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A COLLECTIONWISE HAUSDORFF, 
NON-NORMAL MOORE SPACE 

MICHAEL L. WAGE 

A topological space X is said to be collectionwise Hausdorff if every discrete 
collection of points of X can be simultaneously separated by a collection of 
pairwise disjoint open sets. T h e question of whether there exists a collection-
wise Hausdorff, non-normal Moore space was first asked by R. L. Moore. In 
1964, J. M. Worrell announced t h a t such a space did indeed exist (see [7]), bu t 
his proof has never appeared in print . More recently, works such as [3; 4; 5 
and 6] have shown t h a t the proper ty of collectionwise Hausdorff plays an 
impor tan t role in the s tudy of generalized metric spaces. Wi th interest in 
Moore 's question increased by such works, W. G. Fleissner [2] and Alster and 
Pol [1] exhibited consistent examples of collectionwise Hausdorff non-normal 
Moore spaces under assumptions such as Mar t in ' s axiom or 2e0 < 2W1. T h e 
purpose of this note is to construct an example of a collectionwise Hausdorff 
non-normal Moore space wi thout the use of set theoretic assumptions beyond 
the axiom of choice. Background material and undefined terminology can be 
found in [2] or [5]. 

In the construction of the example, we will use the following lemma which is 
independently interesting as a fact about subsets of the real line. 

L E M M A . There exist subsets of the real line A and B such that B (Z A and every 
countable subset of B is contained in a G& that does not meet A — B, yet every G s 
containing B does meet A — B. 

Proof. For each a < coi, inductively choose Ya and Za such t ha t Ya C Za C R, 
Ya is a countable subset of R — U {Zp : (3 < a}, and Za is a G§ of (Lebesgue) 
measure zero t ha t contains U \Z$ : /3 < a} VJ Ya. T h e fact t ha t Lebesgue 
measure is regular and countably addi t ive guarantees t h a t the above sets can 
actually be chosen. Let Y = U{ Ya : a < coi} and Z = U {Za : a < coi}. 

I t is well known and easy to prove t h a t F is a X-set (i.e. t ha t each countable 
subset of F is a relative Gs). If F is not a Q-set (i.e. it is not t rue t h a t each 
subset of F is a relative GÔ) then there exists Y' C F such t ha t every GÔ con
taining Y' meets F — Y'. In this case we can simply set A = F and B = Y' to 
complete the proof. Also, every countable subset of Z is contained in some Z a , 
so t ha t if Z happens not to be a G&, we are done by letting A = R and B = Z. 
Similarly, we are done unless Z — F is a GO (for if not, let A = R and 
B = Z - F ) . 
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The only remaining case is when F is a Q-set and both Z — Y and Z are GV 
This implies that the uncountable Q-set Fis a Borel set. But every uncountable 
Borel set has cardinality 2W whereas no Q-set can have cardinality 2W. Hence 
this last case cannot occur, and the proof is complete. 

We will now construct an example of a collectionwise Hausdorff non-normal 
space that is not a Moore space and then show how to modify it to get an 
example that is a Moore space. 

Let A and B be as in the lemma. Topologize A by letting the points of B have 
the usual (interval) neighborhoods and by letting each point of A — B be 
open. Let X = A X (co + 1) — B X {co} have the product topology. Then X 
is a first countable, Tz space. 

Every discrete subset of B, and hence every discrete subset of B X co, is 
countable. Since the points of (A — B) X co are open, X will be shown to be 
collectionwise Hausdorff once we show that every countable subset of B X co is 
contained in an open set whose closure misses (A — B) X {co}. Fix C C B X co 
with C countable. Every countable subset of B is contained in a G§ 
that misses A — B, thus there exist Un(n £ co) open subsets of A such that 
Un D Un+U H { Un : n G co} C\ {A - B) = 0, and C C U { Un X {n} : n G co}. 
Since the closure of U { Un X {n} : n Ç co} contains no points of {A — B) X {co}, 
X is collectionwise Hausdorff. 

X is not normal since the closed sets B X co and {A — B) X {co} cannot be 
separated by disjoint open sets. To see this, suppose U is an open set containing 
B X co whose closure misses {A — B) X {co}.Then (by reversing the argument 
used in the above paragraph) U gives rise to a G s containing B that does not 
meet A — B. This contradiction proves that X is not normal. 

The space described above is not a Moore space since B X [n] is a closed set 
that is not a GV We can construct a Moore space example by letting 
Y = X' X {co} ^J X - X' X w where X' is the set of all non-isolated points of X. 
Y is given the product topology by considering it as a subspace of X X (co + 1 ). 
Now F is a Moore space, and the proof used above shows that F is collection-
wise Hausdorff but not normal. Note that Fis also pseudo-normal (i.e. any two 
disjoint closed sets, one of which is countable, can be separated by disjoint open 
sets) and hence is another example of a pseudo-normal space that is not 
normal. 
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