THE EXPONENT OF CERTAIN FINITE p-GROUPS

by I. O. YORK
(Received 15th January 1990)

In this paper, for \mathbf{R} a commutative ring, with identity, of characteristic p, we look at the group $\mathbf{G}(\mathbf{R})$ of formal power series with coefficients in \mathbf{R}, of the form

$$
\sum_{i=0}^{\infty} a_{i} x^{i}, a_{0}=0, a_{1}=1
$$

and the group operation being substitution. The results obtained give the exponent of the quotient groups $\mathbf{G}_{n}(\mathbf{R})$ of this group, $n \in \mathbb{N}$.

1980 Mathematics subject classification (1985 Revision): 20 D 15.

Introduction

In this paper we will deal with the group $\mathbf{G}(\mathbf{R})$ of formal power series

$$
f(x)=x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

where the coefficients are elements of a commutative ring \mathbf{R}, with identity, and the group operation is substitution. A study of this group is carried out in [3] and also of the groups $\mathbf{G}_{n}(\mathbf{R})$ whose elements can be considered as elements of $\mathbf{G}(\mathbf{R})$ truncated to n terms. Such objects were studied from other points of view in [1]. The groups when \mathbf{R} is a commutative ring, with identity, of characteristic p are studied by the author as due to their large class they can often achieve, or at least approach, bounds on such properties as derived length of classes of p-groups studied by other authors. Often the power structure of the groups $\mathbf{G}_{n}(\mathbf{R}), \mathbf{R}$ a commutative ring, with identity, of characteristic p,needs to be known in order to show that they satisfy the conditions on the p-groups to which the bounds refer. Hence the purpose of this paper is to find the exponent of the groups $G_{n}(\mathbf{R})$ for all $n \in \mathbb{N}$ and for \mathbf{R} a commutative ring, with identity, of characteristic p.

1. The exponent of the groups $G_{n}(R)$, where R is a commutative ring, with identity, of characteristic $p, p \geqq 3$

We start with some definitions and notation. If $\alpha \in \mathbf{G}(\mathbf{R}), \alpha \neq x$ and $\alpha=\sum_{i=1}^{\infty} a_{i} x^{i}$, $a_{1}=1, a_{i}=0$ (for $2 \leqq i<n$) and $a_{n} \neq 0$ we say $\operatorname{deg}(\alpha)=n$. Also define the subset \mathbf{K}_{r} of $\mathbf{G}(\mathbf{R})$
by $\mathbf{K}_{r}=\{\alpha \in \mathbf{G}(\mathbf{R}): \operatorname{deg}(\alpha)>r\}$, then \mathbf{K}_{r} is a normal subgroup of $\mathbf{G}(\mathbf{R})$, the proof of which is in [1], and we define $\mathbf{G}_{n}(\mathbf{R})$ as the quotient group $\mathbf{G}(\mathbf{R}) / \mathbf{K}_{n}$.

The following notation will be used in this paper: If $\alpha \in \mathbf{G}(\mathbf{R})$ then $\alpha^{(m)}$ is the m th iterate of α, while α^{m} is the m th power of α. Furthermore we shall denote by $\mathbf{R}[[x]]$ the algebra over \mathbf{R} of all formal power series with indeterminant x and coefficients in \mathbf{R}, a commutative ring with identity.

Lemma 1. ([2, Theorem 2.5]) If \mathbf{R} has characteristic p, then $\mathbf{K}_{r}^{(p)} \subseteq \mathbf{K}_{r p}$.
The question now asked is: what more can we say when \mathbf{R} is a commutative ring, with identity?

Observation 2. Let \mathbf{R} be a commutative ring, with identity and $\alpha \in \mathbf{G}(\mathbf{R})$. Then the map $\eta: \mathbf{R}[[x]] \rightarrow \mathbf{R}[[x]]$ given by $g(x) \mapsto g(\alpha)$, is an \mathbf{R}-algebra automorphism. Further η preserves the ideal (x).

The proof of Observation 2 is standard and hence is omitted.
Notation. Let z_{n} be defined as $z_{n}=p^{n}+p^{n-1}+\cdots+p+2$.

