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Abstract

Let Ω be a domain in Rm with nonempty boundary. In Ward [‘On essential self-adjointness, confining
potentials and the Lp-Hardy inequality’, PhD Thesis, NZIAS Massey University, New Zealand, 2014]
and [‘The essential self-adjointness of Schrödinger operators on domains with non-empty boundary’,
Manuscripta Math. 150(3) (2016), 357–370] it was shown that the Schrödinger operator H = −∆ + V ,
with domain of definition D(H) = C∞0 (Ω) and V ∈ Lloc

∞ (Ω), is essentially self-adjoint provided that V(x) ≥
(1 − µ2(Ω))/d(x)2. Here d(x) is the Euclidean distance to the boundary and µ2(Ω) is the nonnegative
constant associated to the L2-Hardy inequality. The conditions required for a domain to admit an
L2-Hardy inequality are well known and depend intimately on the Hausdorff or Aikawa/Assouad
dimension of the boundary. However, there are only a handful of domains where the value of µ2(Ω)
is known explicitly. By obtaining upper and lower bounds on the number of cubes appearing in the kth
generation of the Whitney decomposition of Ω, we derive an upper bound on µp(Ω), for p > 1, in terms
of the inner Minkowski dimension of the boundary.
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1. Introduction

The problem of the essential self-adjointness of Schrödinger operators has a long and
distinguished history (see [4, 16, 18] for an overview). In [18, 19] it was shown
that if Ω is a domain in Rm with nonempty boundary, then the Schrödinger operator
H = −∆ + V , with domain of definition D(H) = C∞0 (Ω) and V ∈ Lloc

∞ (Ω), is essentially
self-adjoint provided that, near to the boundary,

V(x) ≥
1 − µ2(Ω)

d(x)2 . (1.1)

Furthermore, this condition can be shown to be optimal on certain geometrically
simple domains (see [18, Ch. 6]). Here d(x) is the Euclidean distance to the boundary
and µ2(Ω) is the nonnegative constant associated to the L2-Hardy inequality.
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Heuristically, such a Schrödinger operator is essentially self-adjoint provided that a
particle under the influence of the potential V is unable to come into contact with the
boundary of the domain. Indeed, Equation (1.1) casts the problem of the essential self-
adjointness of Schrödinger operators in terms of a balancing act between the quantum
tunneling effect and the uncertainty principle. Suppose that the domain Ω does not
admit an L2-Hardy inequality so that µ2(Ω) = 0. Then (1.1) implies that the potential
V must inflate like d(x)−2 in order to ensure that the probability of finding a particle
under its influence at the boundary is zero. In other words, if the potential inflates at
this rate, then this is sufficient to ensure that the particle does not tunnel through any
classically forbidden region and reach the boundary.

On the other hand, suppose that µ2(Ω) > 0, so that Ω admits an L2-Hardy inequality.
This obviously relaxes the criteria for essential self-adjointness. The physical reason
for this is that the value of µ2(Ω) places limits on the certainty with which we can
say that a particle is located at the boundary. To see this, suppose that the state of
the particle is described by the (unit) wavefunction ω ∈ W1

2,0(Ω). An application of
Hölder’s inequality followed by an application of the L2-Hardy inequality yields

1 =

∫
Ω

d(x) |ω(x)|2

d(x)
dx ≤

( ∫
Ω

d(x)2 |ω(x)|2 dx
)1/2( ∫

Ω

|ω(x)|2

d(x)2 dx
)1/2

≤ µ2(Ω)−1/2
( ∫

Ω

d(x)2 |ω(x)|2 dx
)1/2
·

( ∫
Ω

|∇ω(x)|2 dx
)1/2

.

By squaring both sides of the last equation and rearranging, we obtain that

µ2(Ω) ≤
( ∫

Ω

d(x)2 |ω(x)|2 dx
)
·

( ∫
Ω

|∇ω(x)|2 dx
)
. (1.2)

The second integral on the right-hand side of Equation (1.2) describes the total
momentum of the particle, while the first integral gives a measure of the particle’s
proximity to the boundary. Hence, if µ2(Ω) > 0, we see that one cannot confine a
particle to a smaller neighborhood of the boundary without producing a corresponding
increase in the particle’s total momentum.

However, the condition described by Equation (1.1) is not explicit as, for a given
domain Ω with nonempty boundary, we do not know the value of the variational
constant µ2(Ω).

The necessary and sufficient conditions required for a domain to admit an
Lp-Hardy inequality, for p > 1, are well known and have an intimate dependence on
the dimension of the boundary, or thickness of the complement of a domain. In [10]
Koskela and Zhong showed that if a domain admits an Lp-Hardy inequality, then either
dimH (∂Ω) > m − p or dimA(∂Ω) < m − p. Here dimH (E) and dimA(E) represent the
Hausdorff and Aikawa/Assouad dimension of the set E ⊆ Rm, respectively. As such,
if the boundary of a domain is (m − p)-dimensional, then that domain cannot admit an
Lp-Hardy inequality.

