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Abstract

Let R be the incidence algebra of a finite partially ordered set T over a
commutative noetherian ring 4. Then the spectrum of R is homeomorphic to
the product (Spec A) x T, where Spec A has the usual Zariski topology and
T has the order topology. An explicit construction is given for the structure
sheaf of R over its spectrum.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 08, 16 A 52.

1. Introduction

In Goldston and Mewborn (1975) we define Spec R, the spectrum of an arbitrary
left noetherian ring R, to be the set of isomorphism classes of indecomposable
injective left R-modules, and define a topology on Spec R which reduces to the
usual Zariski topology when R is commutative. In addition, we define a sheaf of
rings over Spec R which reduces to the usual structure sheaf when R is commutative.
In this paper we show that the spectrum of the incidence algebra R of a finite
partially ordered set T over a commutative noetherian ring 4 is homeomorphic
to (Spec A) x T with the product topology, where Spec 4 has the Zariski topology
and T has the order topology. In addition, we explicitly compute the rings of
sections over arbitrary open subsets of Spec R.

For a detailed description of the spectrum of a left noetherian ring and the
structure sheaf over its spectrum, see Goldston and Mewborn (1977). For standard
notions on torsion theories and quotient rings, see Stenstrém (1971), and for the
notions of Krull dimension and critical modules, refer to Gordon and Robson
(1973).

The isomorphism class of a module M is denoted by [M], the injective hull of
M by E(M). Let R be a noetherian ring, X = Spec R. For each x€ X we fix a
representative V, from the isomorphism class x. Thus, x=[V,]. If US X, we
denote by V¥ the direct sum J]{V,|x€ U}. Since R is noetherian, Vy; is injective.
Ty (R) denotes the torsion ideal of R in the torsion theory congenerated by Vi ;
E; denotes the R-endomorphism ring of V;; and Ry denotes the biendomorphism
ring of Vy;. If U is 2 nonempty open subset of X, R is the ring of sections over
U in the structure sheaf of rings over X.
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Throughout, A denotes a commutative noetherian ring with unity, T a finite
partially ordered set, R the incidence algebra of 7T over A. All R-modules are left
modules, and all R- and A-modules are unital. Endomorphisms of R-modules
are written on the right, and a left R-module is regarded as a right module over
its endomorphism ring. If 4 is a commutative noetherian ring, there is a one-to-
one correspondence between prime ideals of 4 and isomorphism classes of inde-
composable injective 4-modules given by P<->[E(4/P)]. Therefore, to simplify
notation in this case, we often refer, as is custom, to the point in Spec4 as P
rather than [E(4/P)].

2. A special case

We first summarize without proofs the results in the special case where A4 is a
field k. This case should provide some insight into the general situation.

Let T be a finite partially ordered set, k£ a field, R the incidence algebra of T
over k. Then R has k-basis {e,|s,teT,s<t}, with multiplication defined by
eyeyy = Oy, Where §,,, is the Kronecker delta. Denote by ¥V the k-vector
space with basis {y,|#€ T}. Then V is a left R-module under the module composition
defined by e,,v,, = 8;,,0;.

Let n be the number of elements in T. If we choose a linear ordering of T
compatible with the partial ordering, then we can identify R with a subalgebra of
the algebra of n x n upper triangular matrices in such a way that each e, is identified
with one of the canonical matrix units. We can also identify V with the set of
n-dimensional column vectors in such a way that each v, is identified with a
canonical basis vector and such that the module action of R on ¥V is given by
matrix multiplication.

For each t€T, let M, be the k-subspace of ¥ spanned by {v,|s>+ ¢}, and let N,
be the k-subspace of ¥ spanned by {v,|s* t}. Then M, and N, are R-submodules of
V and M)/N, is a one-dimensional simple R-module. In fact, every simple R-module
is isomorphic to a module of this form. The module ¥/N, is an injective envelope
of M/N,. Furthermore, if s,¢€T, then Homg(V/N,, V/N)+#0 if and only if s<¢,
and in this case Homg(V/N,, V/N)) has dimension 1 over the field k£. Thus Spec R
is homeomorphic to T with the order topology.

