ON CONCIRCULAR TRANSFORMATIONS IN RIEMANNIAN SPACES

LUO CHONGSHAN

(Received 3 July 1984)

Abstract

This paper introduces a tensor that contains the Riemannian curvature tensor and the conformal curvature tensor as special examples in the Riemannian space (M^{n}, g), and by using this tensor we define C^{\prime}-semi-symmetric space. In this paper, we have the following main result: if there is a non-trivial concircular transformation between two C^{\prime}-semi-symmetric spaces, then both spaces are of quasi-constant curvature.

1980 Mathematics subject classification (Amer. Math. Soc.): 53 B 20, 53 A 30.

1. Introduction and preliminaries

It is well known that if a curvature tensor in Riemannian space (M^{n}, g) satisfies $R_{i j k, l m}^{h}=R_{i j k, m l}^{h}$, then $\left(M^{n}, g\right)$ is said to be S-manifold or semi-symmetric space (here the comma "," followed by a Latin index denotes covariant derivative with respect to g). If the conformal curvature tensor

$$
\begin{aligned}
C_{i j k}^{h}= & R_{i j k}^{h}+\frac{1}{n-2}\left(\delta_{j}^{h} R_{i k}-\delta_{k}^{h} R_{i j}+g_{i k} R_{j}^{h}-g_{i j} R_{k}^{h}\right) \\
& +\frac{R}{(n-1)(n-2)}\left(\delta_{k}^{h} g_{i j}-\delta_{j}^{h} g_{i k}\right)
\end{aligned}
$$

of $\left(M^{n}, g\right)$ satisfies $C^{h}{ }_{i j k, l m}=C^{h}{ }_{i j k, m l}$, then $\left(M^{n}, g\right)$ is said to be a conformally semi-symmetric space. In order to treat a semi-symmetric space and conformally semi-symmetric space simultaneously, we introduce the following tensor in the

[^0]Riemannian space (M^{n}, g):

$$
\begin{align*}
C^{h \prime}{ }_{i j k}= & R_{i j k}^{h}+a\left(\delta_{j}^{h} R_{i k}-\delta_{k}^{h} R_{i j}+g_{i k} R_{j}^{h}-g_{i j} R_{k}^{h}\right) \tag{1.1}\\
& +b R\left(\delta_{k}^{h} g_{i j}-\delta_{j}^{h} g_{i k}\right)
\end{align*}
$$

where a and b are constants $(a \neq-1)$. It is obvious that if $a=b=0$, then $C^{h \prime}{ }_{i j k}=R_{i j k}^{h}$; if $a=0, b=-1 / n(n-1)$, then $C^{h \prime}{ }_{i j k}=Z^{h}{ }_{i j k}$ is the concircular curvature tensor; if $a=1 /(n-2), \quad b=0$, then $C^{h \prime}{ }_{i j k}=Z^{h \prime}{ }_{i j k}=R_{i j k}^{h}+$ $1 /(n-2)\left(\delta_{j}^{h} R_{i k}-\delta_{k}^{h} R_{i j}+g_{i k} R_{j}^{h}-g_{i j} R_{k}^{h}\right)$ is the conharmonic curvature tensor; if $a=1 /(n-2), b=1 /(n-1)(n-2)$, then $C^{h \prime}{ }_{i j k}=C^{h}{ }_{i j k}$ is the conformal curvature tensor.

It is easy to verify that the tensors $C^{h \prime}{ }_{i j k}$ and $C^{\prime}{ }_{h i j k} \equiv g_{h l} C^{l \prime}{ }_{i j k}$ satisfy the following identities

$$
\begin{gather*}
C^{h \prime}{ }_{i j k}=-C^{h \prime}{ }_{i k j}, \tag{1.2}\\
C^{a \prime}{ }_{a j k}=0, \tag{1.3}\\
C^{h \prime}{ }_{i j k}+C^{h \prime}{ }_{j k i}+C^{h \prime}{ }_{k i j}=0, \tag{1.4}\\
C_{h i j k}^{\prime}=C_{j k h i}^{\prime}=-C_{i h j k}^{\prime}=-C_{h i k j}^{\prime}, \tag{1.5}\\
C_{i j}^{\prime} \equiv C^{a \prime}{ }_{i j a}=(1-(n-2) a) R_{i j}+(b(n-1)-a) R g_{i j} . \tag{1.6}
\end{gather*}
$$