Furthermore, the necessary conditions described by this dimensional dichotomy
are almost sufficient conditions. It is known that if dimA(∂Ω) < m − p, then this is
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enough to guarantee the existence of an Lp-Hardy inequality (see [12, Theorem 1.2]).
On the other hand, it is also known that if Rm\Ω is uniformly p-fat, then Ω admits
an Lp-Hardy inequality (see [14, Theorem 2] and [9, Theorem 3]) and that in this
case dimH (∂Ω) > m − p (see [13, page 2194]). Indeed, there are many equivalent
conditions for the uniform p-fatness of the complement of a domain (see [7, Sections 3
and 4]). In particular, in the ‘borderline’ case where m = p the uniform p-fatness of the
complement turns out to be equivalent to the unboundedness and uniform perfectness
of the complement. Rather surprisingly, therefore, the condition dimH (∂Ω ∩ B(x, r)) >
m − p for all x ∈ ∂Ω and r > 0 is not sufficient for the existence of an Lp-Hardy
inequality, as can be proven with a simple example. If Ω = R2\C, whereC is the middle
thirds Cantor set, then despite the fact that dimH (∂Ω ∩ B(x, r)) = log 2/ log 3 > 0, for
all x ∈ ∂Ω and r > 0, Ω does not admit an L2-Hardy inequality since the complement
of the domain is bounded.

Whereas the necessary and sufficient conditions for a domain to admit an
Lp-Hardy inequality have been extensively studied, there are only a handful of domains
where the value of the associated variational constant µp(Ω) is known explicitly.
Given that µp(Ω) > 0 if and only if Ω admits an Lp-Hardy inequality, we should
expect the value of this constant to share some dependence on the dimension of the
boundary. Indeed, this belief is born out by example. If Ω = Rm\E, where E is
an affine set of dimension 0 ≤ k ≤ m − 1, then µp(Ω) = |(m − k − p)/p|p. Similarly,
if Ω is a bounded, convex domain with smooth boundary of codimension one, then
µp(Ω) = |(m − (m − 1) − p)/p|p = |(1 − p)/p|p (see [1, 2] and [18, Section 5.2]). This
suggests that if Ω is a domain in Rm with Ahlfors λ-regular boundary, then

µp(Ω) =

∣∣∣∣∣m − λ − p
p

∣∣∣∣∣p. (1.3)

We recall that for any set E ⊆ Rm, dimH (E) ≤ dimA(E) and that if E is bounded then
dimH (E) ≤ dimM(E) ≤ dimM(E) ≤ dimA(E) where the middle inequalities represent
the lower and upper Minkowski dimensions of the set E. The condition that E
is Ahlfors λ-regular ensures that dimH (E) = dimA(E) so that all these notions of
dimension agree (see [12, Lemma 2.1]).

Indeed, whenever Equation (1.3) does hold many of the intricacies of the
Lp-Hardy inequality follow immediately. For example, if (1.3) holds it is trivially true
that whenever the boundary is (m − p)-dimensional the domain Ω does not admit an
Lp-Hardy inequality. Furthermore, the continuity of the right-hand side of (1.3) in p,
for p > 0, would also explain why a domain which admits an Lp0 -Hardy inequality also
admits an Lp-Hardy inequality for all p sufficiently close to p0 (see [10, Theorem 1.2]).
Finally, if (1.3) holds and Ωc is uniformly p0-fat, then the fact that λ > m − p0
automatically implies that Ω admits an Lp-Hardy inequality for all p ≥ p0 (see the
remarks following [8, Theorem 3.9]).

Unfortunately, the situation is not that simple. The fact that the domain Ω = R2\C

does not admit an L2-Hardy inequality implies that Equation (1.3) does not hold in
general. Nevertheless, it would be extremely interesting to produce an example of
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a domain with fractal Ahlfors λ-regular boundary upon which Equation (1.3) holds
in the case p = 2. Then the corresponding value for µ2(Ω) could be put back into
Equation (1.2) or Equation (1.1) to obtain a quantum mechanical result that depends
on the fractal dimension of the boundary, that is, on a scale infinitely smaller than the
wavelength of an electron. This would be interesting as quantum mechanics does not
presuppose interactions at infinitesimally small scales.

This paper goes some way to achieving that aim. However, we are not the first to
consider the relationship between the value of the variational constant µp(Ω) and the
dimension of the boundary. The main theorem of this paper, which is stated below,
can be considered to be an extension of a result of Davies in [3].

Theorem 1.1. Let Ω be an inner γ-domain in Rm with nonempty, compact boundary.
Let the inner Minkowski dimension of ∂Ω be well defined and equal to λM . If ∂Ω is
inner Minkowski measurable so that 0 < M̂λM

l (∂Ω) ≤ M̂λM
u (∂Ω) <∞, then for all p > 1

we have µp(Ω) ≤ |m − λM − p/p|p. In particular, if λM = m − p, then Ω does not admit
an Lp-Hardy inequality.