Let U be any open subset of 7. We wish to describe the ring Ry of sections
over U. First we note that T;;(R), which is the kernel of the restriction map R— Ry,
is the k-subspace of R spanned by {e,,|s#1¢, all te U}. Since R/Ty(R) is iso-
morphic to the incidence algebra of T over k, where T’ = {s€T|s>1, some te U},
we can reduce to the case where T (R) = (0), that is, where U is dense in 7. We
now make this assumption. Let ¥ be the set of minimal elements of 7" and note
that the restriction maps R—> Ry and Ry — Ry are injective. We first describe
Ry and then characterize Ry as a subring of Ry.
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For the open set Y, Vy = [1,.¢(V/N,) and there are no nonzero R-module
maps from V/N, to V/N,, y, z€ Y, y#z. Thus, Endp Vy = I1, . y(Endg V/N,), and
Biendp Vy = I1,. y(Biendg V/N,). Now Endg V/N,~k, all ye Y and so Biendp
VN, is the full ring of k-linear transformations of V/N,,. Therefore, Ry is a product
of full linear rings.

We now return to the characterization of Ry. We must characterize those
elements (g,)€[1, . y(Biendy V/N,) such that (g,) is the restriction to Vy of an
element of Biendy V. For each ye Y, V/N, has k-basis {v,+ N, |¢>y}. To each
linear transformation g, of ¥/N, to itself, we can associate the “matrix” [«(y),,]
of g, in this basis: g,(v;+ N,) = X a(1)e (v, +N,), t>.

With these notations, the ring Ry of sections over U may be identified with
the subring of I, . y(Biendg V/N,) consisting of those elements (g,) such that the
associated matrices [o(y),,] satisfy the following two conditions:

(1) For each ye Y and 5,12y, o(y),; = O if there exists s’ € U such that y<s'<s,
st

(2 If y,ze Y and s,teT such that 5,72y and s,t>z, then a(y)y; = a(z),, if
there exists s’ € U such that s,z>s" and 5’ >y, 2.

When the open set U has a unique minimal element y, the description of the
ring Ry is simpler, since condition (2) above has no content in this case. We
define a binary relation ¢ on T as follows: if s, 7€ T then sot provided that for each
t'eU, t'<s inplies ¢’ <t. Then o is a transitive relation on T which extends the
partial order relation. It follows immediately that Ry can be identified with the
incidence algebra of T with the relation o.

For example, let T = {1, 2, 3,4} be the partially ordered set defined by: 1<2<4,
1<3<4. R is the ring of 4 x 4 triangular matrices of the form

* k %k *
0 = 0 =
0 0 * =
0 0 0 =*

Let U={1,2}. Then the relation ¢ determined by U is obtained from the partial
order by the addition of the pairs (4,2), (3,1) and (3,2). Hence, Ry can be
identified with the ring of 4 x 4 matrices of the form

* % %k k

0 *x 0 =»
* % %k *
0 = 0 *
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3. General case

Let T be a finite partially ordered set and 4 a commutative noetherian ring.
The incidence algebra R of T over A is the free A-module with 4-basis {e,,|s,t€T,
s<t}, with multiplication defined by e,,e,,,, = 8,,,€,,, Where 3,,, is the Kronecker
delta.

Let n be the number of elements of T and choose a linear ordering of T
compatible with partial ordering. Then we can identify R with a subring of the
ring of n x n upper triangular matrices over 4 in such a way that e, is identified
with one of the canonical matrix units.

If L is an A-module, define V(L) to be the set of functions from T into L. Let
fv, denote the function ve V(L) such that v(t)=¢ and v(s)=0, s#t. Let
Ly, = {ve V(L)|v(s) = 0,s% t}. Note that V(L) is a left R-module under the module
composition e,,%v,, = 8,,,¢v,. If we identify V(L) with the set of n-dimensional
column vectors with entries in L, the module action of R on V(L) is given by matrix
multiplication. For each teT, we also define

M(L) ={veV(D)|v(s) =0if s>¢}
and

N(L) = {weV(L)|v(s)=0if s>t}
Note that M,(L) and Ny(L) are R-submodules of V(L)and M(L)/N{L)is A-isomorphic
to L. To simplify notation, we let K(L) denote M(L)/N(L).

An R-module M is critical if the Krull dimension of every proper factor of M
is less than the Krull dimension of M (see Gordon and Robson, 1973). If Pe Spec A
then K(A/P) is a critical R-module for each teT. Two critical modules are
equivalent if they have isomorphic injective envelopes.