If tensor (1.1) satisfies

$$
\begin{equation*}
C_{i j k, l m}^{h \prime}=C_{i j k, m l}^{h \prime} \tag{1.7}
\end{equation*}
$$

then we say that $\left(M^{n}, g\right)$ is a C^{\prime}-semi-symmetric space. If the Ricci tensor $R_{i j}$ satisfies

$$
\begin{equation*}
R_{i j, l m}=R_{i j, m l} \tag{1.8}
\end{equation*}
$$

then (M^{n}, g) is called a Ricci semi-symmetric space.
In 1940 to 1942 K . Yano [1] introduced the concept of a concircular transformation between two Riemannian spaces $\left(M^{n}, g\right)$ and ($\left.M^{n}, \bar{g}\right)$. A concircular transformation between two Riemannian spaces $\left(M^{n}, g\right)$ and $\left(M^{n}, \bar{g}\right)$ is by definition a conformal transformation of (M^{n}, g) to (M^{n}, \bar{g}) which carries geodesic circles in $\left(M^{n}, g\right)$ to geodesic circles in $\left(M^{n}, \bar{g}\right)$. K. Yano showed that a conformal transformation $\bar{g}_{i j}=e^{2 p} g_{i j}$ is a concircular transformation if and only if the equation $\rho_{, i j}-\rho_{, i} \rho_{, j}=\varphi g_{i j}$ holds. Using the change $1 / \sigma=e^{\rho}$, it is easy to verify that a conformal transformation $\bar{g}_{i j}=\sigma^{-2} g_{i j}$ is concircular if and only if the equation $\sigma_{, i j}=\psi g_{i j}$ holds for a certain function ψ. We shall use this simple form. It is obvious that if $\sigma=$ constant, then the concircular transformation

$$
\begin{equation*}
\bar{g}_{i j}=\sigma^{-2} g_{i j}, \quad \sigma_{, i j}=\psi g_{i j} \tag{1.9}
\end{equation*}
$$

are the homothety or trivial transformation. In this paper, we only study non-trivial transformations.

It is easy to verify that, under the concircular transformation (1.9), the Christoffel symbols, the Riemannian curvature tensors, the Ricci tensors, the scalar curvature and tensor (1.1) of ($\left.M^{n}, \bar{g}\right)$ and $\left(M^{n}, g\right)$ are related as follows:

$$
\begin{equation*}
\bar{R}_{i j}=R_{i j}-(n-1) \alpha g_{i j} \tag{1.12}
\end{equation*}
$$

$$
\begin{gather*}
\left\{\begin{array}{c}
\bar{h} \\
i j
\end{array}\right\}=\left\{\begin{array}{l}
h \\
i j
\end{array}\right\}-\frac{1}{\sigma}\left(\delta_{j}^{h} \sigma_{, j}+\delta_{i}^{h} \sigma_{, j}-g_{i j} \sigma_{,}^{h}\right), \tag{1.10}\\
\bar{R}_{i j k}^{h}=R_{i j k}^{h}+\alpha\left(\delta_{j}^{h} g_{i k}-\delta_{k}^{h} g_{i j}\right), \tag{1.11}
\end{gather*}
$$

where $\sigma_{,}{ }^{h}=g^{k h_{, k}}$

$$
\begin{gather*}
\alpha=\frac{2 \psi}{\sigma}+\frac{1}{\sigma^{2}} \Delta_{1} \sigma, \tag{1.16}\\
\Delta_{1} \sigma=g^{a b} \alpha_{, a} \sigma_{, b}, \\
\beta=1-2 a(n-1)+b(n-1) n . \tag{1.17}
\end{gather*}
$$

We know that when $n>3$ a space of quasi-constant curvature is a Riemannian space whose curvature tensor satisfies

$$
\begin{equation*}
R_{i j k}^{h}=p\left(\delta_{k}^{h} g_{i j}-\delta_{j}^{h} g_{i j}\right)+q\left(\left(\delta_{k}^{h} v_{j}-\delta_{j}^{h} v_{k}\right) v_{i}+\left(v_{k} g_{i j}-v_{j} g_{i k}\right) v^{h}\right) \tag{1.18}
\end{equation*}
$$

where p and q are scalar functions and v_{i} is a unit covariant vector field. The vector field v^{i} is called the generator of the space ([4] and [5]).