Lemma 3. Let $\alpha \in \mathbf{G}(\mathbf{R})$ and η be as defined in Observation 2. Then on the basis $x, x^{2}, \ldots, x^{m}, \ldots$ of (x), the action of η is given by:

$$
\left(\begin{array}{c}
x \\
x^{2} \\
x^{3} \\
\vdots
\end{array}\right) \mapsto \mathbf{M}\left(\begin{array}{c}
x \\
x^{2} \\
x^{3} \\
\vdots
\end{array}\right)
$$

where $\mathbf{M}=\left(m_{i, j}\right)$ is the matrix such that $m_{i, j}=$ coefficient of x^{j} in α^{i}.
Proof. As by Observation 2η preserves (x, we know the action of η on the given basis elements of (x) is in the form of the lemma for some \mathbf{M}. By the definition of $\eta, \eta\left(x^{j}\right)=\alpha^{j}$. Thus we need to prove that the j th row of the vector

$$
\mathbf{M}\left(\begin{array}{c}
x \\
x^{2} \\
x^{3} \\
\vdots
\end{array}\right) \text { is } \alpha^{j}
$$

Now by the definition of \mathbf{M} the j th row in this vector is

$$
\sum_{i=1}^{\infty}\left(\text { coefficient of } x^{i} \text { in } \alpha^{j}\right) x^{i}=\alpha^{j}
$$

Lemma 4. If $\alpha_{1}, \alpha_{2} \in \mathbf{G}(\mathbf{R})$, and the maps $\eta_{i}: \mathbf{R}[[x]] \rightarrow \mathbf{R}[[x]]$ are given by $g(x) \mapsto$ $g\left(\alpha_{i}\right)(i=1,2)$, and if \mathbf{M}_{i} is the matrix of Lemma 3 corresponding to α_{i}, $(i=1,2)$ then $\mathbf{M}_{1} \mathbf{M}_{2}$ is the matrix corresponding to $\alpha_{1}\left(\alpha_{2}\right) \in \mathbf{G}_{n}(\mathbf{R})$.

Proof. Now we have that if $\eta: \mathbf{R}[[x]] \rightarrow \mathbf{R}[[x]]$ is given by $g(x) \mapsto g\left(\alpha_{1}\left(\alpha_{2}\right)\right)$ then

$$
\begin{aligned}
\eta\left(x^{i}\right) & =\left(\alpha_{1}\left(\alpha_{2}\right)\right)^{i} \\
& =\alpha_{1}^{i}\left(\alpha_{2}\right) \\
& =\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left(\text { coefficient of } x^{k} \text { in } \alpha_{1}^{i}\right)\left(\text { coefficient of } x^{j} \text { in } \alpha_{2}^{k}\right) x^{j} \\
& =\text { ith row in the vector } \mathbf{M}_{1} \mathbf{M}_{2}\left(\begin{array}{c}
x \\
x^{2} \\
x^{3} \\
\vdots
\end{array}\right)
\end{aligned}
$$

because using the definition of \mathbf{M}_{1} and $\mathbf{M}_{\mathbf{2}}$

$$
\left.\left(\mathbf{M}_{1} \mathbf{M}_{2}\right)_{i, j}=\sum_{k=1}^{\infty}\left(\text { eoefficient of } x^{k} \text { in } \alpha_{1}^{i}\right) \text { (coefficient of } x^{j} \text { in } \alpha_{2}^{k}\right) .
$$

Lemma 5. Let \mathbf{M} be defined as in Lemma 3, define Δ by $\mathbf{M}=I+\Delta$ where I is the identity matrix, then

$$
\begin{equation*}
\left(\Delta^{p^{m}}\right)_{1, d}=\sum_{j} \Delta_{1, j_{1}} \Delta_{j_{1}, j_{2}} \ldots \Delta_{j_{1}, d} \tag{1}
\end{equation*}
$$

where $l=p^{m}-1$ and $\mathbf{j}=\left\{\left(j_{1}, \ldots, j_{l}\right): 2 \leqq j_{1}<j_{2}<\cdots<j_{l} \leqq d-1\right\}$.
Further if $d \equiv 0(\bmod p)$ and the set $\left(j_{1}, \ldots, j_{t}\right)$ gives a non-zero term in the right hand side of (1) then $j_{i} \neq 0(\bmod p)(1 \leqq i \leqq l)$.

Proof. Equation (1) follows directly from the definitions. We prove by contradiction that if $d \neq 0(\bmod p)$ then for a term in the right hand side of (1) to be non-zero it is necessary that,

$$
j_{i} \not \equiv 0(\bmod p)\left(1 \leqq i \leqq p^{m}-1\right)
$$

Thus we assume that in a non-zero term in the right hand side of $(1), j_{i} \equiv 0(\bmod p)$
for some $i, 1 \leqq i \leqq p^{m}-1$, and show by an inductive argument that this implies that $d \equiv 0$ $(\bmod p)$ which is the required contradiction.

