SPECTRAL AND ASYMPTOTIC PROPERTIES OF RESOLVENT-DOMINATED OPERATORS

FRANK RÄBIGER and MANFRED P. H. WOLFF

Dedicated to Professor H. H. Schaefer on the occasion of his 75th birthday

(Received 28 April 1998; revised 3 August 1999)

Communicated by P. G. Dodds

Abstract

Let A and B be (not necessarily bounded) linear operators on a Banach lattice E such that $|(s - B)^{-1}x| \le (s - A)^{-1}|x|$ for all x in E and sufficiently large $s \in \mathbb{R}$. The main purpose of this paper is to investigate the relation between the spectra $\sigma(B)$ and $\sigma(A)$ of B and A, respectively. We apply our results to study asymptotic properties of dominated C_0 -semigroups.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 47A10, 47B65, 47D03. Keywords and phrases: Banach lattice, dominated pseudo-resolvents, dominated C_0 -semigroups, peripheral spectrum, essential spectrum, almost periodicity, uniform ergodicity.

1. Introduction

A linear operator A with domain $\mathscr{D}(A)$ on a Banach lattice E is called *resolvent*positive if the resolvent $R(s, A) := (s - A)^{-1}$ of A at s is positive for sufficiently large $s \in \mathbb{R}$. Resolvent-positive operators were studied in detail by Arendt [4]. In particular, he showed that positivity of the resolvent has a strong influence on the existence and uniqueness of solutions of the associated Cauchy problem

$$(CP)_A \qquad \qquad \dot{u}(t) = Au(t), \quad t \ge 0, \\ u(0) = x.$$

^{© 2000} Australian Mathematical Society 0263-6115/2000 \$A2.00 + 0.00

On the other hand, it is well-known that there is a close connection between properties of the spectrum $\sigma(A)$ of an operator A and the asymptotic behaviour of solutions of $(CP)_A$. In [12, 13] (see also [19]) Greiner showed that the spectrum of most resolventpositive operators exhibits a particular symmetry. Especially for well-posed Cauchy problems, that is, if A generates a C_0 -semigroup $(T(t))_{t\geq 0}$ of operators on E, this has far-reaching consequences concerning the asymptotic behaviour of the semigroup $(T(t))_{t\geq 0}$ (see [12, 13, 19]).

In applications as well as for theoretical reasons it is often important to replace $(CP)_A$ by a perturbed Cauchy problem:

$$(CP)_B \qquad \qquad \dot{u}(t) = Bu(t), \quad t \ge 0, \\ u(0) = x.$$

In many such situations it happens that the resolvents of A and B are comparable for the order induced by the Banach lattice E (see for example [4, 6, 7, 12, 13, 19, 26]).

The present paper is the continuation of our investigations in [22]. We consider operators A and B on a Banach lattice E such that the resolvent of B is dominated by the resolvent of A, that is,

$$|R(s, B)x| \le R(s, A)|x|$$

for $x \in E$ and sufficiently large $s \in \mathbb{R}$. Our aim is to show that in such a situation certain spectral properties of A are inherited by B. This allows to deduce asymptotic properties of the solutions of $(CP)_B$ from asymptotic properties of the solutions of $(CP)_A$. Our approach is very general and based on pseudo-resolvents. In Section 2 we first recall some basic facts on pseudo-resolvents and discuss special properties of positive and dominated pseudo-resolvents. Section 3, Section 4 and Section 5 are devoted to the inheritance of spectral properties of dominated pseudo-resolvents. The special case of dominated resolvents and dominated C_0 -semigroups is discussed in Section 6. Applications to the asymptotic behaviour of dominated semigroups are given in Section 7.

We point out that often resolvent-positivity and domination between resolvents can be verified without any knowledge of the resolvents themselves. For instance, resolvent-positivity of a densely defined operator $(A, \mathcal{D}(A))$ on a Banach lattice E is closely connected with the *Kato inequality*

(K)
$$\operatorname{Re} \langle sg(x)Ax, \varphi \rangle \leq \langle |x|, A'\varphi \rangle, \quad x \in \mathscr{D}(A), \ 0 \leq \varphi \in \mathscr{D}(A'),$$

(see [3, 4, 9, 19, 24] and the references therein). If $(A, \mathcal{D}(A))$ and $(B, \mathcal{D}(B))$ are densely defined operators on a Banach lattice *E* and *A* is resolvent-positive, then the resolvent of *B* is dominated by the resolvent of *A* if the generalized Kato inequality

 $(GK) \qquad \operatorname{Re} \langle sg(x)Bx, \varphi \rangle \leq \langle |x|, A'\varphi \rangle, \quad x \in \mathscr{D}(B), \ 0 \leq \varphi \in \mathscr{D}(A')$

182

holds. If A and B are generators of strongly continuous semigroups this has been shown by Arendt and Schep (see [4, 19, 24]), and an easy modification of the proof in [19, C-II.4.2] yields the general case.

Our notation is standard and follows mainly the books [23] and [19]. Unexplained notions can be found there. Throughout the whole paper we consider spaces over the complex field \mathbb{C} . If $r \in \mathbb{R}$ we set $\mathbb{C}_r := \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > r\}$. For a given Banach space *E* we denote by $\mathscr{L}(E)$ the space of bounded linear operators on *E* and by *E'* the (topological) dual of *E*. If *A* is a linear operator on *E* with domain $\mathscr{D}(A)$, then $\sigma(A)$ denotes the spectrum, $\sigma_p(A)$ the point spectrum, $r(A) := \sup\{|\lambda| : \lambda \in \sigma(A)\}$ the spectral radius, $s(A) := \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\}$ the spectral bound, $\rho(A) := \mathbb{C} \setminus \sigma(A)$ the resolvent set and $R(\cdot, A) = (\cdot - A)^{-1} : \rho(A) \to \mathscr{L}(E)$ the resolvent of *A*. We call $\sigma_{\pi}(A) := \sigma(A) \cap (s(A) + i\mathbb{R})$ the peripheral spectrum and $\sigma_u(A) := \sigma(A) \cap i\mathbb{R}$ the unitary spectrum of *A*. Analogously, the peripheral point spectrum $\sigma_{p,\pi}(A)$ and the unitary point spectrum $\sigma_{p,\mu}(A)$ is defined.

If E is a complex Banach lattice with modulus $|\cdot|$, then $E_+ := \{x \in E : x = |x|\}$ is the set of *positive* elements in E. The dual E' is again a Banach lattice and $x' \in E'$ is positive if and only if $\langle x', x \rangle \ge 0$ for all $x \in E_+$. For operators S, $T \in \mathcal{L}(E)$ we write $S \le T$ if $(T - S)E_+ \subseteq E_+$ and T is called *positive* if $0 \le T$. We say that S is *dominated* by T if $|Sx| \le T|x|$ for $x \in E$.

2. Pseudo-resolvents

2.1. Elementary results on pseudo-resolvents In this section we introduce pseudo-resolvents on Banach spaces and collect their most important properties. In the following E always denotes a Banach space.

DEFINITION 2.1. Let $\emptyset \neq D \subseteq \mathbb{C}$. A mapping $\mathscr{R} : D \to \mathscr{L}(E)$ is called a *pseudo-resolvent* on E if \mathscr{R} satisfies the resolvent equation

(1)
$$\mathscr{R}(\lambda) - \mathscr{R}(\mu) = -(\lambda - \mu)\mathscr{R}(\lambda)\mathscr{R}(\mu)$$
 for $\lambda, \mu \in D$.

We give some examples of pseudo-resolvents.

EXAMPLE 2.2. (a) Let $(A, \mathscr{D}(A))$ be an operator on E with non-empty resolvent set $\rho(A)$. Then the resolvent $\mathscr{R}_A = R(\cdot, A) : \rho(A) \to \mathscr{L}(E)$ is a pseudo-resolvent. Note that not every pseudo-resolvent is the restriction of the resolvent of an operator. (b) Let $(T(t))_{t>0}$ be a locally integrable semigroup in $\mathscr{L}(E)$, that is, $T(\cdot)x$ is integrable for all $x \in E$ on every finite subinterval of $(0, \infty)$. In this case $\mathscr{T} = (T(t))_{t>0}$ is strongly continuous and the growth bound $\omega(\mathscr{T}) = \lim_{t\to\infty} 1/t \log ||T(t)||$ is finite (see [14, Theorem 10.2.3 and page 306]). For Re $\lambda > \omega(\mathscr{T})$ and $x \in E$ the Bochner integral $\mathscr{R}(\lambda)x := \int_0^\infty T(t)x \, dt$ exists and $\mathscr{R}(\lambda) \in \mathscr{L}(E)$. Then the mapping $\mathscr{R} : \mathbb{C}_{\omega(\mathscr{T})} \to \mathscr{L}(E)$ is a pseudo-resolvent (see [14, Theorem 18.4.1]).

The following extension property of pseudo-resolvents is well-known (see [14, Theorem 5.8.6]).

PROPOSITION 2.3. Let $\mathscr{R} : D \to \mathscr{L}(E)$ be a pseudo-resolvent. Then \mathscr{R} has a unique maximal extension $\mathscr{R}_{max} : D_{max} \to \mathscr{L}(E)$ to a pseudo-resolvent. Moreover, the following assertions hold:

(a) $D_{\max} \subseteq \mathbb{C}$ is open.

(b) For fixed $\lambda_0 \in D$ we have $\lambda \in D_{\max} \setminus {\lambda_0}$ if and only if $(\lambda_0 - \lambda)^{-1} \in \rho(\mathscr{R}(\lambda_0))$, and \mathscr{R}_{\max} is given by

(2)
$$\mathscr{R}_{\max}(\lambda) = \mathscr{R}(\lambda_0)(I - (\lambda_0 - \lambda)\mathscr{R}(\lambda_0))^{-1} = \frac{1}{\lambda_0 - \lambda} \mathscr{R}(\lambda_0) \left(\frac{1}{\lambda_0 - \lambda} - \mathscr{R}(\lambda_0)\right)^{-1} \quad for \ \lambda \in D_{\max}$$

Note that (2) implies that $\mathscr{R}_{\max} : D_{\max} \to \mathscr{L}(E)$ is analytic, and hence every pseudo-resolvent is the restriction of an analytic $\mathscr{L}(E)$ -valued function. The previous proposition has the following immediate consequence.

