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ABSTRACT

In this paper we discuss the application of the proportional hazard premium
calculation principle.

In Section 2 we propose a method to calculate the proportional hazard pre-
mium of a compound risk when the severity distribution is subexponential.

In Section 3 we use the empirical distribution to calculate the premium when
the proportional hazard principle is applied, which leads to a systematic under-
estimation of the premium. After studying the bias of the premium calculated
using this non-parametric approach we take advantage of the bootstrap technique
with subsampling to reduce it.
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1. INTRODUCTION

As it is well known the proportional hazard premium principle (PH premium
principle), introduced by Wang (1995), satisfies properties which make of it a
very attractive premium from the theoretical point of view, see e.g. Wang (1996)
and Andrade e Silva and Centeno (1998). However its use depends on the
complete knowledge of the distribution of the aggregate claims amount.
In practical terms this means that one must fit a distribution to the data set
or use the empirical distribution function. When the aggregate claims amount
follows a compound distribution the calculation of the PH premium based on
the parametric approach can raise some problems. This will be discussed in the
following section.

The non-parametric approach is more appealing, from the practical point
of view, but can lead to a significant underestimation of the premium. In sub-
section 3.1 we calculate the bias of the premium based on the empirical
distribution for some distributions, namely the exponential, Pareto and uniform.
We also study the rate of convergency of the bias in the exponential case.

ASTIN BULLETIN, Vol. 35, No. 2, 2005, pp. 409-425

https://doi.org/10.2143/AST.35.2.2003460 Published online by Cambridge University Press

https://doi.org/10.2143/AST.35.2.2003460


In subsection 3.2 we show how to use the bootstrap technique with subsampling to
reduce the bias of the estimator of the premium based on the empirical distribu-
tion. We also perform two simulation studies to give some insight to this technique.

2. APPLYING THE PH TRANSFORM TO COMPOUND DISTRIBUTIONS

IN THE PARAMETRIC MODEL

Let Y, the aggregate claims amount, be a nonnegative random variable, with
distribution function F(y). Let S(y) = 1 – F(y) be the survival function. The PH
premium principle assigns to the distribution F (y) the premium

,S y dyp /
r

r1

0
=

3

# ^^ hh (1)

where r, with r ≥ 1, is risk aversion index.
When using the collective risk model, Y is equal to X1 + ... + XN, where N

is the number of claims occurred in a given period and {Xi}i = 1,2,... are the indi-
vidual claims amounts which are assumed to be nonnegative i.i.d. random vari-
ables and independent of N. In this case Y has a compound distribution and the
company often estimates claim frequency and claim severity separately. Various
numerical techniques are available to calculate the compound distribution,
being Panjer’s recursion formula the most well known. When using the recursion
formula we will have to stop somewhere the calculations. When the individ-
ual claims amount has distribution G with unlimited support, i.e. G(x) < 1, for
all x > 0, and it is very skewed, the choice of the value where to stop the
calculations to obtain a reasonable estimate of the premium is a critical aspect
of the model. When X follows a heavy tail distribution S y

t

3
# ^^ hh

1/rdy can be
of an expressive size even for large values of t. In this case, when the proba-
bility generating function of N is analytic in the neighbourhood of 1 (which
happens both for the Poisson and the negative binomial case) and G is subex-
ponential then (see Embrechts et al. (1997), pp. 45-46)

1 – F (x) ~ E[N ] (1 – G (x)), x $ ∞ . (2)

Hence for heavy tail severity distributions we will approximate the premium by
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where S*(y) is the approximation to S(y) obtained by Panjer’s recursion for-
mula, and t is a suitable high value.

Example 1. Suppose that an actuary has arrived to the following estimates for
a risk: the number of claims greater than a given observation point d = 100K is
Poisson distributed with mean ld = 6 and the size of each claim greater than d is
Pareto with parameter a = 1.647. Let us consider an excess of loss reinsurance
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treaty. For a layer l xs m, with m ≥ d and l ≤ +∞, the aggregate claims amount are com-
pound Poisson with expected number of claims l = (d /m)ald and severity distribution
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Using 1/r = 0.9025, Table 1 shows the PH transform premium, as percentage of
the subject earned premium, SEP = $10,000K, associate to the following layers:

1. $400K xs $100K
2. $500K xs $500K
3. $900K xs $100K
4. the excess over $1,000K

This example for the limited layers was considered by Wang (1998). For the cal-
culation of the premium of the unlimited layer we have used (3) with t = $105K,
for which the difference between the aggregate survival function S*( t) and
l (1 – G (t)), is 2.3 ≈ 10–7. The step used in the arithmetization of the severity
distribution to perform the recursion was h = $1K.

The reason to chose such a high value for t in formula (3) is related to the
very small value of a. If instead of $105K we had used $104K for t, the result
of applying formula (3) with r = 1 would be 2.086% of SEP, compared to a
theoretical value of 2.090%. Using t = $105K the two terms in the right hand
side of (3) are 1.9848% and 0.1055% for r = 1 and 3.0298% and 0.3580% for
1/r = 0.9025. Note that the relative weight of the second term increases with r
and is far from negligible in spite of the high values of t.