We have decided to structure this paper as follows. In Section 2 we present relevant
definitions and notation. Here we also introduce a new concept; that of the inner
γ-domain. This concept is introduced purely for technical convenience. In Section 3
we develop some new results connecting the inner Minkowski dimension of the
boundary to the number of cubes appearing in the kth generation of the Whitney
decomposition of a domain. In particular, we are able to obtain lower bounds for
the number of such cubes in terms of the inner Minkowski content of the boundary.
Next, in Section 4, we use the results of the previous section to characterize the
inner Minkowski dimension of the boundary of an inner γ-domain in terms of the
integrability of powers of the Euclidean distance function. The proof of Theorem 1.1
is given in Section 5. Finally, in Section 6 we construct a domain with fractal boundary
that satisfies the conditions of Theorem 1.1.

2. Definitions and notation
Throughout this paper Ω denotes a domain (connected, open set) in Rm with

nonempty boundary ∂Ω = Ω̄\Ω. The Euclidean distance between two sets A, B ⊆ Rm

is denoted by d(A, B) = dist(A, B) = inf{|x − y| | x ∈ A, y ∈ B}. The notation d(x) is
reserved to mean dist(x, ∂Ω). Given a set A ⊆ Rm, |A| is its m-dimensional Lebesgue
measure and Aδ = {x ∈ Rm | d(x, A) < δ} is a δ-neighborhood of A.

2.1. The Lp-Hardy inequality. We begin by recalling precisely what it means for a
domain to admit an Lp-Hardy inequality.
Definition 2.1. Let Ω be a domain in Rm with nonempty boundary. Ω is said to
admit an Lp-Hardy inequality if there exists a finite, uniform constant C > 0 so that
the estimate ∫

Ω

|ω(x)|p

d(x)p dx ≤ C
∫

Ω

|∇ω(x)|p dx

holds for all ω(x) ∈ W1
p,0(Ω).
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There is a natural variational problem associated to the existence of an Lp-Hardy
inequality on a given domain. To make this idea precise we make the following
definition.

Definition 2.2. Let Ω be a domain in Rm with nonempty boundary. Define the
variational constant µp(Ω) by

µp(Ω) = inf
ω∈W1

p,0(Ω)

{∫
Ω
|∇ω(x)|p dx∫

Ω

|ω(x)|p
d(x)p dx

}
.

Then µp(Ω) > 0 if and only if Ω admits an Lp-Hardy inequality.

2.2. Inner Minkowski dimension. As we have already mentioned, the necessary
and sufficient conditions for a domain to admit an Lp-Hardy inequality have an
intimate dependence on the dimension of the boundary. In this paper we have occasion
only to consider the inner Minkowski dimension of the boundary of a domain.

Definition 2.3. Let Ω be a domain inRm with nonempty, compact boundary. For λ ≥ 0,
the upper and lower inner λ-Minkowski content of ∂Ω are respectively given by

M̂λ
u (∂Ω) = lim sup

r→0+

|(∂Ω)r ∩Ω|

rm−λ , M̂λ
l (∂Ω) = lim inf

r→0+

|(∂Ω)r ∩Ω|

rm−λ .

It is easy to see that there exists a unique value of λ ∈ [0,m] at which the upper
(lower) inner Minkowski content jumps from infinity to zero. This motivates the
definition below.

Definition 2.4. Let Ω be a domain inRm with nonempty, compact boundary. We define
the upper and lower inner Minkowski dimension of ∂Ω respectively by

dimM̂(∂Ω) = sup{λ ≥ 0 | M̂λ
u (∂Ω) =∞} = inf{λ ≥ 0 | M̂λ

u (∂Ω) = 0},
dimM̂(∂Ω) = sup{λ ≥ 0 | M̂λ

l (∂Ω) =∞} = inf{λ ≥ 0 | M̂λ
l (∂Ω) = 0}.

When dimM̂(∂Ω) = dimM̂(∂Ω) we say that the inner Minkowski dimension of ∂Ω is
well defined, equal to this common value and denoted by dimM̂(∂Ω). If a set is known
to have inner Minkowski dimension d, then we say that the set is inner Minkowski
measurable if 0 < M̂d

l (∂Ω) ≤ M̂d
u (∂Ω) <∞.

2.3. Whitney decompositions and inner γ-domains. If Ω is a domain in Rm with
nonempty boundary, then it is always possible to decompose Ω into a collection of
closed cubes W =W(Ω) so that Ω =

⋃
Q∈W Q. Such a construction is known as a

Whitney decomposition and has the following properties. The interiors of the cubes
are pairwise disjoint, have edges parallel to the coordinate axes and have diameter
proportional to the distance to the boundary, such that for each cube Q ∈ W we
have diam(Q) ≤ d(Q, ∂Ω) ≤ 4 diam(Q). Furthermore, if Q ∈ W, then diam(Q) ∈
{
√

m2−k | k ∈ Z}. As such, it is natural to refer to the set of cubes

Wk =
{
Q ∈W | diam(Q) =

√
m2−k} =

{
Q ∈W | |Q| = 2−mk}
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as the kth generation of cubes in the decompositionW. We will denote an arbitrary
cube in Wk by Qk, and Nk = ]Wk will represent the number of cubes in Wk. It is
plain to see that if x ∈ Qk then

√
m2−k ≤ d(x) ≤ 5

√
m2−k, so that we have the inclusion

Wk ⊆
{
x ∈ Ω |

√
m2−k ≤ d(x) ≤ 5

√
m2−k}. (2.1)

For further information on the construction and properties of Whitney decompositions
the reader is directed to [17, Ch. 1].