PROPOSITION 3.1. The set {K(A/P)|t €T, P Spec A} is a complete set of equivalence
class representatives of critical R-modules. The R-module V(E(A/P))/N(E(A/P)) is
an injective envelope of K(A/[P).

Proor. First note that if R is critical as a module over itself, then R~ 4 and T
has only one element. In this case, the result is well known. Now assume C is a
nonzero cyclic critical R-module; C~ R/I, where I is a proper left ideal of R.
Choose ¢ e Tsuch that ¢;,¢ I. Then Re,;/(Re;n I) is isomorphic to a submodule of C,
and we may assume C is of this form. Write Re;;nJ = 3, (I;e;,), where I is an
ideal in A4 for all s<¢in T and I, < I, if s<u in T. Choose u €T minimal such that
u<tand AJI,#(0). Then K, (4/L) = Cscy A,)/(Ss<u I €5,), and this is isomorphic
to a submodule of C. Thus we can reduce to the case C~ K, (4/I) where I is an
ideal of A. Since C is uniform as an R-module, 4/I is a uniform A-module. Thus
A/I< E(A/P) for some prime ideal P of A. Furthermore, there is an injection
A/P—~ A/I. This induces an injection of the R-module K, (4/P) into C. Thus C
is equivalent to a critical module of the required form.
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Let Vp,= V(E(A/P)/N(E(A/P)), where teT, PeSpecA; and note that every
nonzero submodule of ¥p; must have nonzero intersection with K(4/P). Thus
Vp, is indecomposable. We must show that V) is injective as an R-module.

If Vp, is not injective, there is a proper left ideal I of R and an R-map f: I+V5p,
which has no extension as an R-module map to a left ideal properly containing I.
Choose seT such that e, ¢ 1. First suppose that Re,,nI<Kerf Then define
g: Re, +I->Vp, by g:re,s+a—>af,acl,reR. Ifre,,+a=0,

a=—re, € Re, ,NnIcKerf,

and af = 0. Hence g is a well-defined R-map properly extending f, a contradiction.

Therefore, Re,,n1¢kerf. Since Vp, is uniform, we may choose ryeR such
that rye, ;€1 and 0+ (rye,,) fE K(A/P). Thus (rye,,)f = av+ N(E(A|P)), a€ A[P.
But then also (e,rye,,)f = av,+ N(E(A/P)). Write e,,rye,, = a,,¢,, a,€A, and
let J = {ac A|ae, eI}. Then J is an ideal of 4 and the composition g: J— E(A/P)
given by

Jr>je > (je) f = v+ N(E(A/P))—B, where jeJ, Be E(4/P),
is a nonzero A-map. Since JS A4, g extends to a map g¥: 4> E(4/P). Let c = 1g%,
and define h: I+Re,,~>Vp, by h:a+re —>af+crv,+ N(E(A[P)), acl, reR.
Suppose that a=—re,,elnRe,, and write r =3, .0, €y Gu,€A. Then
ress = YiugsQusCus M5+ N(E(4/P)) = 3, la, 50, + N(E(A/P))]. Now
CuulCss = Ayus€ys

for all u<s and so a, ¢, €1 Further, if a,,%0,
(Cuuuseus)S = @usu0)f = Byu+ N(E(4/P)),
where B,€ E(A/P). If u%t, (a,ze,,)f=0.If u>t,
(erutuseu)f = (ause)f= Byvi+ N(E(4/P)).

But since a,,€J, we also have (a,.€,,)f = a,cv+N(E(A[P)). Thus a,,c =B,
and
at+crv,+ N(E(A[P))

= (—res)f+crvs+ N(E(A/P))
= "Es[(au,s eus)f1+ C'Esiau,s v+ N(E(4/P)]

= = 3 [ay,5 0y + NEA[PY]+C 3 [0,,50,+ NEAIPY)]

us<s
=0.

Therefore, 4 is well defined and properly extends f. This contradiction implies that
Vp, is injective, and the proof is complete.
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PROPOSITION 3.2. If 5,teT, P, Q €Spec A, then Homg(Vp, Vo )# (0) if and only
if s<t and P< Q.

PrOOF. Assume that s<t, P< Q. Then N(E(A/P))< N(E(A/P)) and there is a
surjection J]: Vpy—>Vp,. Since P<Q, there is a natural surjection 4/P—A4/Q
which induces a nonzero R-map from K(A/P) to K(A/Q). This in turn induces a
nonzero R-map from Vp, to V. The composition of those two maps is a nonzero
map in Homp(Vp, Vo).