COROLLARY 2.4. Let $\mathscr{R} : D \to \mathscr{L}(E)$ be a pseudo-resolvent with maximal extension $\mathscr{R}_{max} : D_{max} \to \mathscr{L}(E)$ and let $\lambda_0 \in D$. Then the following assertions hold:

(a) $\rho(\mathscr{R}(\lambda_0)) = \{(\lambda_0 - \lambda)^{-1} : \lambda \in D_{\max} \setminus \{\lambda_0\}\}$ and $D_{\max} = \{\lambda_0 - 1/\mu : \mu \in \rho(R(\lambda_0))\} \cup \{\lambda_0\}.$

(b) $\mathscr{R}_{\max}(\lambda) = \sum_{n>0} (\lambda_0 - \lambda)^n \mathscr{R}(\lambda_0)^{n+1} \text{ for } |\lambda - \lambda_0| < r(\mathscr{R}(\lambda_0))^{-1}.$

(c) If $\mathscr{R}(\lambda_0) = R(\lambda_0, A)$ for some operator (A, D(A)) on E, then $D_{\max} = \rho(A)$ and $\mathscr{R}_{\max}(\lambda) = R(\lambda, A)$ for $\lambda \in D_{\max}$.

We now define the singular set of a pseudo-resolvent.

DEFINITION 2.5. Let $\mathscr{R}: D \to \mathscr{L}(E)$ be a pseudo-resolvent on the Banach space E with maximal extension $\mathscr{R}_{max}: D_{max} \to \mathscr{L}(E)$.

(a) The set $sing(\mathscr{R}) := \mathbb{C} \setminus D_{max}$ is called the *singular set* or set of singular values of \mathscr{R} .

(b) By $s(\mathscr{R}) := \inf\{r \in \mathbb{R} : \mathbb{C}_r \subseteq D_{\max}\}$ we denote the singular bound of \mathscr{R} .

(c) We call $\operatorname{sing}_{\pi}(\mathscr{R}) := \operatorname{sing}(\mathscr{R}) \cap (s(\mathscr{R}) + i\mathbb{R})$ the peripheral singular set and $\operatorname{sing}_{\mu}(\mathscr{R}) := \operatorname{sing}(\mathscr{R}) \cap i\mathbb{R}$ the unitary singular set of \mathscr{R} .

(d) A complex number λ is said to be a *pole* of \mathscr{R} if $\lambda \in D_{\max}$ and λ is a pole of \mathscr{R}_{\max} . If the associated residuum is of finite rank r, then λ is called a *Riesz point of order r*.

185

If \mathscr{R} is (the restriction of) the resolvent of an operator A on E, then $\operatorname{sing}(\mathscr{R})$ coincides with $\sigma(A)$ and the singular bound $s(\mathscr{R})$ is exactly the spectral bound s(A) of A.

Note that for a pseudo-resolvent $\mathscr{R}: D \to \mathscr{L}(E)$ and $\lambda \in D$ Corollary 2.4 yields

(3)
$$\sigma(\mathscr{R}(\lambda)) \setminus \{0\} = \left\{ \frac{1}{\lambda - \mu} : \mu \in \operatorname{sing}(\mathscr{R}) \right\} \text{ and }$$

(4)
$$\operatorname{sing}(\mathscr{R}) = \left\{ \lambda - \frac{1}{\mu} : \ \mu \in \sigma(\mathscr{R}(\lambda)) \setminus \{0\} \right\}.$$

Next we define eigenvalues and eigenvectors of a pseudo-resolvent $\mathscr{R} : D \to \mathscr{L}(E)$.

DEFINITION 2.6. Let $\alpha \in \mathbb{C}$ and $0 \neq z \in E$. Then α is called an *eigenvalue* of \mathscr{R} with corresponding *eigenvector* z if

(5)
$$(\lambda - \alpha)\mathscr{R}(\lambda)z = z$$

for all $\lambda \in D$. We denote by $\operatorname{sing}_p(\mathscr{R})$ the set of eigenvalues of \mathscr{R} , by $\operatorname{sing}_{p,\pi}(\mathscr{R}) := \operatorname{sing}_p(\mathscr{R}) \cap (s(\mathscr{R}) + i\mathbb{R})$ the set of peripheral eigenvalues, and by $\operatorname{sing}_{p,u}(\mathscr{R}) := \operatorname{sing}_p(\mathscr{R}) \cap i\mathbb{R}$ the set of unitary eigenvalues.

Note that (3) implies $\operatorname{sing}_p(\mathscr{R}) \subseteq \operatorname{sing}(\mathscr{R})$. If $\mathscr{R} = \mathscr{R}_A$ is the resolvent of an operator A, then $\operatorname{sing}_p(\mathscr{R}_A)$ is exactly the point spectrum $\sigma_p(A)$ of A. Equation (1) leads to the following observation (see [19, C-III.2.6]).

LEMMA 2.7. Let $\mathscr{R} : D \to \mathscr{L}(E)$ be a pseudo-resolvent on the Banach space E and let $z \in E$, $\lambda_0 \in D$ and $\alpha \in \mathbb{C}$ such that $(\lambda_0 - \alpha)\mathscr{R}(\lambda_0)z = z$. Then $(\lambda - \alpha)\mathscr{R}(\lambda)z = z$ for all $\lambda \in D$.

Equation (2) is an identity between holomorphic functions. Thus we obtain the following proposition (see [19, A-III.2.5]).

PROPOSITION 2.8. Let $\mathscr{R} : D \to \mathscr{L}(E)$ be a pseudo-resolvent on the Banach space $X, \lambda_0 \in D$ and $\mu_0 \in \mathbb{C} \setminus D$. Then μ_0 is a pole of \mathscr{R} if and only if $(\lambda_0 - \mu_0)^{-1}$ is a pole of the resolvent of $\mathscr{R}(\lambda_0)$. Moreover, the pole orders and the corresponding residues at μ_0 and $(\lambda_0 - \mu_0)^{-1}$, respectively, coincide. In particular, every pole of \mathscr{R} is an eigenvalue of \mathscr{R} .

2.2. Pseudo-resolvents on subspaces and quotients Let $\mathscr{R} : D \to \mathscr{L}(E)$ be a pseudo-resolvent on the Banach space E and let F be a closed \mathscr{R} -invariant subspace of E, that is, $\mathscr{R}(\lambda)F \subseteq F$ for all $\lambda \in D$. Denote by $\mathscr{R}_{|}(\lambda) \in \mathscr{L}(F)$ the restriction of $\mathscr{R}(\lambda)$ to F and by $\mathscr{R}_{|}(\lambda) \in \mathscr{L}(E/F)$ the operator on E/F induced by $\mathscr{R}(\lambda)$. The following result is shown in [9, Proposition A.3.10].

PROPOSITION 2.9. Under the above assumptions the following holds:

(a) $\mathscr{R}_1: D \to \mathscr{L}(F)$ and $\mathscr{R}_1: D \to \mathscr{L}(E/F)$ are pseudo-resolvents.

- (b) For $\lambda_0 \in \overline{D} \setminus D$ the following assertions are equivalent:
 - (i) $\lambda_0 \notin \operatorname{sing}(\mathscr{R})$;
 - (ii) $\lambda_0 \notin \operatorname{sing}(\mathscr{R}_1) \cup \operatorname{sing}(\mathscr{R}_2)$.

(c) \mathscr{R} has a pole at $\lambda_0 \in \overline{D} \setminus D$ if and only if both \mathscr{R}_1 and \mathscr{R}_1 have a pole at λ_0 . If p, p_1 and p_1 are the respective orders, then $\max\{p_1, p_1\} \le p \le p_1 + p_1$.

2.3. Pseudo-resolvents on Banach lattices In the following we are mainly interested in pseudo-resolvents on Banach lattices. First we introduce the notion of a positive and a dominated pseudo-resolvent, respectively.

DEFINITION 2.10. Let $\mathscr{R} : D(\mathscr{R}) \to \mathscr{L}(E)$ and $\mathscr{Q} : D(\mathscr{Q}) \to \mathscr{L}(E)$ be pseudoresolvents on the Banach lattice E. Then \mathscr{Q} is *dominated by* \mathscr{R} if there exists $r \in \mathbb{R}$ such that $(r, \infty) \subseteq D(\mathscr{R}) \cap D(\mathscr{Q})$ and $|\mathscr{Q}(s)x| \leq \mathscr{R}(s)|x|$ for $s \in (r, \infty)$ and $x \in E$. The pseudo-resolvent \mathscr{R} is called *positive* if \mathscr{R} dominates the pseudo-resolvent identically zero.

In the next proposition we collect some particular properties of dominated and positive pseudo-resolvents. A similar result has been shown for the resolvent of the generator of a positive C_0 -semigroup (see [19, C-III.1.1, C-III.1.3]).

PROPOSITION 2.11. Let $\mathscr{R} : D(\mathscr{R}) \to \mathscr{L}(E)$ and $\mathscr{Q} : D(\mathscr{Q}) \to \mathscr{L}(E)$ be pseudoresolvents on the Banach lattice E such that \mathscr{Q} is dominated by \mathscr{R} and let $r \in \mathbb{R}$ be such that $(r, \infty) \subseteq D(\mathscr{R}) \cap D(\mathscr{Q})$ and $|\mathscr{Q}(s)x| \leq \mathscr{R}(s)|x|$ for $s \in (r, \infty)$ and $x \in E$. Denote by $\mathscr{R}_{\max} : D(\mathscr{R}_{\max}) \to \mathscr{L}(E)$ and $\mathscr{Q}_{\max} : D(\mathscr{Q}_{\max}) \to \mathscr{L}(E)$ the maximal extensions of \mathscr{R} and \mathscr{Q} , respectively. Then the following holds:

(a) $\mathbb{C}_r \subseteq D(\mathscr{R}_{\max}) \cap D(\mathscr{Q}_{\max}) \text{ and } s(\mathscr{Q}) \leq s(\mathscr{R}) \leq r < \infty.$

(b) Either $s(\mathscr{R}) = -\infty$ or $s(\mathscr{R}) \in sing(\mathscr{R})$.

(c) $|\mathscr{Q}_{\max}(\lambda)x| \leq \mathscr{R}_{\max}(\operatorname{Re} \lambda)|x|$ and $|\mathscr{R}_{\max}(\lambda)x| \leq \mathscr{R}_{\max}(\operatorname{Re} \lambda)|x|$ for $\lambda \in \mathbb{C}_{s(\mathscr{R})}$ and $x \in E$.

(d) $r(\mathscr{R}_{\max}(s)) = (s - s(\mathscr{R}))^{-1}$ for $s > s(\mathscr{R})$.

PROOF. (I) $s(\mathscr{R}) < \infty$.