In the next section our objective is to establish a relationship between the inner
Minkowski dimension of the boundary and the number of cubes appearing in the kth
generation of the Whitney decomposition of the domain. To do so we will restrict our
analysis to domains which admit the following geometric property.

Definition 2.5. Let Ω be a domain in Rm and let γ > 1. Ω is said to be an inner
γ-domain if there exist a finite uniform constant C > 0 and r̂ > 0 so that the estimate

|(∂Ω)r ∩Ω| ≤ C |[(∂Ω)γr\(∂Ω)r] ∩Ω|

holds for all 0 < r < r̂. We call the value of r̂ the upper radial limit of the domain.

While a full characterization of γ-domains is beyond the remit of the current paper,
preliminary investigation suggests that domains admitting the interior cone condition
and John domains are γ-domains.

3. Whitney decompositions and inner Minkowski content
Loosely speaking, the bigger the dimension of ∂Ω the bigger the volume of the

region {x ∈ Ω |
√

m2−k ≤ d(x) ≤ 5
√

m2−k}, so that more cubes in Wk are required to
fill this space. This intuition is reflected in the next two results. Indeed, the following
lemma was originally proven by Martio and Vuorinen in [15] before being stated in its
present context by Edmunds and Evans [5].

Lemma 3.1 [5, Lemma 4.3.7]. Let Ω be a domain in Rm with nonempty, compact
boundary. LetW be a Whitney decomposition of Ω and Nk = ]Wk. If M̂λ

u (∂Ω) <∞,
then there exist K1 > 0 and k1 ∈ N so that for all integers k ≥ k1,

Nk ≤ K12λk.

The above result bounds the number of cubes appearing inWk from above in terms
of λ when M̂λ

u (∂Ω) < ∞. The next lemma bounds the number of cubes appearing
in sequential generations of the decomposition from below in terms of λ, under the
assumption that M̂λ

l (∂Ω) > 0.

Lemma 3.2. Let Ω be an inner γ-domain in Rm with nonempty, compact boundary. Let
W be a Whitney decomposition of Ω and Nk = ]Wk. If M̂λ

l (∂Ω) > 0, then there exist
K2 > 0 and k2 ∈ N so that for all integers k ≥ k2,

k+2∑
j=k−n(γ)

N j ≥ K22λk.

Here n(γ) is a nonnegative integer that varies proportionally with γ.
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Proof. Since M̂λ
l (∂Ω) = lim infr→0+ (|(∂Ω)r ∩Ω|/rm−λ) > 0 there exist κ > 0 and r0 > 0

so that |(∂Ω)r ∩ Ω| ≥ κrm−λ for all r ≤ r0. Without loss of generality we may assume
that r0 is less than the upper radial limit of the domain. Set k2 = dln(

√
m/r0)/ ln 2e and

consider any integer k ≥ k2. We will prove that the desired inequality is true for the
chosen value of k. First, set r =

√
m/2k so that r ≤ r0. Since Ω is an inner γ-domain,

and since r ≤ r0 is less than the upper radial limit of Ω, we have that

|(∂Ω)r ∩Ω| ≤ C|[(∂Ω)γr\(∂Ω)r] ∩Ω|. (3.1)

Now, from Equation (2.1) we have the inclusion [(∂Ω)γr\(∂Ω)r] ∩ Ω ⊆
⋃k+2

j=k−n(γ)W j,
where n(γ) is an appropriately chosen nonnegative integer. The bigger γ is the bigger
the value of n(γ) as more generations of the decomposition are needed to obtain the
desired inclusion. Continuing from Equation (3.1),

|(∂Ω)r ∩Ω| ≤C
∣∣∣∣∣ k+2⋃

j=k−n(γ)

W j

∣∣∣∣∣ ≤ C
k+2∑

j=k−n(γ)

N j |Q j|

≤
C

2m(k−n(γ))

k+2∑
j=k−n(γ)

N j,

and since r ≤ r0 we have
k+2∑

j=k−n(γ)

N j ≥ C2mk |(∂Ω)r ∩Ω| ≥ C2mkκrm−λ = K2 2λk.

This completes the proof. �

4. Inner Minkowski dimension and the integrability of the distance
to the boundary

In this section we characterize the inner Minkowski dimension of the boundary of
an inner γ-domain in terms of the integrability of powers of the distance function.
Although results of a similar nature have been obtained in [11, 20, 21], we include
the following theorem within this paper as the proof of Theorem 1.1 essentially hinges
upon exploiting a dimensional dichotomy concerning the integrability of the Euclidean
distance function.