Conversely, assume that 0 fe Homg(Vp, V). Then there exists o€ 4/Q such
that 0% av,+ N(E(4/Q)) = uf, some veVp,. Thus

(e,0)f = [Bor+ N(E(AIP))f = v+ N(E(4/Q)), BeE(A[P).

Since f is well defined, Bv,¢ N,(E(4/P)) and hence s<7. Secondly, the map
1 A(Bv) + N(E(A/P))~ A(aw) + N(E(4/Q)) induces a nonzero A-map from E(A4/P)
to E(A/Q). Thus P< Q. This completes the proof.

COROLLARY 3.3. Spec R with the Zariski topology is homeomorphic to (Spec A) x T
with the product topology where Spec A has the Zariski topology and T has the
order topology.

PRrOOF. The result follows immediately from Propositions 3.1 and 3.2.

Note that an arbitrary open set U in Spec R may be expressed as a union
U = U, p(O(2) x t), where O(t) is an open subset of Spec 4 for each ¢ and O(s)= O(¢)
if £<sin 7. Let T* denote the set of minimal elements of T and if teT*, let n,
denote the number of seT such that t<s. If U is an open subset of Spec R, let
I1(U) be the set of teT such that O(z)# @ in the decomposition above.

PROPOSITION 3.4. With notations as above, let U = ;. p(O(t)xt) be an open
subset of Spec R, and let

T = { Z QpCp I 4 ,€ n T@(s)(A)}'
I<p s<d
Then Ty(R) = 7.

PRrROOF. Leta€ R, a¢7". Then some ““coordinate” a,, ; of ais not in <y, To(u(4)-
Hence, for some p<u, a,,¢Tg,(4); and there exists Pe(0(p) such that
a,,E(4/P)#(0). But then, since s>p, 0#a,,e, B;v,+N,(E(4/P)eVp, for
some B,€ E(A/P). Thus a¢ Ty (R) and T(R)ST .

Now let ae R, a¢ Ty, (R). There exists [Vple U, veVp, such that av#0. Write
v = X,oslBuy+ N(E(4/P))] and choose weT such that af,,v,,+ N(E(4/P))#0.

4
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Then
0+ aB,,v,,+ N(E(A/P)) = ¢<Z (91,00 €10 Bus V1o + N{(E(A/P))]

== (4,45 B 02+ N(E(4/P))].

Choose t>s such that a,,,8,,#0. Then a;,, ¢ To,(4). Since s<?, this implies that
a¢7 . Thus 7 = Ty;(R) and the proof is complete.

Let S *(U) = T*n ][] (U) and note that since s < f implies that T (4) < Te(4),
Ty (R) = {Ziep W €,p)» Where the coefficients g, , range over the set

N {Tox(4D)]s€S*U),s<1}.

Thus if U= U {0@)xt|{teT} and U* = |J{0O(t) xt|teS*(U)}, where U and U*
are open subsets of Spec R, then Ty;(R) = Ty.(R). This implies that the restriction
map @y,ps: Ry—Ry. is an injection. We first describe the rings Ry. where
U#* = U;5(0()xt), S=T*; then we describe the rings Ry where U is an
arbitrary open set in Spec R.

PrOPOSITION 3.5. If teT*, O(t) is an open subset of Spec A, and U = O(t) xt,
then Ry is isomorphic to the ring of nyxn, matrices over Agyy. More generally, if
S<T* and U= ;. ((O@t)xt), O) open in SpecA for each teS, then
Ry = ILies Riowxn-

Note: The proofs of this proposition and of the following Theorem 3.6 are
quite technical. We give only outlines of the proofs.

PrOOF. Let U=0(t)xt, as in the statement of the proposition. Let
W= 1lpeow E(4/P). Then Vi = Il peow V(= VIW)/NW). Let p€Ey. Then
for each s>t and each u>t we define a map ¢,,: W, W, as follows: if weW,
then wg, ,, is the uth “coordinate” of {wv,+ N(W))}¢. Hence

{WUS + M(W/t)} P = E‘(Wgos,u) Uyt M(VVO

Then ¢,,, € End ((W). It can be verified that ¢, = 0 if u#s and that ¢, = ¢,, for
all s>¢. This permits us to identify Ey; with End 4(W)) via the map ¢p—>¢;,.