Let $s \in (r, \infty)$. Then $\mathscr{R}(s) \geq 0$, and hence $r(\mathscr{R}(s)) \in \sigma(\mathscr{R}(s))$ (see [23, V.4.1]). On the other hand by Corollary 2.4 (a) we have $((s - r)^{-1}, \infty) \subseteq \rho(\mathscr{R}(s))$. Thus $r(\mathscr{R}(s)) \leq (s - r)^{-1}$. Another application of Corollary 2.4 (a) yields $B_{s-r}(s) := \{\lambda \in \mathbb{C} : |\lambda - s| < s - r\} \subseteq D(\mathscr{R}_{\max})$. Since this is true for every $s \in (r, \infty)$ we obtain $\mathbb{C}_r \subseteq D(\mathscr{R}_{\max})$, and hence $s(\mathscr{R}) \leq r < \infty$.

(II) Either $s(\mathscr{R}) = -\infty$ or $s(\mathscr{R}) \in \operatorname{sing}(\mathscr{R})$.

Suppose $s(\mathscr{R}) > -\infty$ and $s(\mathscr{R}) \notin \operatorname{sing}(\mathscr{R})$. Then there exist $\varepsilon > 0$ and $\lambda_0 \in \operatorname{sing}(\mathscr{R})$

such that $s(\mathscr{R}) - \varepsilon < \operatorname{Re} \lambda_0$ and $[s(\mathscr{R}) - \varepsilon, \infty) \cap \operatorname{sing}(\mathscr{R}) = \emptyset$. Choose s > r such that $\lambda_0 \in B_{s-(s(\mathscr{R})-\varepsilon)}(s)$. Then $\mathscr{R}(s) \ge 0$, and hence $r(\mathscr{R}(s)) \in \sigma(\mathscr{R}(s))$. By (4) we have $s - r(\mathscr{R}(s))^{-1} \in \operatorname{sing}(\mathscr{R})$ and (3) implies $r(\mathscr{R}(s)) \ge |s - \lambda_0|^{-1} \ge (s - (s(\mathscr{R}) - \varepsilon))^{-1}$. Thus $s - r(\mathscr{R}(s))^{-1} \in [s(\mathscr{R}) - \varepsilon, \infty) \cap \operatorname{sing}(\mathscr{R})$ which is a contradiction.

(III) $\mathscr{R}_{\max}(s) \ge 0$ and $r(\mathscr{R}_{\max}(s)) = (s - s(\mathscr{R}))^{-1}$ for $s \in (s(\mathscr{R}), \infty)$. Fix $s_0 \in (r, \infty)$. As in (I) we obtain $r(\mathscr{R}(s_0)) \le (s_0 - s(\mathscr{R}))^{-1}$. (II) and equation (3) imply $(s_0 - s(\mathscr{R}))^{-1} \in \sigma(\mathscr{R}(s_0))$, and hence $r(\mathscr{R}(s_0)) = (s_0 - s(\mathscr{R}))^{-1}$. By Corollary 2.4 (b) we have $\mathscr{R}_{\max}(s) = \sum_{n\ge 0} (s_0 - s)^n \mathscr{R}_{\max}(s_0)^{n+1} \ge 0$ for $s \in (s(\mathscr{R}), s_0]$. Since $\mathscr{R}(s) \ge 0$ for every $s \in (r, \infty)$ we obtain $\mathscr{R}_{\max}(s) \ge 0$ for $s \in (s(\mathscr{R}), \infty)$.

(IV) $s(\mathcal{Q}) \leq s(\mathcal{R})$.

Fix $s \in (r, \infty)$. From $|\mathcal{Q}(s)x| \leq \mathscr{R}(s)|x|$, $x \in E$, we obtain $r(\mathcal{Q}(s)) \leq r(\mathscr{R}(s)) = (s - s(\mathscr{R}))^{-1}$. Corollary 2.4 (a) then implies $B_{s-s(\mathscr{R})}(s) \subseteq D(\mathscr{Q}_{\max})$. This holds for every $s \in (r, \infty)$, and hence $\mathbb{C}_{s(\mathscr{R})} \subseteq D(\mathscr{Q}_{\max})$. In particular, $s(\mathscr{Q}) \leq s(\mathscr{R})$.

(V) $|\mathscr{Q}_{\max}(\lambda)x| \leq \mathscr{R}_{\max}(\operatorname{Re} \lambda)|x|$ and $|\mathscr{R}_{\max}(\lambda)x| \leq \mathscr{R}_{\max}(\operatorname{Re} \lambda)|x|$ for $\lambda \in \mathbb{C}_{s(\mathscr{R})}$ and $x \in E$ (see also [19, proof of C-III.2.7]).

Fix $\lambda \in \mathbb{C}_{s(\mathscr{R})}$ and $x \in E$. Choose $t \ge r$ such that $\lambda \in B_{s-s(\mathscr{R})}(s)$ for all $s \in [t, \infty)$. Since $r(\mathscr{Q}(s)) \le r(\mathscr{R}(s)) = (s - s(\mathscr{R}))^{-1}$ Corollary 2.4 (b) implies

$$\begin{aligned} |\mathscr{Q}_{\max}(\lambda)x| &\leq \sum_{n\geq 0} |s-\lambda|^n |\mathscr{Q}(s)^{n+1}x| \leq \sum_{n\geq 0} |s-\lambda|^n \mathscr{R}(s)^{n+1}|x| \\ &= \sum_{n\geq 0} (s-(s-|s-\lambda|))^n \mathscr{R}(s)^{n+1}|x| = \mathscr{R}(s-|s-\lambda|)|x| \end{aligned}$$

for $s \in [t, \infty)$. Notice that $\lim_{s\to\infty} (s - |s - \lambda|) = \operatorname{Re} \lambda$. Thus $|\mathscr{Q}_{\max}(\lambda)x| \leq \mathscr{R}_{\max}(\operatorname{Re} \lambda)|x|$. If we replace \mathscr{Q} by \mathscr{R} we obtain $|\mathscr{R}_{\max}(\lambda)x| \leq \mathscr{R}_{\max}(\operatorname{Re} \lambda)|x|$. \Box

In our later results we frequently impose the following growth conditions on a pseudo-resolvent (see [19, C-III.2.8]).

DEFINITION 2.12. Let $\mathscr{R} : D \to \mathscr{L}(E)$ be a positive pseudo-resolvent on the Banach lattice E such that $s(\mathscr{R}) > -\infty$ and let $\mathscr{R}_{\max} : D_{\max} \to \mathscr{L}(E)$ be the maximal extension of \mathscr{R} .

(a) \mathscr{R} satisfies the growth condition (G) if

(6)
$$\limsup_{r \downarrow s(\mathscr{R})} \|(r - s(\mathscr{R}))\mathscr{R}_{\max}(r)\| < \infty.$$

(b) We say that \mathscr{R} is (G)-solvable if there are closed ideals $\{0\} = I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = E$ such that

(i) $\mathscr{R}_{\max}(\lambda)I_k \subseteq I_k$ for $\lambda \in D_{\max}$ and $1 \le k \le n$, and

(ii) the pseudo-resolvents $\mathscr{R}_k : D_{\max} \to \mathscr{L}(I_k/I_{k-1}), 1 < k \leq n$, induced by \mathscr{R}_{\max} satisfy

$$\limsup_{r\downarrow s(\mathscr{R})} \|(r-s(\mathscr{R}))\mathscr{R}_k(r)\| < \infty.$$

Note that a positive pseudo-resolvent $\mathscr{R} : D \to \mathscr{L}(E)$ is (G)-solvable provided that $s(\mathscr{R}) > -\infty$ is a pole of \mathscr{R} . This is an immediate consequence of Proposition 2.8 and [23, V.4, Example 4], applied to $\mathscr{R}(s)$ for some $s > s(\mathscr{R})$.

The above growth conditions have strong influence on the structure of the singular set of a pseudo-resolvent. The following result is due to Greiner (see [19, C-III.2.10, C-III.2.12, C-III.2.15 (a)]).

PROPOSITION 2.13. Let $\mathscr{R} : D \to \mathscr{L}(E)$ be a positive pseudo-resolvent on the Banach lattice E such that \mathscr{R} is (G)-solvable. Then the peripheral singular set $\operatorname{sing}_{\pi}(\mathscr{R})$ is imaginary additively cyclic, that is, if $s(\mathscr{R}) + i\alpha \in \operatorname{sing}(\mathscr{R})$, $\alpha \in \mathbb{R}$, then $s(\mathscr{R}) + ik\alpha \in \operatorname{sing}(\mathscr{R})$ for all $k \in \mathbb{Z}$. In particular, this holds if $s(\mathscr{R}) > -\infty$ is a pole of \mathscr{R} .

2.4. Pseudo-resolvents on ultrapowers We need the following construction described in [23, V.1], in detail. For a Banach space E denote by $l^{\infty}(E)$ the space of bounded E-valued sequences endowed with the sup-norm. Let \mathscr{U} be a free ultrafilter on \mathbb{N} and consider the closed linear subspace $c_{\mathscr{U}}(E) := \{(x_n) \in l^{\infty}(E) : \lim_{\mathscr{U}} ||x_n|| = 0\}$. The quotient space $E_{\mathscr{U}} := l^{\infty}(E)/c_{\mathscr{U}}(E)$ is called *ultrapower* or \mathscr{U} -power of E. Instead of $(x_n) + c_{\mathscr{U}}(E) \in E_{\mathscr{U}}$ we also write $(\widehat{x_n})$. The space E is isometrically embedded into $E_{\mathscr{U}}$ by means of $x \mapsto (x, x, ...)$. Every operator $T \in \mathscr{L}(E)$ has a canonical extension $T_{\mathscr{U}} \in \mathscr{L}(E_{\mathscr{U}})$ given by $T_{\mathscr{U}}(\widehat{x_n}) := (\widehat{Tx_n})$. The mapping $T \mapsto T_{\mathscr{U}}$ from $\mathscr{L}(E)$ into $\mathscr{L}(E_{\mathscr{U}})$ is an isometric Banach algebra homomorphism and

(7)
$$\sigma(T_{\mathscr{U}}) = \sigma(T) \text{ for } T \in \mathscr{L}(E).$$

If E is a Banach lattice, then $E_{\mathscr{U}}$ is also a Banach lattice and $|\widehat{(x_n)}| = \widehat{(|x_n|)}$. Moreover, if $T \in \mathscr{L}(E)$ is positive, then $T_{\mathscr{U}}$ is positive as well.

The ultrapower extension of a pseudo-resolvent has the following properties.