3. APPLYING THE PH TRANSFORM TO THE EMPIRICAL DISTRIBUTION

3.1. The bias of the premium

Let Fn(y) be the empirical distribution function of Y based on a random sam-
ple of size n, (Y1,...,Yn), let Sn(y) be the corresponding empirical survival func-
tion and
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TABLE 1

PH-TRANSFORM PREMIUMS

Layer l xs m
Pure Premium pr

*

as percentage of SEP as percentage of SEP

$400K xs $100K 6.000% 6.384%
$500K xs $500K 1.183% 1.408%
$900K xs $100K 7.183% 7.742%

xs $1,000K 2.090% 3.388%
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the premium estimator. Although Sn(y) is an unbiased estimator of S (y),pr
given by (5) is a biased estimator of pr, since
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by Jensen’s inequality, with the inequality being strict unless r = 1.
Let Yk :n be the k-th order statistic in a sample of size n. Then 
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where Y0:n / 0.
Let Fk:n(y) be the distribution function of the k-th order statistic, i.e. Fk:n(y) =

Pr{Yk :n ≤ y}. Given that
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Then, using (6) and (7) we get
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which is, when F is absolutely continuous for x > 0, equivalent to
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where f (x) = F �(x).
Expressions (8) and (9) can be used to calculate the bias of pr

B (pr) = E [pr ] – pr.

For some distributions (not in the compound case) the bias is easily calculated,
as it is the case when Y is exponential, Pareto or uniform, as can be seen in
the following examples.

Example 2. Let Y be exponential distributed, i.e. S(y) = exp(– qy), y > 0 (q > 0).
In this case f [S –1(x)] = qx, and using (9) we get, after some calculations,
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Example 3. Let Y be Pareto distributed, i.e. S(y) =
a

yb
b
+` j , y > 0 (a, b > 0). In this

case f [S –1(x)] = ab –1x1+1/a, and using (9) we get,
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Example 4. When Y is uniformly distributed in (0,1) we get
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For the exponential distribution it is possible to relate the order of the bias with
the sample size, as stated in the result that follows. We were not able of devel-
oping similar results for other distributions, but we are strongly convinced that
the order of the bias is smaller for the uniform and bigger for the Pareto.

Result. When Y follows an exponential distribution |B (pr) | converges to zero at
the same rate as n –1/r.
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Proof. Noticing that
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As (k – x)1/r – 1 is an increasing function of x for k ≥ 1 and 0 < x < 1, we have
that
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On the other hand as Ò0
1 [(k – x)1/r – 1 – k1/r – 1]dx is strictly positive we can con-

clude that the left hand side of (12) converges to a positive value A as n goes
to infinity. Consequently

lim
n " 3

n1/r |B (pr) | = q –1A.

3.2. Correcting the bias via bootstrapping

As we have seen, the distortion of the empirical distribution leads to an under-
estimation of the premiums. We use the bootstrap technique, see e.g. Efron
and Tibshirani (1993), to correct, at least partially, the bias of that estimator.

The bootstrap technique consists, as it is well known, on the resampling of
the original data set. The bootstrap estimator of the bias of pr, is

pB r
%
_ i = pr

* – pr

with

pr
* = pM

1

b

M

r
1=

b*!

where M is the number of bootstrap samples and pr
*b is calculated using the b-

th bootstrap sample. Hence the bootstrap estimator of the premium pr is 

p4
r = pr – pB r

%
_ i. (13) 

Usually the resampling is made with replacement and using bootstrap samples
of size n (i.e. the same size as the original sample). However in this case, as
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FIGURE 1: B (p4
r) as function of n�/n

B(pr) is always negative, we can improve, in principle, the results by using boot-
strap samples of size n� < n. The reason for the bias to be negative is the
underestimation of the right tail of the distorted distribution. The use of a sub-
sampling in the bootstrap method intends to replicate that behaviour and con-
sequently to obtain a better bias correction than the one obtained with the
full sample.

Figure 1 shows how the bias of the corrected estimator given by (3) varies
with the sample size n� (measured as a percentage of n). The figure has been
drawn using a simulation approach (see simulation 1 below) for a Pareto dis-
tribution with a = 4, sample size of 500 observations, r = 1.2 and using 2000
replicas and 2000 bootstraps samples for each replica. The shape of the curve
is very similar for all the other situations: it starts, when n� = n, with a nega-
tive value for the mean of the observed bias of the bootstrap premiums, which

we denote B(p4
r)” , then there is an optimal value of n� where B (p4

r)” , is almost
zero, and becomes positive when n� is very small. The question is how to choose
n�, independently of the distribution.