Let B = [b,,], r,5>1, be an mxn, matrix with entries in A4 = Biend ,(W).
Define a map gp: Viy— Vi by

aa: W0, N> 3 (G, w) o, - NOR)), - all 3.1

T
Then one can check that gz€Ry. Conversely, if geRy, weW, we let b, (w)
denote the rth “coordinate” of g{wv,+ N(W)}. Then it can be shown that b,, can

be chosen independent of w, and b, € Ay, for all r,s>¢. Thus we obtain an
isomorphism between Ry and the ring of 7, x n; matrices over A .
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Now suppose that SCT*, U = |J,.s(0(t) x t), where @(t) is an open subset of
Spec A for each t€S. Proposition 3.2 implies that if 5,25, s#¢, then there are
no nonzero R-maps between Vgyxy and Vi gxs. Hence

EndgVy = :Hs End g Viowxas

which implies that Biendy Vi = I1;. s Biend g(Vioxn) = Ilics Riowxn- This con-
cludes the proof.

We now turn to the computation of Ry, where U = J,. p(0(¢) x t) is an arbitrary
open subset of SpecR. If $*(U) and U* are defined as above, then we must
characterize those elements (g,) €11, g+)Biend z(Vopxp) such that (g,) is
the restriction to V. of an element of Biendy V. As in the proof of Proposition
3.5, we let W, = [Ip. o E(A/P) and note that Viguxpm = V(W,)/Ny(Wy). By
Proposition 3.5, we may associate to each biendomorphism g, of V)« an 1, X 1y,
matrix [b(p),,] with entries in 4, such that

qp[wvl + Np(Wp)] = 35,[(b(p)s’t W) Ug + Np(Wp)]’ t>P'

THEOREM 3.6. With notations as above, the ring Ry of sections over U may be
identified with the subring of T1 , ¢ ss(v) Biend p(V g(p)x ) consisting of those elements
(q,,) such that the associated matrices [b(p)s,] satisfy the following two conditions:

(1) For each pe S *(U) and s,t = p such that there exists k e [1p(U) withp<k<s
but k¢, it is true that

b(P)ey € N {Tor( Ao | r€ Tp (U), p<r<s, rt}

Q) If p,meS*(U) and s,teT such that s,t=p, s,t>m, and if there exists
keIl p(U) such that s,t >k and k> p, m, then

Potp), oty O(D)sg) = Poim, o0 (B,

where po), 000 WM Poimy, o) are the restriction maps from Ay to Aoy and from
A gmy 10 Aoy, respectively.

Proor. For s,teT, s<t, let 0,;: W,—~W, be the natural projection; and define
Fy 2 VIW)[N(W,) > V(W)N(W) by Fyy: wo, + Ny(Wo)—>(whs ) v, + N(W)forallu>s.
For ge Ry let q,, be the restriction of g to V(W,)/N,(W,), and let [b(p),,] be the
matrix associated with g,, peS*(U). Let peS*(U), s,t>p and k€[] (U) such
that p<k<s, s§t. Then one can show that {g,,(wo,+ N,(W,))} F,, ;. = 0. From this
one can deduce that b(p)s; € To(Aep))-

Now suppose that p, m, s, t, k are as in (2). Then

qxlwo+ Np(Wy)] = lg;c [(B(p)yw) v+ N(W)] = Ek [b0m), w) v+ NI
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S0 po(p),0t(B(Ph) = Potm, 00 (d(pP)y), for all 1> k. Hence

Po),0t0O(D)er) = Potmy 01 (B(M)g).
Now assume that (g,) €1, g+r) Biend o(V(W,)/N,(W,)) and assume that the
matrices [b(p),;] associated with the g,, satisfy (1) and (2). For every te[] (V)
choose peS*(U) such that p<t, and define g, Biend 5(V(Wy)/N(W,)) by

ql[wvs + IVI(VV!)] = kz;‘ [(b(p)k,s W) Vgt M(u/t)],

where s>t Then g, is well defined independent of p by (1) and (2). Now
{q,|teT1r(U)} = q defines an A-linear map of Vi, to itself, and the restriction of
q to V(W,)/N,(W,), pe S *(U), is g,,. It can be verified that, for r, we [15(U), r<w,
one has

{qr(wt v+ Ivr(m»} Praw = qw{(wt v+ IV,,(VV,.))} ¢r,w}-

From this one deduces that g € Biend z(Vy;). This completes the proof.