Examination of (1) gives that to complete the inductive argument and obtain the required contradiction we only need prove that

$$
r \equiv 0(\bmod p), s \not \equiv 0(\bmod p) \Rightarrow \Delta_{r, s} \equiv 0(\bmod p) .
$$

Now we know,

$$
\alpha^{p t}=\sum_{j=1}^{\infty} m_{p t . j} x^{j} .
$$

It is clear that $\theta: \alpha \mapsto \alpha^{p}$ is a endomorphism of the ring of formal power series. So we obtain,

$$
\begin{aligned}
\alpha^{p t}=\left(\alpha^{\prime}\right)^{p} & =\sum_{j=1}^{\infty}\left(m_{t, j} x^{j}\right)^{p} \\
& =\sum_{j=1}^{\infty} m_{t, j}^{p} x^{p j}
\end{aligned}
$$

Thus we conclude that,

$$
m_{p t, j}=\left\{\begin{array}{lll}
m_{1, k}^{p} & \text { if } & j=p k \\
0 & \text { if } & j \not \equiv 0(\bmod p)
\end{array}\right.
$$

Therefore as,

$$
\Delta_{r, s}=\text { coefficient of } x^{s} \text { in } \alpha^{r}
$$

we have the contradiction.
Theorem 6. Let \mathbf{R} be a commutative ring, with identity of characteristic $p \geqq 3$ and z_{m} as defined above. Then for $n<z_{m}$ the exponent of $\mathbf{G}_{n}(\mathbf{R})$ is at most p^{m}.

Proof. (In fact the proof of the following equivalent statement: If \mathbf{R} is a commutative ring, with identity, of characteristic $p \geqq 3$ and z_{m} is as defined above. Then for all $\alpha \in \mathbf{G}(\mathbf{R}), \alpha^{\left(p^{m \prime}\right)} \in \mathbf{K}_{z_{m}-1}$.)

Let $\alpha \in \mathbf{G}(\mathbf{R})$
The map $\eta: \mathbf{R}[[x]] \rightarrow \mathbf{R}[[x]]$, given by

$$
g(x) \mapsto g(\alpha)
$$

is an \mathbf{R}-algebra automorphism, by Observation 2.
By Lemma 3 the action of η on the basis $x, x^{2}, \ldots, x^{n}, \ldots$ of (x) is given by:

$$
\left(\begin{array}{c}
x \\
x^{2} \\
x^{3} \\
\vdots
\end{array}\right) \mapsto \mathbf{M}\left(\begin{array}{c}
x \\
x^{2} \\
x^{3} \\
\vdots
\end{array}\right),
$$

where $\mathbf{M}=\left(m_{i j}\right)$ is the matrix such that $m_{i j}=$ coefficient of x^{j} in α^{i}.
By Lemma 4 the action of the \mathbf{R}-algebra automorphism of $\mathbf{R}[[x]]$, given by $g(x) \mapsto g\left(\alpha^{(r)}\right)$ on the basis x, \ldots, x^{n}, \ldots is given by:

$$
\left(\begin{array}{c}
x \tag{3}\\
x^{2} \\
x^{3} \\
\vdots
\end{array}\right) \mapsto \mathbf{M}^{r}\left(\begin{array}{c}
x \\
x^{2} \\
x^{3} \\
\vdots
\end{array}\right)
$$

Put $\mathbf{M}=I+\Delta$, where I is the identity matrix, so that $\mathbf{M}^{p^{k}} \equiv I+\Delta^{p^{k}}(\bmod p)$. Now (3) gives us that:

$$
\begin{equation*}
\left(M^{p^{k}}\right)_{1, i}=\text { coefficient of } x^{i} \text { in } \alpha^{\left(p^{k}\right)} \tag{4}
\end{equation*}
$$

Hence in order to prove the theorem we require that,

$$
\left(\Delta^{p^{m}}\right)_{1, i} \equiv 0(\bmod p) \quad \text { for all } \quad 1 \leqq i \leqq z_{m}-1 .
$$

We now proceed to prove this by induction on m. For $m=0:(\Delta)_{1, i} \equiv 0(\bmod p)$ for all $1 \leqq i \leqq z_{0}-1=1$ as Δ has 0 on and below the main diagonal. Now we assume for $j<m$ that

$$
\left(\Delta^{p f}\right)_{1, i} \equiv 0(\bmod p) \quad \text { for all } \quad 1 \leqq i \leqq z_{j}-1 .
$$