PROPOSITION 2.14. Let $\mathscr{R} : D \to \mathscr{L}(E)$ be a pseudo-resolvent on the Banach space E and set $\mathscr{R}_{\mathscr{U}}(\lambda) := \mathscr{R}(\lambda)_{\mathscr{U}} \in \mathscr{L}(E_{\mathscr{U}}), \lambda \in D$. Then the following holds:

(a) $\mathscr{R}_{\mathscr{U}}: D \to \mathscr{L}(E_{\mathscr{U}})$ is a pseudo-resolvent and $\|\mathscr{R}_{\mathscr{U}}(\lambda)\| = \|\mathscr{R}(\lambda)\|$ for $\lambda \in D$;

(b) $D_{\max}(\mathscr{R}) = D_{\max}(\mathscr{R}_{\mathscr{U}}), and sing(\mathscr{R}_{\mathscr{U}}) = sing(\mathscr{R});$

(c) $\operatorname{sing}(\mathscr{R}) \cap \partial D \subseteq \operatorname{sing}_p(\mathscr{R}_{\mathscr{U}});$

5

(d) $\lambda_0 \in \mathbb{C}$ is a pole of \mathscr{R} if and only if it is a pole of $\mathscr{R}_{\mathscr{U}}$, and then the orders of the poles are equal;

(e) If E is a Banach lattice and \mathscr{R} is a positive pseudo-resolvent, then $\mathscr{R}_{\mathscr{U}}$ is positive.

PROOF. (a) and (d) follow immediately from the fact that $T \mapsto T_{\mathscr{U}}$ is an isometric algebra homomorphism from $\mathscr{L}(E)$ into $\mathscr{L}(E_{\mathscr{U}})$.

(b) follows from (7) and (3) applied to $\mathscr{R}(\lambda)$ for fixed $\lambda \in D$.

In order to prove (c) fix $\mu \in \operatorname{sing}(\mathscr{R}) \cap \partial D$ and $\lambda_0 \in D$. From (3) we obtain that $(\lambda_0 - \mu)^{-1}$ is in the boundary of $\sigma(\mathscr{R}(\lambda_0))$, hence it is an approximate eigenvalue of $\mathscr{R}(\lambda_0)$. An application of [23, V.1.4] shows that $(\lambda_0 - \mu)^{-1}$ is an eigenvalue of $\mathscr{R}_{\mathscr{U}}(\lambda_0)$, that is, $\mu \in \operatorname{sing}_{\mathscr{R}}(\mathscr{R}_{\mathscr{U}})$ by Lemma 2.7.

Finally, (e) follows from the fact that for positive $T \in \mathscr{L}(E)$ also $T_{\mathscr{U}} \in \mathscr{L}(E_{\mathscr{U}})$ is positive.

3. The peripheral singular set of a positive dominated pseudo-resolvent

In this section we show that for positive pseudo-resolvents \mathcal{Q} and \mathcal{R} on a Banach lattice E such that \mathcal{Q} is dominated by \mathcal{R} we always have

(8)
$$\operatorname{sing}(\mathscr{Q}) \cap (s(\mathscr{R}) + i\mathbb{R}) \subseteq \operatorname{sing}_{\pi}(\mathscr{R})$$

provided that \mathscr{R} satisfies the growth condition (G) or, more general, is (G)-solvable. In view of Proposition 2.11 it suffices to consider pseudo-resolvents $\mathscr{R}, \mathscr{Q} : \mathbb{C}_0 \to \mathscr{L}(E)$ and to show

(9)
$$\operatorname{sing}_{u}(\mathscr{Q}) \subseteq \operatorname{sing}_{u}(\mathscr{R}).$$

At first we present a condition under which a unitary eigenvalue of \mathcal{Q} is also an eigenvalue of \mathcal{R} .

LEMMA 3.1. Let E be a Banach lattice and let $\mathcal{Q}, \mathcal{R} : \mathbb{C}_0 \to \mathcal{L}(E)$ be positive pseudo-resolvents such that \mathcal{Q} is dominated by \mathcal{R} . Suppose that there exist $z \in E$, $r_0 > 0$ and $\beta \in \mathbb{R}$ such that $(r_0 - i\beta)\mathcal{Q}(r_0)z = z$ and $r_0\mathcal{R}(r_0)|z| = |z|$. Then $(r_0 - i\beta)\mathcal{R}(r_0)z = z$.

PROOF. By Lemma 2.7 we have $r_0 \mathscr{Q}(r_0 + i\beta)z = z$ and from Proposition 2.11 (c) we obtain $|r_0 \mathscr{Q}(r_0 + i\beta)z| \le r_0 \mathscr{Q}(r_0)|z|$. Then $|z| = |r_0 \mathscr{Q}(r_0 + i\beta)z| \le r_0 \mathscr{Q}(r_0)|z| \le r_0 \mathscr{Q}(r_0)|z| = |z|$, and hence $|z| = r_0 \mathscr{Q}(r_0)|z| = r_0 \mathscr{R}(r_0)|z| = |z|$. Thus

$$0 \leq |(r_0 - i\beta)(R(r_0)z - Q(r_0)z)| \leq |r_0 - i\beta|r_0^{-1}(r_0\mathscr{R}(r_0) - r_0\mathscr{Q}(r_0))|z| = 0.$$

This implies $(r_0 - i\beta)\mathscr{R}(r_0)z = (r_0 - i\beta)\mathscr{Q}(r_0)z = z.$

We now come to the main result of this section. Note that a pseudo-resolvent \mathscr{R} : $\mathbb{C}_0 \to \mathscr{L}(E)$ satisfies the growth condition (G) if and only if on every ultrapower $E_{\mathscr{U}}$ the induced pseudo-resolvent $\mathscr{R}_{\mathscr{U}}$: $\mathbb{C}_0 \to \mathscr{L}(E_{\mathscr{U}})$ satisfies (G) (see Proposition 2.14 (a)).

THEOREM 3.2. Let E be a Banach lattice and let $\mathcal{Q}, \mathcal{R} : \mathbb{C}_0 \to \mathcal{L}(E)$ be positive pseudo-resolvents such that \mathcal{Q} is dominated by \mathcal{R} and \mathcal{R} satisfies (G). Then $\operatorname{sing}_u(\mathcal{Q}) \subseteq \operatorname{sing}_u(\mathcal{R})$.

PROOF. Let $i\beta \in \text{sing}_u(\mathcal{Q})$. By passing to an ultrapower we may assume $i\beta \in \text{sing}_p(\mathcal{Q})$ (see Proposition 2.14). Thus, by Lemma 2.7 there exists $0 \neq z \in E$ such that $\lambda \mathcal{Q}(\lambda + i\beta)z = z$ for all $\lambda \in \mathbb{C}_0$. Proposition 2.11 yields

$$|z| = |\lambda \mathscr{Q}(\lambda + i\beta)z| \le |\lambda| \mathscr{R}(\operatorname{Re} \lambda)|z|$$
 for $\lambda \in \mathbb{C}_0$.

Since \mathscr{R} satisfies (G) the function $p(x) := \limsup_{r \downarrow 0} || r \mathscr{R}(r) |x| ||, x \in E$, is a continuous lattice seminorm on E. In particular, $J := \ker p$ is a closed ideal in E. For $\lambda \in \mathbb{C}_0$ and $x \in E$ we have $\mathscr{R}(r) |\mathscr{R}(\lambda)x| \leq \mathscr{R}(r) \mathscr{R}(\operatorname{Re} \lambda) |x|$, and hence $p(\mathscr{R}(\lambda)x) \leq || \mathscr{R}(\operatorname{Re} \lambda) || p(x)$. Thus $\mathscr{R}(\lambda)J \subseteq J$ for $\lambda \in \mathbb{C}_0$. Moreover, $\mathscr{Q}(\lambda)J \subseteq J$, $\lambda \in \mathbb{C}_0$, since \mathscr{Q} is dominated by \mathscr{R} . Consider now the positive pseudo-resolvents $\mathscr{Q}_{/}$, $\mathscr{R}_{/} : \mathbb{C}_0 \to \mathscr{L}(E/J)$ induced by \mathscr{Q} and \mathscr{R} , respectively. Clearly, $\mathscr{Q}_{/}$ is dominated by $\mathscr{R}_{/}$. From $r \mathscr{R}(r) |z| \geq |z|$ for r > 0 we obtain $p(z) \geq ||z|| > 0$, and hence $\tilde{z} := z + J \in E/J$ is non-zero. Moreover, $\lambda \mathscr{Q}_{/}(\lambda + i\beta)\tilde{z} = \tilde{z}$ for $\lambda \in \mathbb{C}_0$. Since \mathscr{R} satisfies (G) we have

$$p(s\mathscr{R}(s)|z| - |z|) = \limsup_{r \downarrow 0} \|rs\mathscr{R}(r)\mathscr{R}(s)|z| - r\mathscr{R}(r)|z|\|$$

=
$$\limsup_{r \downarrow 0} \left\| \frac{s}{s - r} r\mathscr{R}(r)|z| - \frac{r}{s - r} s\mathscr{R}(s)|z| - r\mathscr{R}(r)|z| \right\|$$

=
$$\limsup_{r \downarrow 0} \left\| \frac{r}{s - r} (r\mathscr{R}(r)|z| - s\mathscr{R}(s)|z|) \right\|$$

=
$$0$$

for $s \in (0, \infty)$. Hence $s\mathscr{R}_{/}(s)|\tilde{z}| = |\tilde{z}|$ for $s \in (0, \infty)$ and Lemma 3.1 yields $s\mathscr{R}_{/}(s+i\beta)\tilde{z} = \tilde{z}$. Thus $\|\mathscr{R}(s+i\beta)\| \ge \|\mathscr{R}_{/}(s+i\beta)\| \ge s^{-1} \to \infty$ as $s \to 0$, and we obtain $i\beta \in sing(\mathscr{R})$.

We can extend Theorem 3.2 to pseudo-resolvents \mathscr{R} which are (G)-solvable. In fact, Proposition 2.9 permits to reduce this more general situation to pseudo-resolvents satisfying (G).

COROLLARY 3.3. Let *E* be a Banach lattice and let $\mathcal{Q}, \mathcal{R} : \mathbb{C}_0 \to \mathcal{L}(E)$ be positive pseudo-resolvents such that \mathcal{Q} is dominated by \mathcal{R} and \mathcal{R} is (G)-solvable. Then $\operatorname{sing}_u(\mathcal{Q}) \subseteq \operatorname{sing}_u(\mathcal{R})$. In particular, this holds if 0 is a pole of \mathcal{R} .

