On Conway's conjecture for integer sets

Sheila Oates Macdonald and Anne Penfold Street

> Let $A=\left\{a_{i}\right\}$ be a finite set of integers and let p, m denote the orders of $A+A=\left\{a_{i}+a_{j}\right\}$ and $A-A=\left\{a_{i}-a_{j}\right\}$
> respectively. J.H. Conway conjectured that $p \leq m$ always and that $p=m$ only if A is symmetric about 0 . This conjecture has since been disproved; here we make several other observations on the values of p and m.

Let $A=\left\{\alpha_{i}\right\}$ be a finite set of integers and let p, m denote the orders of $A+A=\left\{a_{i}+a_{j}\right\}$ and $A-A=\left\{a_{i}-a_{j}\right\}$ respectively. In [1] Conway asks for a proof that $p \leq m$ always and $p=m$ only if A is symmetric about 0 .

In [2] Marica shows that not only is symmetry about any point sufficient to give equality but also that there exist nonsymmetric sets with $p=m$ and even $p>m$. Stein, [4], has gone even further and proved that the ratio m / p can be made as large or as small as we please. In [3] Spohn produces other counterexamples and makes various conjectures based on the observation that if A consists of the $n+1$ integers $a_{0}<a_{1}<\ldots<a_{n}$, then the values of p and m depend only on the set $\left\{d_{i}\right\}$ where $d_{i}=a_{i}-a_{i-1}$.

Conjecture 1 of [3] says that for nonsymmetric $A, p<m$ for $n<4$, and this may be checked by case-by-case evaluation. For $n=1$, the result is trivial since a two-element set is necessarily symmetric. For $n=2$, if $A=\{0, a, b\}$, then $A+A=\{0, a, b, 2 a, a+b, 2 b\}$ and $A-A=\{0, \pm a, \pm b, \pm(b-a)\}$, so $p=6, m=7$ unless $2 a=b$ in which

Received 18 December 1972.
case the set A is symmetric. For $n=3$, if $A=\{0, a, b, c\}$, then $A+A=\{0, a, b, c, 2 a, a+b, a+c, 2 b, b+c, 2 c\}$ and
$A-A=\{0, \pm a, \pm b, \pm c, \pm(b-a), \pm(c-b), \pm(c-a)\}$. If no two elements of $A+A$ are equal, then $p=10$ and $m=13$. Two elements of $A+A$ may be equal in any of the following five ways:
(1) $2 a=b$,
(2) $2 a=c$,
(3) $a+b=c$,
(4) $a b=c$,
(5) $2 b=a+c$.

Any of (1), (2), (4) or (5) implies that $p=9$ and $m=11$. (3) implies that the set A is symmetric. No three elements of $A+A$ can be equal, but two of the above equations can be true simultaneously. There are three possibilities for this:
(1) and (4) together imply that $p=8, m=9$; so do (2) and
(5). The only other possible combination is (1) with (5) and
these imply that the set A is symmetric.
Conjecture 4 of [3], which states that $p \leq m$ if $d_{i} \leq 3$ for every i, is in fact false, for the set

$$
\{0,1,4,6,9,10,13,14,16,18,19,22,23\},
$$

with differences $1,3,2,3,1,3,1,2,2,1,3,1$, has $p=44$, $m=43$. However, we do have the following result.

THEOREM. If $d_{i} \leq 2$ for all i, then $p \leq m$.
Proof. We can take A to be $\left\{0, d_{1}, d_{1}+d_{2}, \ldots, d_{1}+\ldots+d_{n}\right\}$. If $k=d_{1}+\ldots+d_{n}$ then the integers in $A+A$ lie between 0 and $2 k$ and those in $A-A$ between $-k$ and k. Hence if $m=2 k+1$ we necessarily have $p \leq m$, and to prove $m=2 k+1$ it is sufficient to prove that every integer from l to k can be expressed as a sum of successive d_{i} 's.

Case 1. $d_{1}=1$. We prove by induction on i that either $i=d_{1}+\ldots+d_{s}$ for some s or $i=d_{2}+\ldots+d_{s}$ for some s. This
is certainly true for 1 , so suppose it true for $i-1$. If
$i-1=d_{2}+\ldots+d_{s}$ then $i=d_{1}+d_{2}+\ldots+d_{s}$. If
$i-1=d_{1}+\ldots+d_{s}$ and $d_{s+1}=1$ then $i=d_{1}+\ldots+d_{s}+d_{s+1}$. If
$i-1=d_{1}+\ldots+d_{s}$ and $d_{s+1}=2$ then $i=d_{2}+\ldots+d_{s}+d_{s+1}$.
Case 2. $d_{n}=1$. As above, every i has an expression of the form $d_{s}+d_{s+1}+\ldots+d_{n}$ or $d_{s}+d_{s+1}+\ldots+d_{n-1}$.

Case 3. $d_{1}=d_{n}=2$. If $d_{i}=2$ for every i, then A is symmetric and Marica's result shows that $p \leq m$, so we may suppose that $d_{1}=d_{2}=\ldots=d_{a}=2, d_{a+1}=1$ and $d_{n-b}=1$, $d_{n-b+1}=\ldots=d_{n-1}=d_{n}=2$. As in the previous cases, every integer up to the larger of $d_{1}+d_{2}+\ldots+d_{n-b}$ and $d_{a+1}+d_{a+2}+\ldots+d_{n}$ can be expressed as a sum of successive d_{i} 's but thereafter only alternate integers can be so expressed. Thus we have that $m=2 k+1-2 \min \{a, b\}$. But then $A=\{0,2,4, \ldots, 2 a, 2 a+1, \ldots, k-2 b-1, k-2 b, \ldots, k-2, k\}$ and $A+A=\{0,2,4, \ldots, 2 a, 2 a+1, \ldots, 2 k-2 b-1,2 k-2 b, \ldots, 2 k-2,2 k\}$ so that $p \leq 2 k+1-(a+b) \leq m$, as required.

This argument can be extended to show that $p \leq m$ if $d_{i}=1$ or n for all i, provided that the first and last times that 1 oceurs as a difference, it occurs in a block of at least $n-1$ consecutive differences, each of which equals 1 .

Another possible way of salvaging Conway's conjecture would be to replace $A+A$ and $A-A$ by the deleted sum and difference $A \oplus A=\left\{a_{i}+a_{j} \mid i \neq j\right\}$ and $A \Theta A=\left\{a_{i}-a_{j} \mid i \neq j\right\}$. Since $|A \oplus A| \leq p-2$ whereas $|A \Theta A|=m-1$ we have strict inequality in the symmetric case. However if

$$
A=\{0,1,2,4,5,9,12,13,17,20,21,25,28,30,32,33\}
$$

we have $|A \oplus A|=61$ and $|A \Theta A|=60$, so this does not work either.

Note added in proof (6 April 1973). Conway has informed us that his conjecture was merely that $p \leq m$ and that he is not responsible for the patently false rider that $p=m$ only if A is symnetric about 0 .

References

[1] J.H. Conway, Problem 7 of Section VI of H.T. Croft's Research problems (mimeographed notes, Cambridge, August 1967).
[2] John Marica, "On a conjecture of Conway", Canad. Math. Bull. 12 (1969), 233-234.
[3] William G. Spohn, Jr, "On Conway's conjecture for integer sets", Canad. Math. Buzz. 14 (1971), 461-462.
[4] S.K. Stein, "The cardinalities of $A+A$ and $A-A$ ", Canad. Math. Bull. (to appear).

Department of Mathematics, University of Queensland, St Lucia,
Queensland.