Thus using the inductive hypothesis and (4) we have that

$$
\alpha^{\left(p^{m-1}\right)} \in \mathbf{K}_{z_{m-1}-1}
$$

and thus by Lemma 1 that

$$
\alpha^{\left(p^{m}\right)} \in \mathbf{K}_{p\left(2_{m-1}-1\right)} .
$$

Hence by again using (4), in order to complete the inductive step it is only now necessary to prove that:

$$
\left(\Delta^{p^{m}}\right)_{1, z_{m}-1} \equiv 0(\bmod p)
$$

By Lemma 5,

$$
\begin{equation*}
\left(\Delta^{p^{m}}\right)_{1, z_{m}-1}=\sum_{j} \Delta_{1, j_{1}} \Delta_{j_{1}, j_{2}} \ldots \Delta_{j_{1}, z_{m}-1} \tag{5}
\end{equation*}
$$

where $l=p^{m}-1$ and

$$
\mathbf{j}=\left\{\left(j_{1}, j_{2}, \ldots, j_{p^{m}-1}\right): 2 \leqq j_{1}<j_{2}<\cdots<j_{p^{m-1}} \leqq z_{m}-2\right\} .
$$

Now the number of integers in the range 2 to $z_{m}-2$ divisible by p is $p^{m-1}+p^{m-2}+$ $\cdots+1$, hence the number of integers in this range not divisible by p is $p^{m}-2$. By definition, $z_{m}-1 \equiv 1 \not \equiv 0(\bmod p)$ so we know by Lemma 5 that for a non-zero term in the right hand side of (5) we are required to choose an ordered set of integers $\left(j_{1}, \ldots, j_{p m-1}\right)$ such that

$$
2 \leqq j_{1}<j_{2}<\cdots<j_{p^{m-1}} \leqq z_{m}-2 \quad \text { and } \quad j_{s} \equiv \equiv(\bmod p)\left(1 \leqq s \leqq p^{m}-1\right)
$$

which is not possible as there are only $p^{m}-2$ integers in the range 2 to $z_{m}-2$ not divisible by p. Hence $\left(\Delta^{p^{m}}\right)_{1, z_{m}-1} \equiv 0(\bmod p)$, which completes the inductive step.

We thus have the required result that,

$$
\left(\Delta^{p^{m}}\right)_{1, i} \equiv 0(\bmod p) \quad \text { for all } \quad 1 \leqq i \leqq z_{m}-1
$$

Having obtained a bound for the exponent we now consider the powers of a specific element in order to show that the bound is achieved.

Theorem 7. Let z_{k} be as defined above, \mathbf{R} be any commutative ring, with identity, of characteristic $p, p \geqq 3$. Then for all $k \in \mathbb{N}$, the p^{k} th iterate of $x+x^{2}$ over \mathbf{R} is $x+x^{2 k}+\cdots$.

Proof. We consider the map η defined in Observation 2 in the special case of $\alpha=x+x^{2}$. Then as before putting $\mathbf{M}=I+\Delta$, where I is the identity matrix, so that $\mathbf{M}^{p^{k}} \equiv I+\Delta^{p^{k}}(\bmod p)$, where \mathbf{M} is the matrix defined in Lemma 3 in the special case $\alpha=x+x^{2}$.

By Theorem 6 we have that $\left(x+x^{2}\right)^{\left(p^{k}\right)} \in \mathbf{K}_{z_{k}-1}$ and thus by the definition of \mathbf{M} and Δ,

$$
\left(\Delta^{p^{k}}\right)_{1, q} \equiv 0(\bmod p)\left(2 \leqq q \leqq z_{k}-1\right)
$$

It is clear by definition that

$$
\Delta_{i, j}= \begin{cases}\binom{i}{j-1} & \text { if } \quad 1<j \leqq 2 i \\ 0 & \text { otherwise }\end{cases}
$$

In this case it is thus obvious that all non-zero terms in the right hand side of (1) with $d=z_{k}$ have $j_{1}=2$. So

$$
\begin{equation*}
\left(\Delta^{p^{k}}\right)=\sum_{j^{\prime}} \Delta_{2, j_{2}} \ldots \Delta_{j_{1}, z_{k}} \tag{6}
\end{equation*}
$$

where $j^{\prime}=\left\{\left(j_{2}, \ldots, j_{l}\right): 3 \leqq j_{2}<j_{3}<\cdots<j_{l} \leqq z_{k}-1\right\}$ and $l=p^{k}-1$.
As $z_{k} \equiv 2 \neq 0(\bmod p)$, by Lemma 5 we obtain that for a non-zero term in the right hand side of (6) we must have,

$$
j_{s} \not \equiv 0(\bmod p) \quad \text { for all } \quad 2 \leqq s \leqq p^{k}-1 .
$$