The purpose of this paper is to study the non-trivial concircular transformations of C^{\prime}-semi-symmetric Riemannian spaces. In Section 2 we study concircular transformations of a C^{\prime}-semi-symmetric space to a Riemannian space; in Section 3 we study concircular transformations between two C^{\prime}-semi-symmetric spaces. In this paper we always assume that $n>3$, the metrics are positive definite and the indices h, i, j, k, l, m, \ldots run over the range $1,2, \ldots, n$.

2. Concircular transformations of a C^{\prime}-semi-symmetric space to a Riemannian space

It is obvious that a semi-symmetric space is C^{\prime}-semi-symmetric. Conversely, a C^{\prime}-semi-symmetric space is semi-symmetric if it is Ricci semi-symmetric.

Lemma 1. If there is a concircular transformation of a space (M^{n}, g) of quasi-constant curvature to a Riemannian space $\left(M^{n}, \bar{g}\right)$, then $\left(M^{n}, \bar{g}\right)$ is also of quasi-constant curvature.

Proof. Substituting (1.18) into (1.11) and from $\bar{g}_{i j}=\sigma^{-2} g_{i j}$ we get

$$
\begin{aligned}
\bar{R}_{i j k}^{h}= & (p-\alpha) \sigma^{2}\left(\delta_{k}^{h} \bar{g}_{i j}-\delta_{j}^{h} \bar{g}_{i k}\right) \\
& +q \sigma^{2}\left(\left(\delta_{k}^{h} \bar{v}_{j}-\delta_{j}^{h} \bar{v}_{k}\right) \bar{v}_{i}+\left(\bar{v}_{k} \bar{g}_{i j}-\bar{v}_{j} \bar{g}_{i k}\right) \bar{v}^{h}\right)
\end{aligned}
$$

where $\bar{v}_{j}=\sigma^{-1} v_{j}$ is a unit covariant vector field under the metric \bar{g}. Consequently (M^{n}, \bar{g}) is also of quasi-constant curvature.

Lemma 2. If a Riemannian space (M^{n}, g) admits a concircular transformation (1.9), then there is a scalar function K such that the following equations hold:

$$
\begin{gather*}
K\left(\sigma_{, k} g_{i k}-\sigma_{, j} g_{i k}\right)=\sigma_{, a} R_{i j k}^{a}, \tag{2.1}\\
(n-1) K \sigma_{, k}=\sigma_{, a} R_{k}^{a} \tag{2.2}
\end{gather*}
$$

Proof. If a Riemannian space $\left(M^{n}, g\right)$ admits a concircular transformation (1.9), then we have

$$
\begin{equation*}
\sigma_{, i j}=\psi g_{i j} . \tag{2.3}
\end{equation*}
$$

Covariant differentiation of (2.3) with respect to $g_{i j}$ and Ricci's identity give us

$$
\begin{equation*}
\psi_{, k} g_{i j}-\psi_{, j} g_{i k}=\sigma_{, a} R_{i j k}^{a} . \tag{2.4}
\end{equation*}
$$

Transvecting (2.4) with $\sigma_{\text {, }}$, we obtain

$$
\psi_{, k} \sigma_{, j}-\psi_{, j} \sigma_{, k}=0
$$

Consequently there exists a function K such that

$$
\begin{equation*}
\psi_{, k}=K \sigma_{, k} . \tag{2.5}
\end{equation*}
$$

Substituting (2.5) into (2.4), we get (2.1). Again contracting (2.1) with $g^{i j}$ we get (2.2).

Now we study non-trivial concircular transformations of a C^{\prime}-semi-symmetric space (M^{n}, g) to a Riemannian space (M^{n}, \bar{g}). Twice covariant differentiation of (2.1) with respect to $g_{i j}$, and (2.3) and (2.5) give us that

$$
\begin{align*}
K_{, l m}\left(\sigma_{, k} g_{i j}-\sigma_{, j} g_{i k}\right)+ & K_{, l} \psi\left(g_{k m} g_{i j}-g_{j m} g_{i k}\right) \tag{2.6}\\
& +\sigma_{, m} K^{2}\left(g_{k l} g_{i j}-g_{j l} g_{i k}\right)+\psi K_{, m}\left(g_{k l} g_{i j}-g_{j l} g_{i k}\right) \\
& =\psi_{, m} R_{l i j k}+\psi R_{l i j k, m}+\psi R_{m i j k, l}+\sigma_{, a} R_{i j k, l m}^{a}
\end{align*}
$$

