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THE EXPONENT OF CERTAIN FINITE p-GROUPS

by I. O. YORK

(Received 15th January 1990)

In this paper, for R a commutative ring, with identity, of characteristic p, we look at the group G(R) of formal
power series with coefficients in R, of the form

CO

£ a,x', flo = 0, a, = l
i = O

and the group operation being substitution. The results obtained give the exponent of the quotient groups
Gn(R) of this group, ne N.

1980 Mathematics subject classification (1985 Revision): 20D15.

Introduction

In this paper we will deal with the group G(R) of formal power series

where the coefficients are elements of a commutative ring R, with identity, and the
group operation is substitution. A study of this group is carried out in [3] and also of
the groups GB(R) whose elements can be considered as elements of G(R) truncated to n
terms. Such objects were studied from other points of view in [1]. The groups when R is
a commutative ring, with identity, of characteristic p are studied by the author as due to
their large class they can often achieve, or at least approach, bounds on such properties
as derived length of classes of p-groups studied by other authors. Often the power
structure of the groups Gn(R), R a commutative ring, with identity, of characteristic
p.needs to be known in order to show that they satisfy the conditions on the p-groups
to which the bounds refer. Hence the purpose of this paper is to find the exponent of
the groups Gn(R) for all neN and for R a commutative ring, with identity, of
characteristic p.

1. The exponent of the groups Gn(R), where R is a commutative ring, with identity, of
characteristic p, p^3

We start with some definitions and notation. If aeG{R), a^x and a = Y,i°=iaixi>
a, = l, a, = 0 (for 2^i<ri) and an#0 we say deg{a) = n. Also define the subset Kr of G(R)
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by Kr = {aeG(R):deg(a.)>r}, then Kr is a normal subgroup of G(R), the proof of which
is in [1], and we define Gn(R) as the quotient group G(R)/Kn.

The following notation will be used in this paper: If aeG(R) then a(m) is the mth
iterate of a, while am is the mth power of a. Furthermore we shall denote by R[[x]] the
algebra over R of all formal power series with indeterminant x and coefficients in R, a
commutative ring with identity.

Lemma 1. ([2, Theorem 2.5]) / / R has characteristic p, then K<p) £ Krp.

The question now asked is: what more can we say when R is a commutative ring, with
identity?

Observation 2. Let R be a commutative ring, with identity and <xeG(R). Then the map
n: R[[x]] -> R[[x]] given by g(x)h->g(oL), is an R-algebra automorphism. Further n
preserves the ideal (x).

The proof of Observation 2 is standard and hence is omitted.

Notation. Let zn be defined as zB = p" + p" ~1H h p + 2.

Lemma 3. Let aeG(R) and n be as defined in Observation 2. Then on the basis
x, x 2 , . . . , xm, ...of (x), the action of n is given by:

I x \

x2

X3

\:- I
where M = (mfi j) is the matrix such that m{ j=coefficient of xJ in a.'.

Proof. As by Observation 2 n preserves (x), we know the action of n on the given
basis elements of (x) is in the form of the lemma for some M. By the definition of
n, n(xJ) = <xJ. Thus we need to prove that the 7th row of the vector

M

M

: /

is a.'.

Now by the definition of M the 7th row in this vector is
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00

Y (coefficient of x' in <xJ) x' = txJ.

Lemma 4. / / <xua2eG{R), and the maps nt:R[[x]] ->R[[x]] are given by
(a,)(i = l,2), and if M( is the matrix of Lemma 3 corresponding to a,-, ( i=l ,2) then

J M J is the matrix corresponding to (^(

Proof. Now we have that if f?:R[[x]] -»R[[x]] is given by g(x)i-»g(ai(a2)) t n e n

00

Z (coefficient of x* in ai) (coefficient of x' in a*) xJ

x2I x
= ith row in the vector Mj M2 II

because using the definition of M, and M2

00

(MlM2)i j= Y, (Coefficient of x* in a\) (coefficient of xJ in a2).

Lemma 5. Let M be defined as in Lemma 3, define A by M = / + A where I is the
identity matrix, then

(Ar)u=lA,,,A,,,...AM (1)

where l = pm-l and} = {(jl,...,j,):2£jl

Further if d^O (modp) and the set (ji>---,ji) gives a non-zero term in the right hand
side of (I) then jt#0 (modp) (1 g i g / ) .

Proof. Equation (1) follows directly from the definitions. We prove by contradiction
that if d£0 (modp) then for a term in the right hand side of (1) to be non-zero it is
necessary that,

Thus we assume that in a non-zero term in the right hand side of (1), Ji = 0 (modp)
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for some i, l^i^p"1— 1, and show by an inductive argument that this implies that d = 0
(mod p) which is the required contradiction.

Examination of (1) gives that to complete the inductive argument and obtain the
required contradiction we only need prove that

rsO(modp), s^O(modp) => Ar s = 0(modp).

Now we know,

It is clear that 0: a i—> ap is a endomorphism of the ring of formal power series. So we
obtain,

a<" = (<*')"= f (mtijX
J)p

Thus we conclude that,

\<k if j
m"'j=\o if j

Therefore as,

Ar s = coefficient of Xs in ar

we have the contradiction.