4. Peripheral eigenvalues of dominated positive pseudo-resolvents

In this section we investigate under which conditions the inclusion

(10)
$$\operatorname{sing}_{p}(\mathscr{Q}) \cap (s(\mathscr{R}) + i\mathbb{R}) \subseteq \operatorname{sing}_{p,\pi}(\mathscr{R})$$

holds, where \mathscr{Q} and \mathscr{R} are positive pseudo-resolvents on a Banach lattice E such that \mathscr{Q} is dominated by \mathscr{R} . As in the previous section it suffices to consider pseudo-resolvents $\mathscr{R}, \mathscr{Q} : \mathbb{C}_0 \to \mathscr{L}(E)$ and to ask if

(11)
$$\operatorname{sing}_{p,u}(\mathscr{Q}) \subseteq \operatorname{sing}_{p,u}(\mathscr{R})$$

holds. It turns out that ergodicity properties of the dominating pseudo-resolvent play a central role. We recall the following result of Yosida ([29, VIII.4, Theorem 2]).

PROPOSITION 4.1. Let \mathscr{R} : $\mathbb{C}_0 \to \mathscr{L}(E)$ be a pseudo-resolvent on the Banach space E and assume that \mathscr{R} satisfies the growth condition (G). Then for $x \in E$ the following assertions are equivalent:

- (a) $\lim_{s\downarrow 0} s\mathscr{R}(s)x$ exists in E;
- (b) $(s\mathscr{R}(s)x)_{s>0}$ has a weak cluster point as $s \to 0$.

In this case $y := \lim_{s \downarrow 0} s \mathscr{R}(s) x$ satisfies $\lambda \mathscr{R}(\lambda) y = y$ for all $\lambda \in \mathbb{C}_0$.

A pseudo-resolvent $\mathscr{R} : \mathbb{C}_0 \to \mathscr{L}(E)$ is called Abel-ergodic if $P_{\mathscr{R}}x := \lim_{s \downarrow 0} s\mathscr{R}(s)x$ exists for all $x \in E$. Then $P_{\mathscr{R}} \in \mathscr{L}(E)$ is a projection, $P_{\mathscr{R}}E = \operatorname{Fix}(\lambda \mathscr{R}(\lambda))$ and ker $P_{\mathscr{R}} = \overline{(I - \lambda \mathscr{R}(\lambda))E}$ for $\lambda \in \mathbb{C}_0$ (see [29, VIII.4]). Note that by the principle of uniform boundedness an Abel-ergodic pseudo-resolvent with $s(\mathscr{R}) = 0$ always satisfies (G).

In the following we use the following construction (see [23, II.8, Example 1]). Let E be a Banach lattice and $y' \in E'_+$. Then $p : E \to \mathbb{R}_+ : x \mapsto \langle y', |x| \rangle$ is a lattice seminorm with kernel ker $p = N(y') := \{x \in E : \langle y', |x| \rangle = 0\}$. The induced norm on $E/\ker p$ is a lattice norm and the completion (E, y') of $E/\ker p$ is a Banach lattice. Moreover, (E, y') is an AL-space, that is, the norm is additive on $(E, y')_+$, and the mapping $j_{y'} : E \to (E, y')$ induced by the quotient map $q : E \to E/\ker p$ is a lattice homomorphism. If $\mathscr{R} : D \to \mathscr{L}(E)$ is a positive pseudo-resolvent such that $s\mathscr{R}(s)'y' \leq y'$ for s > 0, then $\lambda \mathscr{R}(\lambda)N(y') \subseteq N(y')$ for $\lambda \in \mathbb{C}_0$. Hence $\mathscr{R}(\lambda)$ induces an operator $\mathscr{R}(\lambda)_I$ on $E/\ker p$ which is a positive contraction. Thus $\mathscr{R}(\lambda)_I$ has a unique contractive positive extension $\tilde{\mathscr{R}}(\lambda) \in \mathscr{L}((E, y'))$ and $\tilde{\mathscr{R}}: \mathbb{C}_0 \to \mathscr{L}((E, y'))$ is a pseudo-resolvent.

Now we can state the following inheritance result on unitary eigenvalues.

THEOREM 4.2. Let *E* be a Banach lattice and let $\mathscr{Q}, \mathscr{R} : \mathbb{C}_0 \to \mathscr{L}(E)$ be positive pseudo-resolvents such that \mathcal{Q} is dominated by \mathscr{R} and $\mathscr{R}_{\alpha} := \mathscr{R}(\cdot + i\alpha)$ is Abel-ergodic for all $\alpha \in \mathbb{R}$. Then $\operatorname{sing}_{p,\mu}(\mathscr{Q}) \subseteq \operatorname{sing}_{p,\mu}(\mathscr{R})$.

PROOF. Let $i\beta \in \text{sing}_{p,\mu}(\mathcal{Q})$ and $0 \neq x \in E$ such that $(\lambda - i\beta)\mathcal{Q}(\lambda)x = x$ for $\lambda \in \mathbb{C}_0$. Then $|x| \leq |s\mathcal{Q}(s+i\beta)x| \leq s\mathcal{R}(s)|x|$ for s > 0. Since \mathcal{R} is Abel-ergodic $y := \lim_{s \downarrow 0} s \mathscr{R}(s) |x|$ exists and $0 \le |x| \le y = s \mathscr{R}(s) y$, s > 0. Choose $x' \in E'_+$ such that $\langle x', |x| \rangle > 0$. Another application of the Abel-ergodicity of \mathscr{R} implies that $y' := \sigma(E', E) - \lim_{s \downarrow 0} s \mathscr{R}(s)' x'$ exists and $0 \le s \mathscr{Q}(s)' y' \le s \mathscr{R}(s)' y' = y', s > 0$. Moreover, $\langle y', |x| \rangle = \lim_{s \downarrow 0} \langle s \mathscr{R}(s)' x', |x| \rangle = \langle x', y \rangle \ge \langle x', |x| \rangle > 0$. In particular, $\tilde{x} := j_{y'} x \in (E, y') \setminus \{0\}.$

Now let $\tilde{\mathscr{R}}, \tilde{\mathscr{Q}}: \mathbb{C}_0 \to \mathscr{L}((E, y'))$ be the positive pseudo-resolvents on (E, y')induced by \mathscr{R} and \mathscr{Q} , respectively. Then $\tilde{\mathscr{Q}}$ is dominated by $\tilde{\mathscr{R}}$ and $(\lambda - i\beta)\tilde{\mathscr{Q}}(\lambda)\tilde{x} = \tilde{x}$ for $\lambda \in \mathbb{C}_0$, that is, $i\beta \in \operatorname{sing}_{p,u}(\tilde{\mathcal{Q}})$. Moreover, $|\tilde{x}| \leq s\tilde{\mathcal{Q}}(s)|\tilde{x}| \leq s\tilde{\mathscr{R}}(s)|\tilde{x}|, s > 0$. From $s\mathscr{R}(s)'y' = y'$ it follows that $s\widetilde{\mathscr{R}}(s)$ is a contraction on (E, y'). Hence the strict monotonicity of the norm on (E, y') yields $s\tilde{\mathscr{R}}(s)|\tilde{x}| = |\tilde{x}|, s > 0$. Lemma 3.1 implies $(s - i\beta)\tilde{\mathscr{R}}\tilde{x} = \tilde{x}, s > 0$. Since \mathscr{R}_{β} is Abel-ergodic $z := \lim_{s \downarrow 0} s\mathscr{R}(s + i\beta)x$ exists in E and $(s - i\beta)\mathscr{R}(s)z = z$, s > 0. Moreover,

$$j_{y'}z = \lim_{s \downarrow 0} s\mathscr{R}(s+i\beta)x = \lim_{s \downarrow 0} s\mathscr{\tilde{R}}(s+i\beta)j_{y'}x = \lim_{s \downarrow 0} s\mathscr{\tilde{R}}(s+i\beta)\tilde{x} = \tilde{x} \neq 0.$$

Thus $z \neq 0$ and this shows $i\beta \in \operatorname{sing}_{p,\mu}(\mathscr{R})$.

If the Banach lattice E has order continuous norm we can relax the conditions on the pseudo-resolvent \mathscr{R} . Note that order continuity of the norm of E is equivalent to the fact that for every relatively weakly compact set $C \subseteq E_+$ the solid hull so C := $\{y \in E : |y| \le x \text{ for some } x \in C\}$ is relatively weakly compact (see [1, 13.8]). Examples of such spaces are $c_0, L^p, 1 \le p < \infty$, and all reflexive Banach lattices.

COROLLARY 4.3. Let E be a Banach lattice with order continuous norm and let $\mathscr{Q}, \mathscr{R}: \mathbb{C}_0 \to \mathscr{L}(E)$ be positive pseudo-resolvents such that \mathscr{Q} is dominated by \mathscr{R} and \mathscr{R} is Abel-ergodic. Then $\operatorname{sing}_{p,u}(\mathscr{Q}) \subseteq \operatorname{sing}_{p,u}(\mathscr{R})$.

PROOF. Let $\alpha \in \mathbb{R}$. For $\lambda \in \mathbb{C}_0$ and $x \in E$ we have $|\lambda \mathscr{R}(\lambda + i\alpha)x| \leq |\lambda \mathscr{R}(\lambda + i\alpha)x| \leq |\lambda \mathscr{R}(\lambda + i\alpha)x|$ $|\lambda|\mathscr{R}(\operatorname{Re} \lambda)|x|$. Since \mathscr{R} is Abel-ergodic, \mathscr{R} and hence $\mathscr{R}_{\alpha} = \mathscr{R}(\cdot + i\alpha)$ satisfies the growth condition (G). Moreover, $\{s\mathscr{R}(s+i\alpha)x : 0 < s \le 1\}$ is contained in the solid hull of $\{s\mathcal{R}(s)|x| : 0 < s \le 1\}$. Thus $\{s\mathcal{R}(s+i\alpha)x : 0 < s \le 1\}$ is relatively

[12]

weakly compact and Proposition 4.1 implies that \mathscr{R}_{α} is Abel-ergodic. The assertion now follows from Theorem 4.2.

If E is a KB-space, that is, E is a (projection) band in its bidual, we can even skip the ergodicity condition on \mathscr{R} . Note that in a KB-space every norm bounded increasing sequence in E_+ converges in norm (see [23, II.5.15]) and every KB-space has order continuous norm (see [23, II.5, Example 7]). Examples of KB-spaces are L^p , $1 \le p < \infty$, and all reflexive Banach lattices.

THEOREM 4.4. Let E be a KB-space and let $\mathcal{Q}, \mathcal{R} : \mathbb{C}_0 \to \mathcal{L}(E)$ be positive pseudo-resolvents such that \mathcal{Q} is dominated by \mathcal{R} and \mathcal{R} satisfies (G). Then $\operatorname{sing}_{p,u}(\mathcal{Q}) \subseteq \operatorname{sing}_{p,u}(\mathcal{R})$.