Interchanging the place of the indices l and m in (2.6), and subtracting equation (2.6) from the obtained relation, we get
(2.7) $K \sigma_{, l}\left(R_{m i j k}-K\left(g_{k m} g_{i j}-g_{j m} g_{i k}\right)\right)-K \sigma_{, m}\left(R_{l i j k}-K\left(g_{k l} g_{i j}-g_{j l} g_{i k}\right)\right)$

$$
=\sigma_{, a}\left(R_{i j k, l m}^{a}-R_{i j k, m l}^{a}\right)
$$

On the other hand, from (1.1) we obtain easily that
$C^{h \prime}{ }_{i j k, l m}-C^{h}{ }_{i j k, m l}$

$$
\begin{aligned}
=R_{i j k, l m}^{h}-R^{h}{ }_{i j k, m l}+a(& \delta^{h}\left(R_{i k, l m}-R_{i k, m l}\right)-\delta_{k}^{h}\left(R_{i j, l m}-R_{i j, m l}\right) \\
& \left.+g_{i j}\left(R_{j, l m}^{h}-R_{j, m l}^{h}\right)-g_{i j}\left(R_{k, l m}^{h}-R_{k, m l}^{h}\right)\right) .
\end{aligned}
$$

Assume that (M^{n}, g) is a C^{\prime}-semi-symmetric space. Consequently the above mentioned equation becomes

$$
\begin{align*}
R_{i j k, l m}^{h}-R_{i j k, m l}^{h}=a(& \delta^{h} \tag{2.8}\\
k & \left(R_{i j, l m}-R_{i j, m l}\right)-\delta_{j}^{h}\left(R_{i k, l m}-R_{i k, m l}\right) \\
& \left.+g_{i j}\left(R_{k, l m}^{h}-R_{k, m l}^{h}\right)-g_{i k}\left(R_{j, l m}^{h}-R_{j, m l}^{h}\right)\right) .
\end{align*}
$$

Substituting (2.8) into (2.7) and using the Ricci identity, we get

$$
\begin{align*}
& K \sigma_{, l}\left(R_{m i j k}-K\left(g_{k m} g_{i j}-g_{j m} g_{i k}\right)\right)-K \sigma_{, m}\left(R_{l i j k}-K\left(g_{k l} g_{i j}-g_{j m} g_{i k}\right)\right) \tag{2.9}\\
& =a\left(\sigma_{, k}\left(R_{a j} R_{i l m}^{a}+R_{i a} R_{j l m}^{a}\right)-\sigma_{, j}\left(R_{a k} R^{a}{ }_{i l m}+R_{i a} R^{a}{ }_{k l m}\right)\right. \\
& \left.\quad+g_{i j} \sigma_{, a}\left(R^{a}{ }_{b} R^{b}{ }_{k l m}-R^{b}{ }_{k} R_{b l m}^{a}\right)-g_{i k} \sigma_{, a}\left(R_{b}^{a} R^{b}{ }_{j l m}-R_{j}^{b} R_{b l m}^{a}\right)\right) .
\end{align*}
$$

From (2.1) and (2.2), equation (2.9) becomes

$$
\begin{array}{r}
K \sigma_{, l}\left(R_{m i j k}+d K\left(g_{m k} g_{i j}-g_{i k} g_{j m}\right)-a\left(g_{i j} R_{m k}-g_{i k} R_{m j}\right)\right) \tag{2.10}\\
\quad-K \sigma_{, m}\left(R_{l i j k}+d K\left(g_{k l} g_{i j}-g_{i k} g_{j l}\right)-a\left(g_{i j} R_{l k}-g_{i k} R_{l j}\right)\right) \\
=a \sigma_{, k}\left(R_{j}^{a} R_{l m a i}+R^{a}{ }_{i} R_{l m a j}\right)-a \sigma_{, j}\left(R^{a}{ }_{k} R_{l m a i}+R^{a}{ }_{i} R_{l m a k}\right)
\end{array}
$$

where
(2.11)

$$
d=a(n-1)-1
$$

Transvecting (2.10) with $\sigma_{\text {, }}^{l}$, we obtain $K=0$ or

$$
\begin{align*}
& \Delta_{1} \sigma\left(R_{m i j k}+d K\left(g_{m k} g_{i j}-g_{i k} g_{j m}\right)-a\left(g_{i j} R_{m k}-g_{i k} R_{m j}\right)\right) \tag{2.12}\\
& \quad=a\left\{\sigma_{, k} \sigma_{, i}\left(R_{m j}-(n-1) K g_{m j}\right)-\sigma_{, j} \sigma_{, i}\left(R_{m k}-(n-1) K g_{m k}\right)\right\} .
\end{align*}
$$