Theorem 6. Let R be a commutative ring, with identity of characteristic p ^ 3 and zm

as defined above. Then for n<zm the exponent of Gn(R) is at most pm.

Proof. (In fact the proof of the following equivalent statement: If R is a commutative
ring, with identity, of characteristic p^3 and zm is as defined above. Then for all
aeG(R), a(pm)eKZm_i.)

LetaeG(R)
The map f/:R[|X|] -» R[[x]], given by
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is an R-algebra automorphism, by Observation 2.
By Lemma 3 the action of r\ on the basis x, x2,..., x",... of (x) is given by:

x-i
 MC'

where M = (my) is the matrix such that mi} = coefficient of x' in a.'.
By Lemma 4 the action of the R-algebra automorphism of R[[x]], given by

>g{a{r)) on the basis x , . . . ,xn
( . . . is given by:

•Mp

/ x \
x2

x3 (3)

\ •
Put M = / + A, where / is the identity matrix, so that M"* = / + A"" (mod p). Now (3)
gives us that:

)i,, = coefficient of x1 in <x(pk) (4)

Hence in order to prove the theorem we require that,

for an

We now proceed to prove this by induction on m. For wi = 0: (A), , = 0(modp) for all
1 ̂  i ̂  z0 — 1 = 1 as A has 0 on and below the main diagonal. Now we assume for j < m
that

(A^)i i ( s0(modp) for all l g i ^ z , — 1.

Thus using the inductive hypothesis and (4) we have that

and thus by Lemma 1 that

Hence by again using (4), in order to complete the inductive step it is only now
necessary to prove that:

https://doi.org/10.1017/S0013091500004880 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004880


488 I. O. YORK

By Lemma 5,

(5)

where / = pm — 1 and

Now the number of integers in the range 2 to zm — 2 divisible by p is pm~l + pm~2 +
• + 1 , hence the number of integers in this range not divisible by p is pm —2. By

definition, zm— 1 = l^O(modp) so we know by Lemma 5 that for a non-zero term in
the right hand side of (5) we are required to choose an ordered set of integers
(ji,...,./>_!) such that

2 ^ 1 < ; 2 < - - < j p m _ 1 g z m - 2 and j , # 0 (mod p) (1 g s g p m - 1),

which is not possible as there are only pm —2 integers in the range 2 to zm — 2 not
divisible by p. Hence (A*""")!>2m_i sO(modp), which completes the inductive step.

We thus have the required result that,

all

Having obtained a bound for the exponent we now consider the powers of a specific
element in order to show that the bound is achieved.

Theorem 7. Let zk be as defined above, R be any commutative ring, with identity, of
characteristic p,p^3. Then for all keN, the pkth iterate of x + x2 over R is x + xz* + ---.

Proof. We consider the map n defined in Observation 2 in the special case of
<x = x + x2. Then as before putting M = / + A, where / is the identity matrix, so that
IVF* = / + A*1* (mod p), where M is the matrix defined in Lemma 3 in the special case

By Theorem 6 we have that (x + x2)(pk)eKZIc_1 and thus by the definition of M and A,

It is clear by definition that

. 0 otherwise.
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In this case it is thus obvious that all non-zero terms in the right hand side of (1) with
d = zk have ji = 2. So

(A^)=ZA2,J,...A,1,2k (6)

where j ' = {0'2, •..,;•(): 3 g ; 2 < y 3 < - < ; i ^ ^ - l } and/=p*- l .
As zt==2f=0(modp), by Lemma 5 we obtain that for a non-zero term in the right

hand side of (6) we must have,

;s#0(modp) for all 2 ^ s ^ p * - l .

As we are required to choose an ordered set 0-2»---Jp*-i) °f integers such that
3^j2<j3<---<jpk-i^zk— 1, and there are pk — 2 integers in the range 3 to zk — 1 not
divisible by p, there can only be one non-zero term; which is

Case (a): p > 3

where

Now we know that for / e N that,

Case{b): p = 3

where

, deN.

Further (JP

= 2.3...(p-2)(modp)

= 1 (mod p) (By Wilson's Theorem)

= l(modp)forall/eN.

Now we know that for fe N that,
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and

Hence the result follows in both cases.
Combining Theorems 6 and 7 we readily obtain the following theorem.

Theorem 8. Let R be a commutative ring, with identity, of characteristic p ̂  3 and zm

be as defined as above. Then for zm_l^n<zm the exponent of Gn(R) is pm.

2. The exponent of the groups Gn(R), where R is an integral domain of characteristic 2

This case differs substantially from the case of odd p. For example the exponent is the
order of x + x3 rather than x + x2 for R = Z2 and is the order of x + x2 + ax3 (where
a e R , a # 0 , a # l ) when R ^ Z 2 . As this case is of less interest from the point of view of
the applications indicated in the introduction we merely summarize.

Theorem 9. The exponent of Gn(Z2) is 2m, where 2m+\^n<2m+1+ 1 for n^5.

Theorem 10. The exponent of Gn(R), where R is an integral domain of characteristic-
two and R # Z 2 is 2m, where 2 m g n < 2 m + 1 , i.e. m = [log2n].
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