As we are required to choose an ordered set $\left(j_{2}, \ldots, j_{p^{k}-1}\right)$ of integers such that $3 \leqq j_{2}<j_{3}<\cdots<j_{p^{k}-1} \leqq z_{k}-1$, and there are $p^{k}-2$ integers in the range 3 to $z_{k}-1$ not divisible by p, there can only be one non-zero term; which is
Case (a): p>3

$$
\begin{aligned}
& \left(\Delta^{p^{k}}\right)_{1, z_{k}}= \\
& \quad\binom{2}{1}\binom{3}{1} \cdots\binom{p-2}{1}\binom{p-1}{2}\binom{p+1}{1} \cdots\binom{2 p-2}{1}\binom{2 p-1}{2}\binom{2 p+1}{1} \cdots\binom{d p-1}{2}\binom{d p+1}{1}
\end{aligned}
$$

where

$$
z_{k}=d p+2, d \in \mathbb{N}
$$

Now we know that for $f \in \mathbb{N}$ that,

$$
\begin{aligned}
\binom{f p+2}{1}\binom{f p+3}{1} \ldots\binom{f p+p-2}{1} & =(f p+2) \ldots(f p+p-2) \\
& \equiv 2.3 \ldots(p-2)(\bmod p) \\
& \equiv 1(\bmod p)(\text { By Wilson's Theorem }) \\
\text { Further }\binom{f p-1}{2}\binom{f p+1}{1} & \equiv 1(\bmod p) \text { for all } f \in \mathbb{N} .
\end{aligned}
$$

Case (b): $p=3$

$$
\left(\Delta^{p^{k}}\right)_{1, z_{k}}=\binom{4}{1}\binom{5}{2}\binom{7}{1}\binom{8}{2} \cdots\binom{3 d-1}{2}\binom{3 d+1}{1}
$$

where

$$
z_{k}=3 d+2, d \in \mathbb{N}
$$

Now we know that for $f \in \mathbb{N}$ that,

$$
\binom{3 f+1}{1} \equiv 1(\bmod p)
$$

and

$$
\binom{3 f+2}{2} \equiv 1(\bmod p)
$$

Hence the result follows in both cases.
Combining Theorems 6 and 7 we readily obtain the following theorem.
Theorem 8. Let \mathbf{R} be a commutative ring, with identity, of characteristic $p \geqq 3$ and z_{m} be as defined as above. Then for $z_{m-1} \leqq n<z_{m}$ the exponent of $\mathbf{G}_{n}(\mathbf{R})$ is p^{m}.

2. The exponent of the groups $\mathbf{G}_{\boldsymbol{n}}(\mathbf{R})$, where \mathbf{R} is an integral domain of characteristic $\mathbf{2}$

This case differs substantially from the case of odd p. For example the exponent is the order of $x+x^{3}$ rather than $x+x^{2}$ for $\mathbf{R}=\mathbb{Z}_{2}$ and is the order of $x+x^{2}+a x^{3}$ (where $a \in \mathbf{R}, a \neq 0, a \neq 1)$ when $\mathbf{R} \neq \mathbb{Z}_{2}$. As this case is of less interest from the point of view of the applications indicated in the introduction we merely summarize.

Theorem 9. The exponent of $\mathbf{G}_{n}\left(\mathbb{Z}_{2}\right)$ is 2^{m}, where $2^{m}+1 \leqq n<2^{m+1}+1$ for $n \geqq 5$.
Theorem 10. The exponent of $\mathbf{G}_{n}(\mathbf{R})$, where \mathbf{R} is an integral domain of characteristictwo and $\mathbf{R} \neq \mathbb{Z}_{2}$ is 2^{m}, where $2^{m} \leqq n<2^{m+1}$, i.e. $m=\left[\log _{2} n\right]$.

Acknowledgements. I wish to express my gratitude to R. W. K. Odoni who by proving Theorem 7 in the special case of $k=1$ provided the underlying method used in this paper. I would also like to thank the referee for his comments which gave a simpler and shorter proof of Lemma 5, as well as pointing out that the working in Section 1 applied not only to fields of characteristic p but to all the rings studied in the section.

REFERENCES

1. I. N. Baker, Permutable power series and regular iteration, J. Austral. Math. Soc. 2 (1961-62), 265-294.
2. S. A. Jennings, Substitution groups of formal power series, Canad. J. Math. 6 (1954), 325-340.
3. D. L. Johnson, The group of formal power series under substitution, J. Austral. Math. Soc. 45 (1988), 296-302.

University of Nottingham

University Park
Nottingham
NG7 2RP