If $K=0$, then from (2.5) we have $\psi=$ constant. If (2.12) holds, contracting (2.12) with $g^{m k}$, we get

$$
\begin{equation*}
\Delta_{1} \sigma(1+a) R_{i j}=\Delta_{1} \sigma(a R-(n-1) d K) g_{i j}+a(n(n-1) K-R) \sigma_{, i} \sigma_{, j} . \tag{2.13}
\end{equation*}
$$

We put

$$
\begin{equation*}
v_{i}=\sigma_{, i} / \sqrt{\Delta_{1} \sigma} . \tag{2.14}
\end{equation*}
$$

Then it is obvious that v_{i} is a unit vector field under the metric g. Substituting (2.14) into (2.13), we get

$$
\begin{equation*}
R_{i j}=\frac{1}{1+a}(a R-(n-1) d K) g_{i j}+\frac{a}{1+a}(n(n-1) K-R) v_{i} v_{j} . \tag{2.15}
\end{equation*}
$$

Substituting (2.14) and (2.15) into (2.12), we finally obtain

$$
R_{m i j k}=p\left(g_{m k} g_{i j}-g_{m j} g_{i k}\right)+q\left(v_{i}\left(g_{m k} v_{j}-g_{m j} v_{k}\right)+\left(v_{k} g_{i j}-v_{j} g_{i k}\right) v_{m}\right)
$$

where
$p=\frac{1}{1+a}\left(a^{2} R-(a n+1)(a n-a-1) K\right), \quad q=\frac{a^{2}}{1+a}(n(n-1) K-R)$.
Therefore (M^{n}, g) is of quasi-constant curvature, and from Lemma $1\left(M^{n}, \bar{g}\right)$ is also of quasi-constant curvature. Thus we have

ThEOREM 1. If there is a non-trivial concircular transformation (1.9) of a C'-semi-symmetric space to a Riemannian space, then both spaces are of quasi-constant curvature or $\psi=$ constant.

In particular, different values of a and b must be considered, and then from Theorem 1 we have

Theorem 2. If there is a non-trivial concircular transformation (1.9) of a semi-symmetric space to a Riemannian space, then both spaces are of constant curvature or $\psi=$ constant.

ThEOREM 3. If there is a non-trivial concircular transformation (1.9) of a conformally semi-symmetric space to a Riemannian space, then both spaces are of quasi-constant curvature or $\psi=$ constant.

3. Concircular transformations between two C^{\prime}-semi-symmetric spaces

Now we further investigate the case $\psi=$ constant. In this case (2.1), (2.2) become respectively

$$
\begin{gather*}
\sigma_{, a} R_{i j k}^{a}=0 \tag{3.1}\\
\sigma_{, a} R_{k}^{a}=0 \tag{3.2}
\end{gather*}
$$

Again assume that (M^{n}, \bar{g}) is also C^{\prime}-semi-symmetric, namely that

$$
\begin{equation*}
\bar{C}_{i j k \mid l m}^{h}=C_{i j k \mid m l}^{h \prime} \tag{3.3}
\end{equation*}
$$

where " ρ " denotes covariant differentiation with respect to $\bar{g}_{i k}$. Applying the Ricci identity to (3.3), we have

$$
\begin{equation*}
\bar{C}_{a j k}^{h \prime} \bar{R}_{i l m}^{a}+\bar{C}_{i a k}^{h \prime} \bar{R}_{j l m}^{a}+\bar{C}_{i j a}^{h \prime} \bar{R}_{k l m}^{a}-\bar{C}_{i j k}^{a \prime} \bar{R}_{a l m}^{h}=0 \tag{3.4}
\end{equation*}
$$