PROOF. Let $i\beta \in \operatorname{sing}_{p,\mu}(\mathcal{Q})$ and choose $0 \neq x \in E$ such that $(\lambda - i\beta)\mathcal{Q}(\lambda)x = x$, $\lambda \in \mathbb{C}_0$. Lemma 2.7 and Proposition 2.11 yield $|x| = |\lambda||\mathcal{Q}(\lambda + i\beta)x| \leq |\lambda|\mathscr{R}(\operatorname{Re} \lambda)|x|$ for $\lambda \in \mathbb{C}_0$. In particular, $\mathscr{R}(1)|x| \geq |x|$, and hence $(\mathscr{R}(1)^n|x|)$ is an increasing sequence in E. On the other hand, the power series expansion of $\mathscr{R}(\cdot)|x|$ at 1 yields (see Corollary 2.4)

$$\begin{aligned} \mathscr{R}(s)|x| &= \sum_{n\geq 0} (1-s)^n \mathscr{R}(1)^{n+1} |x| \\ &\geq \sum_{n\geq m} (1-s)^n \mathscr{R}(1)^{m+1} |x| = (1-s)^m s^{-1} \mathscr{R}(1)^{m+1} |x| \end{aligned}$$

for $0 < s \le 1$ and $m \in \mathbb{N}$. Thus $\mathfrak{sR}(s)|x| \ge (1-s)^m \mathscr{R}(1)^{m+1}|x| \ge 0$. Letting $s \downarrow 0$ and using the fact that \mathscr{R} satisfies (G) we obtain that the sequence $(\mathscr{R}(1)^n|x|)$ is bounded. Since E is a KB-space $y := \lim_n \mathscr{R}(1)^n |x|$ exists in E and $y \ge |x|$. Clearly, $\mathscr{R}(1)y = y$ and by Lemma 2.7

(12)
$$\lambda \mathscr{R}(\lambda) y = y, \quad \lambda \in \mathbb{C}_0.$$

Let *F* be the closed ideal in *E* generated by *y*. From (12) and Proposition 2.11 we obtain $\mathscr{R}(\lambda)F \subseteq F$ and $\mathscr{Q}(\lambda)F \subseteq F$. Let $\mathscr{R}_{|}, \mathscr{Q}_{|} : \mathbb{C}_{0} \to \mathscr{L}(F)$ be the pseudo-resolvents defined by restricting $\mathscr{R}(\lambda)$ and $\mathscr{Q}(\lambda)$ to *F*. Since $x \in F$ we have $i\beta \in \operatorname{sing}_{p,u}(\mathscr{Q}_{|})$. On the other hand *F* as a closed ideal of *E* is a *KB*-space. In particular, *F* has order continuous norm. Clearly, $\{s\mathscr{R}_{|}(s)y : 0 < s \leq 1\}$, and hence $\{s\mathscr{R}_{|}(s)z : 0 < s \leq 1\}$ is relatively weakly compact for all $z \in F$ (note that \mathscr{R} and hence $\mathscr{R}_{|}$ satisfies the growth condition). Proposition 4.1 implies that $\mathscr{R}_{|}$ is Abel-ergodic. Now an application of Corollary 4.3 yields $i\beta \in \operatorname{sing}_{p,u}(\mathscr{R}_{|}) \subseteq$ $\operatorname{sing}_{p,u}(\mathscr{R})$.

The following example shows that in Corollary 4.3 the condition on \mathscr{R} (Abelergodicity) and in Theorem 4.4 the condition on E (KB-space) cannot be omitted.

EXAMPLE 4.5. In [22, Example 2.7] we constructed contractions $0 \le S \le T$ on $E = c_0$ (= space of sequences converging to 0) such that $1 \in \sigma_p(S)$ and $1 \notin \sigma_p(T)$. For $\lambda \in \mathbb{C}_0$ set $\mathscr{R}(\lambda) := R(1+\lambda, T)$ and $\mathscr{Q}(\lambda) := R(1+\lambda, S)$. Then $\mathscr{Q}, \mathscr{R} : \mathbb{C}_0 \to \mathscr{L}(E)$ are pseudo-resolvents such that $0 \le \mathscr{Q} \le \mathscr{R}, 0 \in \operatorname{sing}_p(\mathscr{Q})$ and $0 \notin \operatorname{sing}_p(\mathscr{R})$.

5. The essential singular set of a dominated pseudo-resolvent

In analogy with the definition of the essential spectrum of an operator we introduce the following notion.

DEFINITION 5.1. Let \mathscr{R} be a pseudo-resolvent on the Banach space E. Then

 $\operatorname{sing}_{\operatorname{ess}}(\mathscr{R}) := \{\lambda \in \operatorname{sing}(\mathscr{R}) : \lambda \text{ is not a Riesz point of } \mathscr{R}\}$

is called the essential singular set of \mathscr{R} and $\operatorname{sing}_{\operatorname{ess},u}(\mathscr{R}) := \operatorname{sing}_{\operatorname{ess}}(\mathscr{R}) \cap i\mathbb{R}$ is the unitary part of the essential singular set. The pseudo-resolvent is said to be quasi-compact if the essential singular bound

$$s_{ess}(\mathscr{R}) := \sup\{\operatorname{Re} \lambda : \lambda \in \operatorname{sing}_{ess}(\mathscr{R})\}$$

is negative and $\operatorname{sing}(\mathscr{R}) \cap \mathbb{C}_r$ is finite for some $s_{\operatorname{ess}}(\mathscr{R}) < r < 0$.

We have the following result on the essential singular set of a dominated pseudoresolvent.

THEOREM 5.2. Let E be a Banach lattice and let $\mathcal{Q}, \mathcal{R} : \mathbb{C}_0 \to \mathcal{L}(E)$ be pseudoresolvents such that \mathcal{Q} is dominated by \mathcal{R} . Then the following holds:

(a) $s_{ess}(\mathcal{R}) < 0$ if and only if $s(\mathcal{R}) < 0$ or 0 is a Riesz point of \mathcal{R} .

(b) If 0 is a Riesz point of \mathscr{R} , then there exists $\delta > 0$ (only dependent on \mathscr{R}) such that $\operatorname{sing}(\mathscr{Q}) \cap \mathbb{C}_{-\delta}$ contains only Riesz points, that is, $s_{\operatorname{ess}}(\mathscr{Q}) \leq -\delta$. In particular, $s_{\operatorname{ess}}(\mathscr{R}) \leq -\delta$.

PROOF. Let 0 be a Riesz point of \mathscr{R} . Proposition 2.8 and Proposition 2.11 imply that 1 is a Riesz point of $T := \mathscr{R}(1) \ge 0$ and that r(T) = 1. By [21, Corollary 1.6] there exists $0 \le c < 1$ such that every operator $S \in \mathscr{L}(E)$ dominated by T satisfies

(13)
$$r_{\rm ess}(S) \le c.$$

Now fix $\delta > 0$ such that $(1 + \delta)^{-1} > c$ and let $\alpha + i\beta \in \operatorname{sing}(\mathcal{Q}) \cap \mathbb{C}_{-\delta}$, $\alpha, \beta \in \mathbb{R}$. From (3) we obtain $(1 - \alpha)^{-1} \in \sigma(\mathcal{Q}(1 + i\beta))$ and $|(1 - \alpha)^{-1}| \ge (1 + \delta)^{-1} > c$. Proposition 2.11 implies that $\mathcal{Q}(1 + i\beta)$ is dominated by $\mathcal{R}(1)$, and hence $r_{\operatorname{ess}}(\mathcal{Q}(1 + i\beta)) \le c$ by (13). Thus $(1 - \alpha)^{-1}$ is a Riesz point of $\mathcal{Q}(1 + i\beta)$ and from Proposition 2.8 it follows that $\alpha + i\beta$ is a Riesz point of \mathcal{Q} . This proves $s_{\operatorname{ess}}(\mathcal{Q}) \le -\delta$. Now the remaining assertions are obvious.

195

If the dominating pseudo-resolvent is quasi-compact we obtain the following result.

PROPOSITION 5.3. Let $\mathcal{Q}, \mathcal{R} : \mathbb{C}_0 \to \mathcal{L}(E)$ be positive pseudo-resolvents on the Banach lattice E such that \mathcal{Q} is dominated by \mathcal{R} and \mathcal{R} is quasi-compact. Then there exists $\delta > 0$ (only dependent on \mathcal{R}) such that $s_{ess}(\mathcal{Q}) \leq -\delta$ and $sing_u(\mathcal{Q}) \subseteq sing_u(\mathcal{R}) \subseteq \{0\}$.

PROOF. We only have to prove the second assertion. If $\operatorname{sing}_u(\mathscr{R}) = \emptyset$, then Proposition 2.11 yields $s(\mathscr{Q}) \leq s(\mathscr{R}) < 0$ and the assertion follows. Otherwise 0 is a Riesz point of \mathscr{R} . Proposition 2.13 implies that $\operatorname{sing}_u(\mathscr{R})$ is imaginary additively cyclic. Since \mathscr{R} is quasi-compact, $\operatorname{sing}_u(\mathscr{R}) = \{0\}$. Then by Corollary 3.3 we have $\operatorname{sing}_u(\mathscr{Q}) \subseteq \operatorname{sing}_u(\mathscr{R}) = \{0\}$.

We do not know if in Proposition 5.3 the pseudo-resolvent \mathcal{Q} is even quasi-compact.

6. The spectrum of resolvent-dominated operators and dominated semigroups

In this section we apply the results of Section 3, Section 4 and Section 5 to operators A and B on a Banach lattice E such that the resolvent of B is dominated by the resolvent of A, that is,

$$|R(s, B)x| \leq R(s, A)|x|$$

for $x \in E$ and $s \in (s_0, \infty)$ for some $s_0 \in \mathbb{R}$. In this case we shortly say that *B* is *resolvent-dominated* or *r-dominated* by *A*. Recall that *A* is *resolvent-positive*, or *r-positive* for short, if $(s_0, \infty) \subseteq \rho(A)$ for some $s_0 \in \mathbb{R}$ and $R(s, A) \ge 0$ for $s \in (s_0, \infty)$. From Section 2 we know that the singular set of the resolvent $\mathscr{R}_A = R(\cdot, A)$ coincides with the spectrum $\sigma(A)$ of *A*, and the singular bound $s(\mathscr{R}_A)$ coincides with the spectral bound s(A). An *r*-positive operator *A* is called (*G*)-solvable if its resolvent is (*G*)-solvable (see Definition 2.12).

Now Theorem 3.2 leads at once to the following result.

THEOREM 6.1. Let *E* be a Banach lattice and let *A* and *B* be *r*-positive operators on *E* such that *B* is *r*-dominated by *A* and *A* is (*G*)-solvable. Then $\sigma(B) \cap (s(A) + i\mathbb{R}) \subseteq \sigma_{\pi}(A)$.