4. Examples

(1a) Let T be a linearly ordered set of n elements, T = {1, 2, ..., s}, R the incidence
algebra of T over a field k. Then R is the algebra of n x n upper triangular matrices
over k. An open set U is of the form U(i) = {1,2,...,i}, 1 <i<n. Then Ry, = R,
and R, is the full ring of # x n matrices over k. Let 1 <i<n. The relation o on T
defined by U(7) (see Section 2) is such that jok whenever j<k and also whenever
k>1i. Thus Ry ;) can be identified with the ring of all nx n matrices [o;;] such that
aj=0if k<iand k<j.

(Ib) Let T be as above, R the incidence algebra of T over a commutative
noetherian ring 4. Then R is the algebra of n x n upper triangular matrices over 4.
An open set U in SpecR is of the form U = UJ;;(0(¢) x t), where G+ 0(t)< 0(s)
if 125 If i =1, Ry is the full ring of nx n matrices over 4y If i>1, Ry is the
ring of nxn matrices over Ao of the form [w;;] where o€ Togi1(Aom)) if
k<jand k<i.

(2) Let T be the linearly ordered set {1, 2, 3}, 4 = k[x, y]/(xy), where k is a field, x
and y are indeterminates. Let R be the incidence algebra of T over A4, and let U be
the open set U= (SpecA x{1})u(0(y)x{2}), where O(y)={PeSpecA|y¢P}.
Then by (1b) above, Ry, is the ring of 3 x 3 matrices over A4 of the form

a;y G O3
Ay X Qgp Oy
ag1 X Qg Qg

(3) If A is an integral domain and @ @< @’ are open subsets of Spec 4, then
To(Ag) = (0). Thus condition (1) of Theorem 3.6 reduces to: (1*) For each
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yES*(U) and s,t>y such that there exists s'e []-(U) with y<s'<s, but 5",

b(y)e;=0.

Hence if T={1,2,3,4,5} is the partially ordered set defined by: 1<3<5,
2<4<5,1<€4,2<3, A=1Z, and R is the incidence algebra of T over Z, then R
is the ring of 5x 5 matrices over Z of the form

z; O
0 zy
0 0
0 0
0 0

Z13 Za %15

Zag

Zgg 0 zy

0
0

Zyy  Zg5

2y 244

0 2z |

Let U = (0(2) x {1}) u (0(3) x {2}) u (O(6) x {4}), where (i) = {PSpec|i¢P}. Then
Ry is the set of ordered pairs of the form

Q1 O3 Ogg
0 oy o
0 0 oy
0 0 oy

%15
X35
%5

055

b

B Bun Bu
0 sz Bu
0 0 By
0 0 B

Bas
Bss
Bes
Bss

with each oy €Zyy), each B,;€Zy), and the restrictions of oy, ays, agg, 55 tO
Z ) agree with the restrictions of By, Bys, Bsas Bss t0 Z gy, Tespectively.

If A is a field k, T the partially ordered set above, R the incidence algebra of T
over k and U the open set {1,2,4}; then Ry is the set of ordered pairs of matrices

over k of the form

O3 Qg3 Qg
0 opy oy
0 0 oy
0 0 o

%15
O35
Qg5

Xgg

b4

B B Pas
0 B Pu
0 0 oy
0 0 o

Bas
Bas
%45

55

(4) Let T={1,2,3,4,5} be the partially ordered set defined by: 1<3<S5,
2<4<5, 1<4 and 4 = k[x,y,z)/(xyz), where k is a field and x, y and z are
indeterminates. Let R be the incidence algebra of T over 4, U the open set
(0(x) x{1Du(0) x 2D u(O(xy) x {3Du(O(xz) x {4}), where O(a) ={PcSpec A| a¢ P}.
Then Ry is the set of ordered paris of matrices of the form

o 3

any o4)

0 ot53y Olgq 2

e
Qg1 Z  Ogg  OgeZ

Otaq

&5
05
Q45

K55

Bez B
s Bﬂy B44
Bsey Bu
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Bss
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such that each «;,€4,, each B,,€4,, and such that the restrictions of oy, oy,
oy, a5 t0 A, agree respectively with the restrictions of By, By, Bsss Bss 10 Ay,
(A, is used to denote Ag,.)
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