AN APPROXIMATELY CONTINUOUS PERRON INTEGRAL

^{by} Y. KUBOTA

1. Introduction. J. C. Burkill [1] has defined the *AP*-integral whose indefinite integral is approximately continuous. An (approximately continuous) function which is approximately derivable at all points of an interval is necessarily an indefinite AP-integral of its approximate derivative.

The aim of this note is to define an integral of the Perron type such that the above assertion also holds for the *symmetric* approximate derivative. The resulting integral (SAP-integral) is more general than the AP-integral and is not compatible to the SCP-integral [2].

2. The SAP-integral. Let F(x) be a measurable function defined on the closed interval [a, b]. We shall call upper symmetric approximate derivate of F at a point $c \in (a, b)$, $\overline{\text{SAD}} F(c)$, the greatest lower bound of all the number α (+ ∞ included) for which the set

$$\{t: \{F(c+t) - F(c-t)\}/2t \le \alpha\}$$

has c as a point of density. At the end points a and b, we mean $\overline{\text{SAD}} F(a) = \overline{\text{AD}} F(a)$ and $\overline{\text{SAD}} F(b) = \overline{\text{AD}} F(b)$ where $\overline{\text{AD}} [\underline{\text{AD}}]$ is ordinary upper [lower] approximate derivate. Similarly we can define lower symmetric approximate derivate $\underline{\text{SAD}} F(c)$. When they are equal, their common value is termed symmetric approximate derivative of F at c and is written SAD F(c). It is easily seen that

$$\operatorname{AD} F(c) \leq \operatorname{SAD} F(c) \leq \overline{\operatorname{SAD}} F(c) \leq \overline{\operatorname{AD}} F(c).$$

THEOREM 1. If f(x) is approximately continuous on [a, b] and $SAD f(x) \ge 0$ everywhere then f(x) is nondecreasing on [a, b].

To prove the theorem we need a lemma [3, p. 964].

LEMMA. If f(x) is approximately continuous on [a, b] then the set $E = \{x: f(x) \ge f(a)\}$ contains every point of positive density of E.

Proof of Theorem 1. We first assume $\underline{SAD} f(x) > 0$ on [a, b]. Let $E = \{x: f(x) \ge f(a)\}$ and $0 < \alpha < 1$. Let A be a subset of \overline{E} such that x' < x'' and $x', x'' \in A$ imply $|E(x', x'')|/(x'' - x') \ge \alpha$. Since $\underline{SAD} f(a) = \underline{AD} f(a) > 0$ such a set A exists. Let F be the family of all such sets A. Then F is partially ordered by set inclusion, and every linearly ordered subset of F has an upper bound in F. It follows from Zorn's lemma that F has a maximal element M. Let $\beta = \sup M$. We shall show that $\beta \in M$. Let x be any point of M. Then there exists an increasing sequence $\{x_n\}$ converging to β , such that $x < x_n < \beta(x_n \in M)$. Since $|E(x, x_n)|/(x_n - x) \ge \alpha$, we have $|E(x, \beta)|/(\beta - x) \ge \alpha$. Hence β is a positive upper density point of E and therefore $\beta \in E$ by lemma, so that $\beta \in M$.

Next we shall show that $\beta = b$. Suppose that $\beta < b$. Since $\underline{SAD} f(\beta) > 0$, the set $B = \{t: f(\beta+t) - f(\beta-t) > 0, t > 0\}$ has 0 as a right density point. Also, since f(x) is approximately continuous at β , the set $C = \{t: f(\beta) + \varepsilon > f(\beta-t) > f(\beta) - \varepsilon\}$ has 0 as a point of density, so that the set $B \cap C$ has 0 as a right density point. Therefore the set $D = \{t: f(\beta+t) > f(\beta) - \varepsilon, t > 0\}$ is also so. It follows from the relation

$$\{t: f(\beta+t) \ge f(\beta), t > 0\} = \bigcap_{n=1}^{\infty} \{t: f(\beta+t) > f(\beta) - 1/n, t > 0\}$$

and $f(\beta) \ge f(a)$ that the set $\{t: f(\beta+t) \ge f(a), t > 0\}$ has 0 as a right density point. Hence there exists a point $\gamma \in E$, $\beta < \gamma$ such that $|E(\beta, \gamma)|/(\gamma - \beta) \ge \alpha$. Hence $\gamma \in M$, which is impossible. Thus $f(b) \ge f(a)$.

If $\underline{SAD} f(x) \ge 0$ on [a, b], then for any $\varepsilon > 0$, $\underline{SAD} (f(x) + \varepsilon x) > 0$. Hence $f(a) \le f(b) + \varepsilon(b-a)$, and since ε is arbitrary, we have $f(a) \le f(b)$. This completes the proof.

Let f(x) be a measurable function defined on [a, b]. A function M(x) is termed major function of f(x) on [a, b] if the following conditions are satisfied;

- (i) M(a) = 0,
- (ii) M(x) is approximately continuous on [a, b],
- (iii) SAD $M(x) > -\infty$ at each point,
- (iv) SAD $M(x) \ge f(x)$ at each point.

We can define *minor* functions of f(x) in similar way.

If f(x) has major and minor functions in [a, b] and $\inf_M M(b) = \sup_m m(b)$, then f(x) is termed SAP-integrable on [a, b]. The common value of the two bounds is called the definite SAP-integral of f(x) on [a, b], and is denoted by (SAP) $\int_a^b f(t) dt$.

By Theorem 1 we can prove that for any upper function M(x) and any minor function of f(x), the function M(x) - m(x) is nondecreasing on [a, b]. Then we may establish the following properties of the SAP-integral in usual Perron's method.

THEOREM 2. (i) The indefinite SAP-integral $F(x) = (SAP) \int_a^x f(t) dt$ is approximately continuous on [a, b]. (ii) The set of all SAP-integrable functions on [a, b] is a linear space, and the SAP-integral is a linear functional on it.

THEOREM 3. (i) If f(x) is SAP-integrable on [a, b] then its indefinite integral F(x) is symmetric approximate derivable almost everywhere and SAD F(x)=f(x) a.e. (ii) If f(x) is approximately continuous on [a, b] and symmetric approximate derivable everywhere then the function SAD f(x) is SAP-integrable and

(SAP)
$$\int_a^b \operatorname{SAD} f(t) dt = f(b) - f(a).$$

262

June

1971]

AP-INTEGRAL

THEOREM 4. (i) If f(x) is AP-integrable on [a, b] then f(x) is also SAP-integrable, and the converse does not hold. (ii) The SAP-integral is not compatible to the SCP-integral.

References

1. J. C. Burkill, The approximately continuous Perron integral, Math. Z. 34 (1931), 270-278

2. ——, Integrals and trigonometric series, Proc. London Math. Soc. (3) 1 (1951), 46–57. 3. C. Goffman and C. J. Neugerbauer, On approximate derivatives, Canad. J. Math. 11

(1960), 962–966.

Ibaraki University, Mito, Japan