If A is the generator of a positive C_0 -semigroup $\mathscr{T} = (T(t))_{t\geq 0}$ on E, then A is r-positive (see [19, C-III.1.1]). Moreover, if B is the generator of a C_0 -semigroup $\mathscr{S} = (S(t))_{t\geq 0}$ such that \mathscr{S} is *dominated* by \mathscr{T} , that is, $|S(t)x| \leq T(t)|x|$ for $t \geq 0$ and $x \in E$, then B is r-dominated by A (see [19, C-II.4.1]). The semigroup \mathscr{T} is said to be (G)-solvable if A is (G)-solvable. With these notions Corollary 3.3 yields the following generalization of [2, Theorem 2.2]. COROLLARY 6.2. Let *E* be a Banach lattice and let $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$ be positive C_0 -semigroups on *E* with generator *A* and *B*, respectively, such that \mathscr{S} is dominated by \mathscr{T} . If \mathscr{T} is (*G*)-solvable, then $\sigma(B) \cap (s(A) + i\mathbb{R}) \subseteq \sigma_{\pi}(A)$. In particular, this holds if s(A) is a pole of the resolvent $R(\cdot, A)$.

The results of Section 4 lead to the following assertion on the point spectra.

THEOREM 6.3. Let A and B be r-positive operators on the Banach lattice E such that B is r-dominated by A. Suppose, in addition, that one of following conditions is satisfied:

- (a) $R(\cdot + i\alpha, A)$ is Abel-ergodic for all $\alpha \in \mathbb{R}$.
- (b) E has order continuous norm and $R(\cdot, A)$ is Abel-ergodic.
- (c) E is a KB-space and A satisfies (G).

Then $\sigma_p(B) \cap (s(A) + i\mathbb{R}) \subseteq \sigma_{p,\pi}(A)$. In particular, this holds if A and B are the generators of positive C_0 -semigroups $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$, respectively, such that \mathscr{S} is dominated by \mathscr{T} .

Our next result is a consequence of Theorem 5.2. Note that for an operator A the essential singular set of the resolvent $\mathscr{R}_A = R(\cdot, A)$ coincides with the *essential spectrum* $\sigma_{ess}(A)$, and hence $s_{ess}(\mathscr{R}_A)$ and the *essential spectral bound* $s_{ess}(A) := \sup\{\operatorname{Re} \lambda : \lambda \in \sigma_{ess}(A)\}$ are equal. In contrast to the previous results only A has to be r-positive.

THEOREM 6.4. Let A and B be operators on the Banach lattice E. Suppose that B is r-dominated by A. Then the following holds:

(a) $s_{ess}(A) < s(A)$ if and only if s(A) is finite and a Riesz point of A.

(b) If s(A) is a Riesz point of A, then there exists $\delta > 0$ (only dependent on A) such that $s_{ess}(B) \le s(A) - \delta$. In particular, $s_{ess}(A) \le -\delta$.

As in the previous cases there is an obvious reformulation of Proposition 5.3 for *r*-dominated operators. For dominated semigroups we obtain a slightly different result. Recall that a C_0 -semigroup $\mathscr{T} = (T(t))_{t\geq 0}$ is *quasi-compact* if there is $t_0 > 0$ such that $r_{ess}(T(t_0)) < 1$, where $r_{ess}(T(t_0)) := \sup\{|\lambda| : \lambda \in \sigma_{ess}(T(t_0))\}$ is the *essential spectral radius* of $T(t_0)$. Note that for a quasi-compact C_0 -semigroup \mathscr{T} the resolvent of its generator A is quasi-compact in the sense of Definition 5.1 (see [19, B-IV.2.10]). The converse is not true in general. The following result generalizes [17, Proposition 3.3], where the semigroups were assumed to be positive.

THEOREM 6.5. Let E be a Banach lattice and let $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$ be C_0 -semigroups on E with generator A and B, respectively, such that $s(A) \leq 0$ and \mathscr{S} is dominated by \mathscr{T} . If \mathscr{T} is quasi-compact, then \mathscr{S} is quasi-compact. PROOF. By the quasi-compactness of \mathscr{T} there exists $t_0 > 0$ such that $r_{ess}(T(t_0)) < 1$. Thus $M := \sigma(T(t_0)) \cap \{\lambda \in \mathbb{C} : |\lambda| > r_{ess}(T(t_0))\}$ contains only Riesz points, and hence consists of eigenvalues of $T(t_0)$. By the spectral mapping theorem for the point spectrum (see [19, A-III.6.3]) for each $\lambda \in M$ there is an eigenvalue μ of A such that $\lambda = e^{t_0\mu}$. Since $s(A) \leq 0$ we have $|\lambda| \leq 1$ for each $\lambda \in M$. Thus $r(T(t_0)) \leq 1$. By our assumption $S(t_0)$ is dominated by $T(t_0)$ and then by [22, Theorem 3.1] we have $r_{ess}(S(t_0)) < 1$, that is, \mathscr{S} is quasi-compact.

7. Asymptotic properties of dominated semigroups

We now use the results of the previous sections to investigate asymptotic properties for dominated C_0 -semigroups.

Our first result is a Katznelson-Tzafriri type theorem for dominated semigroups. Recall that $f \in L^1(\mathbb{R})$ is of *spectral synthesis* with respect to a closed set $F \subseteq \mathbb{R}$ if f is the limit of a sequence (f_n) in $L^1(\mathbb{R})$ such that for each $n \in \mathbb{N}$ the Fourier transform $\hat{f_n}$ vanishes in a neighbourhood of F. In the following $L^1(\mathbb{R}_+)$ is always considered as a subspace of $L^1(\mathbb{R})$ (by setting $f \in L^1(\mathbb{R}_+)$ identically zero on \mathbb{R}_-). For a bounded C_0 -semigroup $\mathscr{T} = (T(t))_{t\geq 0}$ on a Banach space E and $f \in L^1(\mathbb{R}_+)$ we define $\hat{f}(\mathscr{T}) \in \mathscr{L}(E)$ by

$$\hat{f}(\mathscr{T})x := \int_0^\infty f(s)T(s)x\,ds, \quad x \in E.$$

THEOREM 7.1. Let *E* be a Banach lattice and let $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$ be positive bounded C_0 -semigroups on *E* with generator *A* and *B*, respectively, such that \mathscr{S} is dominated by \mathscr{T} . If $f \in L^1(\mathbb{R}_+)$ is of spectral synthesis with respect to $i\sigma_u(A)$, then $\lim_{t\to\infty} ||S(t)\hat{f}(\mathscr{S})|| = 0$.

PROOF. From Corollary 6.2 we obtain $\sigma_u(B) \subseteq \sigma_u(A)$. Thus f is also of spectral synthesis with respect to $i\sigma_u(B)$. An application of the Katznelson-Tzafriri theorem for C_0 -semigroups (see [11, Théorème 3.4] and [27, Theorem 3.2]) yields $\lim_{t\to\infty} ||S(t)\hat{f}(\mathscr{S})|| = 0.$

As a special case we obtain the following result.

COROLLARY 7.2. Let E be a Banach lattice and let $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$ be positive bounded C_0 -semigroups on E with generator A and B, respectively, such that \mathscr{S} is dominated by \mathscr{T} .

(a) If $\sigma_u(A) \subseteq i\omega\mathbb{Z}$ for some $\omega > 0$, then $\lim_{t\to\infty} \|(S(t+2\pi/\omega)-S(t))\hat{f}(\mathscr{S})\| = 0$ for all $f \in L^1(\mathbb{R}_+)$.

[18]

(b) If $\sigma_u(A) \subseteq \{0\}$, then $\lim_{t\to\infty} \|(S(t+s) - S(t))\hat{f}(\mathscr{S})\| = 0$ for all s > 0 and $f \in L^1(\mathbb{R}_+)$.

PROOF. Let $f \in L^1(\mathbb{R}_+)$ and set $g := f_s - f$ where $f_s := f(\cdot - s)$ for s > 0. Then $\hat{g}(t) = (e^{its} - 1)\hat{f}(t)$, $t \in \mathbb{R}$. Thus $\hat{g}(0) = 0$ for every s > 0 and $\hat{g}|_{\omega \mathbb{Z}} = 0$ for $s = \frac{2\pi}{\omega}$. Since every countable closed set $F \subseteq \mathbb{R}$ is a set of spectral synthesis, that is, every function $h \in L^1(\mathbb{R})$ such that $\hat{h}|_F = 0$ is of spectral synthesis with respect F (see [16, 37C]), the assertion follows from Theorem 7.1.

Next we discuss almost periodicity of dominated C_0 -semigroups. Recall that a C_0 -semigroup $\mathscr{T} = (T(t))_{t\geq 0}$ on a Banach space E is almost periodic if for each $x \in E$ the orbit $\{T(t)x : t \geq 0\}$ is relatively compact in E. In this case the Jacobs-Glicksberg-deLeeuw theorem (see [15, 2.4.4, 2.4.5]) yields a decomposition $E = E_0 \oplus E_r$, with \mathscr{T} -invariant spaces $E_0 = \{x \in E : \lim_{t \to \infty} ||T(t)x|| = 0\}$ and $E_r = \overline{\lim}\{x \in E : \text{ there exists } \lambda \in i\mathbb{R} \text{ such that } Ax = \lambda x\}$, where A is the generator of \mathscr{T} . The semigroup \mathscr{T} is called *stable* if $\lim_{t\to\infty} T(t)x$ exists for all $x \in E$. In this case $E_r = \ker A$. Finally, we say that \mathscr{T} is Abel-ergodic if the resolvent $R(\cdot, A)$ is Abel-ergodic. By a theorem of Ljubich and Vũ [28, Theorem 2] (see also [8, Theorem 8]), a bounded C_0 -semigroup with generator A is almost periodic if $\sigma_u(A)$ is countable and $\mathscr{T}_{\alpha} = (e^{i\alpha t} T(t))_{t\geq 0}$ is Abel-ergodic for all $i\alpha \in \sigma_u(A)$. Together with Corollary 6.2 this immediately leads to the following result.

THEOREM 7.3. Let E be a Banach lattice and let $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$ be positive bounded C_0 -semigroups on E with generator A and B, respectively, such that \mathscr{S} is dominated by \mathscr{T} . If $\sigma_u(A)$ is countable and $\mathscr{S}_{\alpha} = (e^{i\alpha t}S(t))_{t\geq 0}$ is Abelergodic for all $i\alpha \in \sigma_u(A)$, then \mathscr{S} is almost periodic. If, in addition, $\sigma_u(A) \subseteq \{0\}$ or \mathscr{T} is stable, then \mathscr{S} is stable.