Theorem 4.1. Let Ω be an inner γ-domain in Rm with nonempty, compact boundary
whose inner Minkowski dimension is well defined. Then for any δ > 0,

dimM̂(∂Ω) = sup
{
λ ≥ 0

∣∣∣∣∣ ∫
(∂Ω)δ∩Ω

1
d(x)m−λ dx =∞

}
= inf

{
λ ≥ 0

∣∣∣∣∣ ∫
(∂Ω)δ∩Ω

1
d(x)m−λ dx <∞

}
.

Proof. Let W be a Whitney decomposition of Ω and let Nk = ]Wk. For notational
convenience we will set dimM̂(∂Ω) = λM . First, let us suppose that λ > λM and let
us choose some λ1 ∈ (λM , λ). Consequently, it must be the case that M̂λ1

u (∂Ω) < ∞.
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By Lemma 3.1, there must exist some K1 > 0 and k1 ∈ N so that for all integers k ≥ k1
we have Nk ≤ K12λ1k. Now let us partition the region (∂Ω)δ ∩Ω in the following way:

(∂Ω)δ ∩Ω ⊆

∞⋃
k=k1

Wk ∪

[
[(∂Ω)δ ∩Ω]

∖ ∞⋃
k=k1

Wk

]
≡

∞⋃
k=k1

Wk ∪ B.

We note that the region B may be empty if δ is chosen sufficiently small, and that on
this region d(x) ≥ (5/8)(

√
m/2k1 ). Furthermore, since ∂Ω is compact it must also be

the case that |(∂Ω)δ ∩Ω| <∞. Therefore, we have that∫
(∂Ω)δ∩Ω

1
d(x)m−λ dx ≤

∫
∪∞k=k1

Wk

1
d(x)m−λ dx +

∫
B

1
d(x)m−λ dx

≤

∫
∪∞k=k1

Wk

1
d(x)m−λ dx + C. (4.1)

Utilizing the standard properties of Whitney decompositions expressed in Section 2.3,
we can estimate the integral term in (4.1) in the following way:∫

∪∞k=k1
Wk

dx
d(x)m−λ ≤

∞∑
k=k1

∑
Qk∈Wk

∫
Qk

dx
d(x)m−λ ≤

∞∑
k=k1

CNk2(m−λ)k

2km

≤CK1

∞∑
k=k1

2λ1k 2−λk ≤ CK1

∞∑
k=k1

( 1
2λ−λ1

)k
<∞.

We conclude that if λ > λM , then
∫

(∂Ω)δ∩Ω
(1/d(x)m−λ) dx is finite.

Now we assume that λ < λM and choose λ2 ∈ (λ, λM). As such we have that
M̂λ2

l (∂Ω) > 0. By Lemma 3.2, there must exist some K2 > 0 and k2 ∈ N so that for
all integers k ≥ k2 we have the estimate

k+2∑
j=k−n(γ)

N j ≥ K2 2λ2k. (4.2)

Fix k3 > max{dln(5
√

m/δ)/ ln 2e, k2} so that
⋃∞

j=k3
W j ⊆ (∂Ω)δ ∩ Ω. Using

Equation (4.2) and the properties of Whitney decompositions, we obtain the desired
result in the following manner:∫

(∂Ω)δ∩Ω

1
d(x)m−λ dx ≥

∞∑
j=k3

∫
W j

1
d(x)m−λ dx

=

∞∑
j=k3

∑
Q j∈W j

∫
Q j

1
d(x)m−λ dx ≥ C(m)

∞∑
j=k3

N j
2(m−λ) j

2m j

= C(m)
[ k3+n(γ)+2∑

j=k3

N j2−λ j +

k3+2n(γ)+5∑
j=k3+n(γ)+3

N j2−λ j + · · ·

]
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= C(m)
∞∑

N=0

( k3+(N+1)n(γ)+3N+2∑
j=k3+Nn(γ)+3N

N j2−λ j
)

≥C(m)
∞∑

N=0

(
2−λ[k3+(N+1)n(γ)+3N+2]

k3+(N+1) n(γ)+3N+2∑
j=k3+Nn(γ)+3N

N j

)
≥C(m)K2

∞∑
N=0

2−λ[k3+(N+1)n(γ)+3N+2]2λ2[k3+(N+1)n(γ)+3N]

≥C(m)K22−2λ
∞∑

N=0

2(λ2−λ)[k3+(N+1)n(γ)+3N].

Since λ2 > λ this last series is divergent. The proof is now complete. �

5. Proof of main theorem
In [1], Barbatis et al. investigate the optimality of the constants appearing in their

‘improved’ Lp-Hardy inequalities. The following lemma is a simplification of results
found in Section 5 of that paper. A short proof of the lemma can be found in Section 5.1
of [18].

Lemma 5.1 ([1, Section 5]; see also [18, Lemma 5.1.1]). Let Ω be a domain in Rm with
nonempty boundary. Let φ(x) ∈W1

∞,0(Ω) be a real-valued function taking values in the
interval [0, 1]. Then the inequality

µp(Ω)≤
∣∣∣∣∣α − p

p

∣∣∣∣∣p +

( ∫
Ω

φp(x)
d(x)α

dx
)−1

· Cp

[∣∣∣∣∣α − p
p

∣∣∣∣∣p−1 ∫
Ω

|∇φ(x)|
d(x)α−1 dx +

∫
Ω

|∇φ(x)|p

d(x)α−p dx
]

holds for all α ≥ 0 and p > 1. Here Cp is an absolute constant depending only on p.