To give some insight to the problem we performed two simulation studies.
In these studies we also use the Jackknife, as an alternative to the bootstrap,
to correct the bias. As we will see the Jackknife performs better than full sam-
pling bootstrap, but we can do better by using a suitable level of subsampling.
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Simulation 1. This case is based on two families of distributions, the Pareto
and the Gamma. In the Pareto case we have considered that the parameter a
takes the value 2, 3 or 4, originating what we call Pareto2, Pareto3 and Pareto4
respectively. The other parameter was chosen such that the distribution has mean
equal to 1, i.e. we have assumed that the survival function for the Paretoa is

, > .
a

aS x x x
1

1
0a

a

=
+ -

-
] bg l

For the gamma distribution we have kept the same mean and assumed that the
variance was equal to 1 (exponential) or 2. We have considered that the orig-
inal sample size is either 100, 500 or 1000. Tables 2 and 3 give the bootstrap
and Jackknife results for r = 1.2 and r = 1.15 respectively, with M = 2000 and
using 2000 replicas.

As we have mentioned, the bias of the premium based on the empirical
distribution (column labelled B(pr), and calculated using expressions (8), (10)
and (11), for the gamma, exponential and Pareto distributions) can be of a con-
siderable size, namely for heavy tail distributions when n is small and r is high.
For instance for the Pareto2, with n = 100 and r = 1.2, the absolute value of the
bias is 8.4% of the theoretical premium. The average bias of the premiums
based on the 2000 replicas (before the bootstrap is performed), labelled B, is
in those cases still a bit far from B(pr), but it was out of our computing facil-
ities to consider a big enough number of replicas in the simulation study. The
following 10 columns show the average bias for the bootstrap premiums. The
bootstrap with n� = n, only corrects the bias partially, since after that correc-
tion we still observe a negative bias in all the situations of our example. As we
can see from Tables 2 and 3, the pattern shown in Figure 1 is characteristic of
the behaviour of the bias as function of n�/n. The optimal proportion n�/n
depends, of course, on the distribution, on n and on r. As a rule n�/n should
increase with n and decrease with r. For instance, for  r = 1.2, a bootstrap
with a resampling of n�/n = 40% performs, in average, better than the boot-
strap with full resampling (and certainly better than with no bootstrap), at
least for the sample sizes considered in the study. The following column,
labelled JN, shows the average bias for the Jackknife premiums, i.e. we use
the Jackknife technique instead of bootstrap to correct the bias of the pre-
miums. As we can see the Jackknife performs better than the full sampling
bootstrap but, using subsampling, we can obtain a smaller bias with the boot-
strap.

The last column of the tables, provides the average bias of the premiums
if we have used the maximum likelihood estimators of the parameters. For the
Pareto2, the figures are not presented because, for a large number of samples
(20 for r = 1.2 and 11 for r = 1.15), we got a maximum likelihood estimate
â smaller than r. In some other situations the estimate was very close to r,
which would imply an extremely high premium. For the Pareto3 and Pareto4
we didn’t get any sample with a maximum likelihood estimate smaller than r,
but we got values not very far from r, which explain the positive values of the
bias in those cases. The maximum likelihood performs well (in association with
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the PH premium calculation principle) if the distribution does not have a very
heavy tail, or if the sample size is big enough.

As a conclusion, and for values of r around 1.15-1.2 we can say that use
of the bootstrap technique with a resampling proportion size of 40% of the
original sample size provides good results in general, but when we know that we
are dealing with heavy tail loss distributions, we could use a smaller resampling
size.

Table 4 is equivalent to Table 2 but with M = 5000. As it can be seen, the
results are quite similar. Hence M = 2000 seems enough.

Simulation 2. The goal of the second simulation study is to analyse the behaviour
of our procedures when the aggregate claims amount are generated according
to a compound Poisson or negative binomial distributions. For the individual
claims amount we have considered the three Pareto’s and the exponential dis-
tributions of the former example. The expected number of claims was set at 1.
As in the previous simulation study r = 1.2 and r = 1.15, M = 2000, we use
2000 replicas and n is equal to 100, 500 or 1000.

Tables 5 and 6 refer to the compound Poisson case and are similar to tables 2
and 3, with the exceptions of B(pr) and ML, which are not considered now.
Column labelled p*r was obtained using (3), with t equal to 10000, 926 and 297
when a equal to 2, 3 and 4 respectively, values for which the Pr{X > t} = 10–8.
For the exponential case we only considered the first term of (3), with t = 9000.

As expected with l = 1 the premiums associated to the compound distribu-
tion are greater than for the corresponding Pareto’s.

The results are very similar to the former case. We obtained the same behav-
iour for the bias as a function of n�/n, and again we would recommend a resam-
pling of n�/n = 40%, but if we knew that we were dealing with heavy tail loss
distributions, we could use a smaller resampling size.

The results for the simulations with M = 5000 give very similar values, rea-
son why we do not provide them here.

Tables 7 and 8 refer to the negative binomial case, with r = 1.2 and with the
variance of the number of claims equal to 1.05 and 1.2 respectively. As we can
see the results lead to the same conclusion.
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