Only recently, on Banach lattices with order continuous norm the following inheritance result on almost periodicity and stability of dominated semigroups has been shown (see [10]).

THEOREM 7.4. Let *E* be a Banach lattice with order continuous norm and let $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$ be positive C_0 -semigroups on *E* with generator *A* and *B*, respectively, such that \mathscr{S} is dominated by \mathscr{T} . If \mathscr{T} is almost periodic, then \mathscr{S} is almost periodic, and if \mathscr{T} is stable, then \mathscr{S} is stable.

We now investigate uniform ergodicity of dominated semigroups. The following spectral characterization of uniformly Abel-ergodic pseudo-resolvents is an immediate consequence of [14, Theorem 18.8.1].

LEMMA 7.5. Let $\mathscr{R} : \mathbb{C}_0 \to \mathscr{L}(E)$ be a pseudo-resolvent on the Banach space E. Then the following assertions are equivalent:

- (a) $P_{\mathscr{R}} := \lim_{s \downarrow 0} s \mathscr{R}(s)$ exists in $\mathscr{L}(E)$, that is, \mathscr{R} is uniformly Abel-ergodic.
- (b) 0 is a pole of \mathscr{R} of order at most 1.

A C_0 -semigroup $\mathscr{T} = (T(t))_{t\geq 0}$ on a Banach space E with generator A is called uniformly Abel-ergodic if $s(A) \leq 0$ and $P_{\mathscr{T}} := \lim_{s\downarrow 0} s\mathscr{R}(s, A)$ exists in $\mathscr{L}(E)$. The operator $P_{\mathscr{T}}$ is called the *ergodic projection* corresponding to \mathscr{T} . We obtain the following inheritance result on uniform Abel-ergodicity.

THEOREM 7.6. Let *E* be a Banach lattice and let $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$ be C_0 -semigroups on *E* with generator *A* and *B*, respectively, such that \mathscr{S} is dominated by \mathscr{T} . If \mathscr{T} is uniformly Abel-ergodic with ergodic projection $P_{\mathscr{T}}$ of finite rank, then \mathscr{S} is uniformly Abel-ergodic with ergodic projection $P_{\mathscr{T}}$ of finite rank.

PROOF. Lemma 7.5 implies that 0 is a Riesz point of A. From Theorem 6.4 we know that 0 is a Riesz point of B. In particular, 0 is a pole of the resolvent $R(\cdot, B)$. Since $R(\cdot, B)$ is dominated by $R(\cdot, A)$ we have $\limsup_{s\downarrow 0} ||sR(s, B)|| \le \limsup_{s\downarrow 0} ||sR(s, A)|| < \infty$. Thus 0 is a pole of order at most one of $R(\cdot, B)$, and the assertion follows from Lemma 7.5.

We point out that the same result can be shown for dominated pseudo-resolvents (instead of Theorem 6.4 one has to use Theorem 5.2). An example of Arendt and Batty (see [5, Example 3.1]) shows that in Theorem 7.6 the rank condition on $P_{\mathcal{T}}$ cannot be omitted.

For a C_0 -semigroup $\mathscr{T} = (T(t))_{t\geq 0}$ on a Banach space E the Cesàro means $C(t) \in \mathscr{L}(E), t > 0$, are defined by $C(t)x := (1/t) \int_0^t T(s)x \, ds$. The semigroup \mathscr{T} is called *uniformly ergodic* if $P_{\mathscr{T}} := \lim_{t\to\infty} C(t)$ exists in $\mathscr{L}(E)$. As above we call $P_{\mathscr{T}}$ the *ergodic projection* corresponding to \mathscr{T} . The following result due to Shaw clarifies the connection between uniform ergodicity and uniform Abel-ergodicity (see [25, Theorem 4 and Proposition 7]). We set

$$\omega_1(\mathscr{T}) := \inf \left\{ r \in \mathbb{R} : \lim_{t \to \infty} \int_0^t e^{-\lambda s} T(s) x \, ds \text{ exists for all } \operatorname{Re} \lambda > r \text{ and all } x \in E \right\}.$$

PROPOSITION 7.7. Let $\mathscr{T} = (T(t))_{t\geq 0}$ be a C_0 -semigroup with generator A on the Banach space E such that $\omega_1(\mathscr{T}) \leq 0$. Then the following assertions are equivalent:

- (a) \mathcal{T} is uniformly ergodic.
- (b) $\lim_{t\to\infty} ||T(t)R(1, A)|| = 0$ and \mathscr{T} is uniformly Abel-ergodic.

Moreover, the corresponding ergodic projections coincide.

Together with Theorem 7.6 this yields the following inheritance result on uniform ergodicity which generalizes [20, Theorem 3.4].

THEOREM 7.8. Let E be a Banach lattice and let $\mathscr{T} = (T(t))_{t\geq 0}$ and $\mathscr{S} = (S(t))_{t\geq 0}$ be C_0 -semigroups on E with generator A and B, respectively, such that \mathscr{S} is dominated by \mathscr{T} . If \mathscr{T} is uniformly ergodic with ergodic projection $P_{\mathscr{T}}$ of finite rank, then \mathscr{S} is uniformly ergodic with ergodic projection $P_{\mathscr{T}}$ of finite rank.

PROOF. The uniform ergodicity of \mathscr{T} implies $\omega_1(\mathscr{T}) \leq 0$ (see [25, Proposition 8]). Since \mathscr{S} is dominated by \mathscr{T} we have $\omega_1(\mathscr{S}) \leq \omega_1(\mathscr{T}) \leq 0$. Moreover, $R(\cdot, B)$ is dominated by $R(\cdot, A)$. Thus $||S(t)R(1, B)|| \leq ||T(t)R(1, A)||$, and hence $\lim_{t\to\infty} ||S(t)R(1, B)|| = 0$. Theorem 7.6 implies that \mathscr{S} is uniformly Abel-ergodic with ergodic projection $P_{\mathscr{S}}$ of finite rank. Now the assertion follows from Proposition 7.7.

We point out that a corresponding result on the inheritance of uniform stability for dominated positive semigroups has been shown in [20, Theorem 3.6].

References

- [1] C. D. Aliprantis and O. Burkinshaw, Positive operators (Academic Press, Orlando, 1985).
- [2] F. Andreu and J. M. Mazon, 'On the boundary spectrum of dominated C₀-semigroups', Semigroup Forum 38 (1989), 129–139.
- [3] W. Arendt, 'Kato's inequality. A characterization of generators of positive semigroups', Proc. Roy. Irish Acad. 84 (1984), 155–174.
- [4] -----, 'Resolvent positive operators', Proc. London Math. Soc. (3) 54 (1987), 321-349.
- [5] W. Arendt and C. J. K. Batty, 'Domination and ergodicity for positive semigroups', Proc. Amer. Math. Soc. 114 (1992), 743-747.
- [6] -----, 'Absorption semigroups and Dirichlet boundary conditions', Math. Ann. 292 (1993), 427–448.
- [7] W. Arendt and A. Rhandi, 'Perturbation of positive semigroups', Arch. Math. 56 (1991), 107-119.
- [8] C. J. K. Batty and Vũ Quôc Phóng, 'Stability of individual elements under one-parameter semigroups', Trans. Amer. Math. Soc. 322 (1990), 805-818.
- [9] Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter, One-parameter semigroups (North-Holland, Amsterdam, 1987).
- [10] E. Yu. Emel'yanov, U. Kohler, F. Räbiger and M. P. H. Wolff, 'Stability and almost periodicity of dominated semigroups of operators', preprint.
- [11] J. Esterle, E. Strouse and F. Zouakia, 'Stabilité asymptotique de certains semigroupes d'opérateurs et ideaux primaires', J. Operator Theory 28 (1992), 203–228.
- [12] G. Greiner, 'Zur Perron-Frobenius Theorie stark stetiger Halbgruppen', Math. Z. 177 (1981), 401-423.
- [13] —, 'Spektrum und Asymptotik stark stetiger Halbgruppen positiver Operatoren', *Sitzungsber. Heidelb. Akad. Wiss., Math.-Naturwiss. Klasse* (1982), 55-80.

- [14] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Colloquium Publications 31 (Amer. Math. Soc., Providence, 1957).
- [15] U. Krengel, Ergodic theorems (deGruyter, Berlin, 1985).
- [16] L. H. Loomis, An introduction to abstract harmonic analysis (Van Nostrand, Princeton, 1953).
- [17] J. Martinez and J. M. Mazon, 'Quasi-compactness of dominated positive operators and C₀-semigroups', Math. Z. 207 (1991), 109–120.
- [18] P. Meyer-Nieberg, Banach lattices (Springer, Berlin, 1991).
- [19] R. Nagel (ed.), One-parameter semigroups of positive operators (Springer, Berlin, 1986).
- [20] F. Räbiger, 'Stability and ergodicity of dominated semigroups, I. The uniform case', Math. Z. 214 (1993), 43-54.
- [21] F. Räbiger and M. P. H. Wolff, 'On the approximation of positive operators and the behaviour of the spectra of the approximants', *Integral Equations Operator Theory* 28 (1997), 72–86.
- [22] —, 'Spectral and asymptotic properties of dominated operators', J. Austral. Math. Soc. (Ser. A) 63 (1997), 16–31.
- [23] H. H. Schaefer, Banach lattices and positive operators (Springer, Berlin, 1974).
- [24] A. R. Schep, 'Weak Kato-inequalities and positive semigroups', Math. Z. 190 (1985), 303-314.
- [25] S.-Y. Shaw, 'Uniform ergodic theorems for locally integrable semigroups and pseudo-resolvents', Proc. Amer. Math. Soc. 98 (1986), 61–67.
- [26] J. Voigt, 'Absorption semigroups, their generators, and Schrödinger semigroups', J. Funct. Anal. 67 (1982), 167–205.
- [27] Vũ Quôc Phóng, 'Theorems of Katznelson-Tzafriri type for semigroups of operators', J. Funct. Anal. 103 (1992), 74–84.
- [28] Vũ Quôc Phóng and Yu. I. Lyubich, 'A spectral criterion for almost periodicity of one-parameter semigroups', J. Soviet. Math. 48 (1990), 644–647.
- [29] K. Yosida, Functional analysis, 6th edition (Springer, Berlin, 1980).

Mathematisches Institut

Universität Tübingen

Auf der Morgenstelle 10

D-72076 Tübingen

Germany

e-mail: frra@michelangelo.mathematik.uni-tuebingen.de

e-mail: manfred.wolff@uni-tuebingen.de