We are now in a position to give a proof of Theorem 1.1.

Proof of Theorem 1.1. LetW be a Whitney decomposition of Ω and let Nk = ]Wk.
For each k ∈ N define the smooth function φ̂k : R→ [0, 1] by

φ̂k(t) =



0 if t ≤
5/8
√

m
2k ,

σk(t) if
5/8
√

m
2k < t <

√
m

2k ,

1 if
√

m
2k ≤ t ≤

5
√

m
2

,

µ(t) if
5
√

m
2

< t <
8
√

m
2

,

0 if t ≥
8
√

m
2

,
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where the monotone functions σk(t) and µ(t) are such that |σ′k(t)| ≤ C12k and
|µ′(t)| ≤ C2. Here C1 and C2 are absolute constants independent of k. For each k ∈ N
define the function φk : Ω→ R by φk(x) = φ̂k(d(x)) so that the sequence {φk(x)}∞k=1
belongs to W1

∞,0(Ω) and each φk(x) takes values in the interval [0, 1]. Therefore, if we
set α = m − λM , then it follows immediately from Lemma 5.1 that

µp(Ω)≤
∣∣∣∣∣m − λM − p

p

∣∣∣∣∣p +

( ∫
Ω

φ
p
k (x)

d(x)m−λM
dx

)−1

· Cp

[∣∣∣∣∣m − λM − p
p

∣∣∣∣∣p−1 ∫
Ω

|∇φk(x)|
d(x)m−λM−1 dx +

∫
Ω

|∇φk(x)|p

d(x)m−λM−p dx
]
. (5.1)

To prove the theorem we will show that in the limit as k→∞ the numerator in (5.1)
stays bounded while the denominator tends to infinity. To do so it will be useful to
define the following regions:

Ak =

{
x ∈ Ω

∣∣∣∣∣ 5/8
√

m
2k < d(x) <

√
m

2k

}
⊆Wk+1 ∪Wk+2

B=

{
x ∈ Ω

∣∣∣∣∣ 5
√

m
2

< d(x) <
8
√

m
2

}
.

Since M̂λM
u (∂Ω) <∞, by Lemma 3.1 there must exist some K1 > 0 and j1 ∈ N so that

for all integers j ≥ j1 we have
N j ≤ K12λM j. (5.2)

Similarly, given that 0 < M̂λM
l (∂Ω), the result of Lemma 3.2 implies that there exist

K2 > 0 and j2 ∈ N so that for all integers j ≥ j2,

j+2∑
s= j−n(γ)

Ns ≥ K22λM j, (5.3)

where n(γ) is an appropriately chosen natural number. Without loss of generality we
may assume that k ≥ max{ j1, j2} and j2 ≥ 1.

We now investigate the behavior of the first integral term in the numerator of
expression (5.1) as k→∞. Indeed,∫

Ω

|∇φk(x)
∣∣∣

d(x)m−λM−1 dx =

∫
Ak

|∇σk(d(x))|
d(x)m−λM−1 dx +

∫
B

|∇µ(d(x))|
d(x)m−λM−1 dx

≤

∫
Ak

|∇σk(d(x)
)
|

d(x)m−λM−1 dx + C. (5.4)

Simply by using Equation (5.2), and the standard properties of Whitney decompo-
sitions expressed in Section 2.3, we can show that the remaining integral term in
Equation (5.4) remains bounded above as k→∞ in the following way:
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Ak

|∇σk(d(x))|
d(x)m−λM−1 dx ≤C12k

[ ∫
Wk+1

1
d(x)m−λM−1 dx +

∫
Wk+2

1
d(x)m−λM−1 dx

]
= C12k

[ ∑
Qk+1∈Wk+1

∫
Qk+1

dx
d(x)m−λM−1 +

∑
Qk+2∈Wk+2

∫
Qk+2

dx
d(x)m−λM−1

]
≤C(m)2k

[
Nk+1

2(m−λM−1)k

2(k+1)m + Nk+2
2(m−λM−1)k

2(k+2)m

]
≤C(m)K12k[2λM(k+1)2−λMk2−k + 2λM(k+2)2−λMk2−k]
≤C(m)K122λM ≤ M1.

