 50, 509

- Molenda-Zakowicz, J. 2000, in ASP Conf. Ser., Vol. 203, The Impact of Large-Scale Surveys on Pulsating Star Research, eds L. Szabados & D.W. Kurtz (San Francisco: ASP), 434
- Neiner, C., Henrichs, H.F., Tijani, A., Geers, V., Nichols, J.S. 2002, in ASP Conf. Ser., Vol. 259, Radial and Nonradial Pulsations as Probes of

Stellar Physics, eds C. Aerts, T.R. Bedding & J. Christensen-Dalsgaard (San Francisco: ASP), 210

Sterken, C., Jerzykiewicz, M. 1993, Space Sci.Rev., 62, 95

Mike and Christina Jerzykiewicz