A similar argument shows that the second term in the numerator of (5.1) also
remains bounded above as k→∞. Therefore, to complete the proof it remains only
to show that the denominator in expression (5.1) tends to infinity as k→∞. Using
the fact that φk(x) = 1 over the region

⋃k
j=1W j, we are led to the following set of

inequalities:∫
Ω

φ
p
k (x)

d(x)m−λM
dx ≥

k∑
j=1

∫
W j

dx
d(x)m−λM

≥

k∑
j= j2

∫
W j

dx
d(x)m−λM

≥

k∑
j= j2

∑
Q j∈W j

∫
Q j

1
d(x)m−λM

dx ≥ C(m)
k∑

j= j2

N j
2(m−λM) j

2m j

≥C(m)
[ j2+n(γ)+2∑

j= j2

N j2−λM j +

j2+2n(γ)+5∑
j= j2+n(γ)+3

N j2−λM j + · · ·

]
. (5.5)

Now let T (k) = bk − j2 + 1/n(γ) + 3c, so that T (k) denotes the number of ‘complete’
summation terms appearing in Equation (5.5). We note that T (k)→ ∞ as k → ∞.
Taking into account Equation (5.3), the bracketed terms within Equation (5.5) can be
bounded from below as follows:

j2+n(γ)+2∑
j= j2

N j2−λM j +

j2+2n(γ)+5∑
j= j2+n(γ)+3

N j2−λM j + · · ·

≥ 2−λM( j2+n(γ)+2)
j2+n(γ)+2∑

j= j2

N j + 2−λM( j2+2n(γ)+5)
j2+2n(γ)+5∑

j= j2+n(γ)+3

N j + · · ·

= K2[2−2λM + 2−2λM + · · · ] = K2 2−2λM T (k).

Since T (k)→∞ as k→∞ the proof is complete. �

6. Construction of a fractal, inner Minkowski measurable, inner γ-domain

In this section, we produce an example of a fractal domain that satisfies the
hypotheses of Theorem 1.1. Following the procedure outlined by Evans and
Harris in [6, Section 6], we will construct a ‘room and corridor’ type domain that

https://doi.org/10.1017/S1446788716000276 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000276


416 A. D. Ward [12]

has well-defined inner Minkowski dimension and which is also inner Minkowski
measurable. Furthermore, we will go on to show that this domain is also an inner
γ-domain for γ = 2. We begin by choosing some C ∈ (0, 1

2 ) and µ > 1 so that
Cµ + 2C2 < 1. Next we define the monotone decreasing sequences of real numbers
{αn}

∞
n=0 and {βn}

∞
n=0 by the rules αn = Cµn and βn = Cn for n ≥ 1, where α0 > α1, β0 > β1

and β0 > α0. We will also assume that the constants α0 and β0 have been chosen
sufficiently large so that

4β0 + 2α0 − 15/(1 − 2C) > 0. (6.1)

It is easily checked that these sequences satisfy the following conditions:

(i) αn < βn for all n = 0, 1, . . . .
(ii) There exists t1 > 0 so that 0 < t1 ≤ αn+1/αn < 1.
(iii) There exists t2 ∈ (0, 1) so that 0 < βn+1/βn ≤ t2 < 1.
(iv) 2βn+2 < βn − αn+1.

Now let ∆0 consist of a rectangle Q0,1 with edge lengths 2α0 × 2β0, and let ∆1 consist
of a single rectangle Q1,1 with edge lengths 2α1 × 2β1. Attach a short edge of Q1,1 to
the middle portion of a long edge of Q0,1. Similarly, for all n ∈ N, let ∆n consist of
2n−1 rectangles, denoted by Qn, j, with edge lengths 2αn × 2βn. For each j = 1, . . . , 2n−1

attach a short edge of Qn, j to the middle portion of a long edge of a rectangle in ∆n−1.
Finally, let

Ω =

(
Q0,1

⋃[ ∞⋃
n=1

2n−1⋃
j=1

Qn, j

])o

so that Ω is the ‘room and corridor’ type domain depicted in Figure 1. From
condition (iv), the fact that 2βn+2 < βn − αn+1 ensures that the interiors of all the
rectangles are disjoint. For instance, looking at Figure 1, in order to prevent the
rectangle Q3,1 from intersecting the rectangle Q0,1 we require that 2β3 < l = β1 − α2.
Furthermore, this condition also ensures that |Ω| < ∞, since Ω can evidently be
contained in the rectangle with edge lengths 2β0 × (2α0 + 2β1).

In order to proceed, let us note that since the sequences {αn}
∞
n=0 and {βn}

∞
n=0 are

monotone decreasing, then for all sufficiently small δ > 0 there must exist some
integers M, M̃,N, Ñ ∈ N so that

αM+1 < δ ≤ αM , βN+1 < δ ≤ βN ,

αM̃+1 < 2δ ≤ αM̃ , βÑ+1 < 2δ ≤ βÑ .

Since δ can be taken to be arbitrarily small, we can always assume that we have the
estimates M + 1 ≤ N and M̃ + 1 ≤ Ñ. Furthermore, with the aid of some elementary
algebra, it can be shown that the integer M − M̃ ∈ {0,1} so that M̃ + 1 ≥ M. Calculating
the volume of an inner δ-neighborhood of the boundary yields the equation

|(∂Ω)δ ∩Ω|= [4(β0 + α0) − 2α1]δ − (4 − π/2)δ2

+

M∑
k=1

2k−1([4(βk − αk+1) + 2αk]δ + o(δ2)) + 2
∞∑

k=M+1

2kαkβk. (6.2)
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Figure 1. The ‘room and corridor’ type domain formed using the construction of Evans and Harris in [6]
has inner Minkowski dimension equal to 1 and is inner Minkowski measurable. Moreover, the domain is

also a γ-domain for γ = 2.

Here o(δ2) is a positive constant with the property that o(δ2) � (π − 2)δ2. Similarly,
if one considers a 2δ-neighborhood of the boundary, then the following equation can
easily be derived:

|(∂Ω)2δ ∩Ω|= 2[4(β0 + α0) − 2α1]δ − 4(4 − π/2)δ2

+

M̃∑
k=1

2k−1(2[4(βk − αk+1) + 2αk]δ + 4o(δ2)) + 2
∞∑

k=M̃+1

2kαkβk. (6.3)

Our first task is to bound |(∂Ω)2δ ∩ Ω| from below. Indeed, continuing from
Equation (6.3), we obtain

|(∂Ω)2δ ∩Ω| ≥ 2[4(β0 + α0) − 2α1]δ − 4(4 − π/2)δ2 + 4o(δ2)
M̃∑

k=1

2k−1

≥ 2[4(β0 + α0) − 2α1]δ − 4(4 − π/2)δ2 + 2o(δ2)(2M − 2), (6.4)

whereupon it follows that

M̂1
l (∂Ω) = lim inf

d→0+

|(∂Ω)2δ ∩Ω|

2δ
≥ 4(β0 + α0) − 2α1.

We can immediately conclude that M̂1
l (∂Ω) > 0 and dimM̂(∂Ω) ≥ 1. Now let us

estimate |(∂Ω)δ ∩Ω| from above. Following on from Equation (6.2), we have

|(∂Ω)δ ∩Ω| ≤ [4(β0 + α0) − 2α1]δ + 3δ
∞∑

k=0

2kβk + o(δ2)
M∑

k=1

2k−1 + 2δ
∞∑

k=0

2kβk

= [4(β0 + α0) − 2α1]δ +
5δ

1 − 2C
+ o(δ2)(2M − 1). (6.5)

https://doi.org/10.1017/S1446788716000276 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000276


418 A. D. Ward [14]

It follows that M̂1
u(∂Ω) is finite and, therefore, that dimM̂(∂Ω) ≤ 1 since

M̂1
u(∂Ω) = lim sup

d→0+

|(∂Ω)δ ∩Ω|

δ
≤ 4(β0 + α0) − 2α1 +

5
1 − 2C

<∞.

As such we have succeeded in showing that dimM̂(∂Ω) = 1 and that the boundary of
the domain is inner Minkowski measurable given that 0 < M̂1

l (∂Ω) ≤ M̂1
u(∂Ω) <∞. We

now wish to demonstrate that Ω is a γ-domain for γ = 2. In order to do this we must
show that there exist a finite, uniform constant K > 0 and δ0 > 0 so that the estimate

|(∂Ω)δ ∩Ω| ≤ K[|(∂Ω)2δ ∩Ω| − |(∂Ω)δ ∩Ω|]

holds for all 0 < δ ≤ δ0. We assert that the constant K = 2 is sufficient for this purpose.
In other words, we will show that for sufficiently small δ,

3|(∂Ω)δ ∩Ω| ≤ 2|(∂Ω)2δ ∩Ω|. (6.6)

From Equation (6.5) we have that

3|(∂Ω)δ ∩Ω| ≤ 3[4(β0 + α0) − 2α1]δ +
15δ

1 − 2C
+ 3o(δ2)(2M − 1),

while from Equation (6.4) it is also true that

2|(∂Ω)2δ ∩Ω| ≥ 4[4(β0 + α0) − 2α1]δ − 8(4 − π/2)δ2 + 4o(δ2)(2M − 2).

The validity of Equation (6.6) then follows from the fact that it is always possible to
find δ0 > 0 so that the expression

[4(β0 + α0) − 2α1 − 15/(1 − 2C)]δ − 8(4 − π/2)δ2 + (2M − 5)o(δ2)

is positive for all 0 < δ ≤ δ0, given the assumption of Equation (6.1). In conclusion,
we have shown that the constructed domain Ω satisfies all the requirements of
Theorem 4.1 so that the following corollary is immediate.

Corollary 6.1. Let Ω be the ‘room and corridor’ type domain described above and
let (∂Ω)δ be a tubular neighborhood of the boundary. Then the integral∫

(∂Ω)δ∩Ω

1
d(x)2−λ dx <∞ if and only if λ > 1.

Furthermore, Ω satisfies all the requirements of Theorem 1.1. Since the complement
of the domain is unbounded and uniformly perfect (as a consequence of being
connected), Ω must admit an L2-Hardy inequality. Hence, Rm\Ω must be uniformly
p-fat for all p ≥ 2, so that we arrive at the following result.

Corollary 6.2. Let Ω be the ‘room and corridor’ type domain described above. Then
Ω admits an Lp-Hardy inequality for all p ≥ 2 and the estimate µp(Ω) ∈ (0, |1 − p/p|p]
holds. In particular, µ2(Ω) ∈ (0, 1/4].
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