Substituting (1.11) and (1.16) into (3.4), we have

$$
\begin{align*}
& C^{h \prime}{ }_{a j k} R_{i l m}^{a}+C_{i a k}^{h \prime} R_{j l m}^{a}+C^{h \prime}{ }_{i j a} R_{k l m}^{a}-C^{a \prime}{ }_{i j k} R_{a l m}^{h} \tag{3.5}\\
& +\alpha\left(g_{i m} C^{h \prime}{ }_{l j k}-g_{i l} C^{h \prime}{ }_{m j k}+g_{j m} C^{h \prime}{ }_{i l k}-g_{j l} C^{h \prime}{ }_{i m k}\right. \\
& \left.\quad+g_{k m} C^{h \prime}{ }_{i j l}-g_{k l} C^{h \prime}{ }_{i j m}-\delta_{l}^{h} C_{m i j k}^{\prime}+\delta_{m}^{h} C_{l i j k}^{\prime}\right)=0 .
\end{align*}
$$

Since (M^{n}, g) is a C^{\prime}-semi-symmetric space, from (3.5) we have $\alpha=0$ or

$$
\begin{align*}
& g_{i m} C^{h \prime}{ }_{l j k}-g_{i l} C^{h \prime}{ }_{m j k}+g_{j m} C^{h \prime}{ }_{i l k}-g_{j l} C^{h \prime}{ }_{i m k} \tag{3.6}\\
& \quad+g_{k m} C^{h \prime}{ }_{i j l}-g_{l k} C^{h \prime}{ }_{i j m}-\delta_{l}^{h} C_{m i j k}^{\prime}+\delta_{m}^{h} C_{l i j k}^{\prime}=0 .
\end{align*}
$$

If $\alpha=0$, then in consequence of (1.14), we have

$$
\begin{equation*}
2 \psi \sigma+\Delta_{1} \sigma=0 \quad(\psi=\text { constant }) \tag{3.7}
\end{equation*}
$$

Differentiation (3.7), we get

$$
\begin{equation*}
2 \psi \sigma_{, k}=0 . \tag{3.8}
\end{equation*}
$$

Since the transformation is non-trivial, equation (3.8) does not hold, and therefore $\alpha \neq 0$. Next we investigate the case where (3.6) holds. It will be contracted for h and l, and from (1.3), (1.4) and (1.5), we obtain

$$
\begin{equation*}
g_{k m} C_{i j}^{\prime}-g_{j m} C_{i k}^{\prime}-(n-1) C_{m i j k}^{\prime}=0 \tag{3.9}
\end{equation*}
$$

Substituting (1.6) in (3.9), we get

$$
\begin{align*}
(n-1) C_{m i j k}^{\prime} & +(1-(n-2) a)\left(g_{j m} R_{i k}-g_{k m} R_{i j}\right) \tag{3.10}\\
& +(b(n-1)-a) R\left(g_{m j} g_{i k}-g_{k m} g_{i j}\right)=0
\end{align*}
$$

Transvecting (3.10) with σ^{k}, and considering (1.1), (3.1) and (3.2), we obtain

$$
\begin{equation*}
(1+a) \sigma_{, m} R_{i j}=(n-1) a \sigma_{, i} R_{j m}+a R\left(\sigma_{, m} g_{j i}-\sigma_{, i} g_{j m}\right) \tag{3.11}
\end{equation*}
$$

Again transvecting (3.11) with σ^{i}, and considering (2.14), we get

$$
\begin{equation*}
a R_{j m}=\frac{a}{n-1} R\left(g_{j m}-v_{j} v_{m}\right) \tag{3.12}
\end{equation*}
$$

On the other hand, transvecting (3.11) with $\sigma_{,}^{m}$, and considering (2.14), we have

$$
R_{i j}=\frac{a}{1+a} R\left(g_{i j}-v_{i} v_{j}\right)
$$

Again transvecting the above equation with $g^{i j}$, we find

$$
\begin{equation*}
\frac{a}{1+a} R=\frac{R}{n-1} . \tag{3.13}
\end{equation*}
$$

Substituting (3.12) and (1.1) into (3.10), and considering (3.13), we finally obtain

$$
\begin{aligned}
R_{m i j k}= & \frac{a}{n-1} R\left(g_{m k} g_{i j}-g_{m j} g_{i k}\right) \\
& -\frac{a}{n-1} R\left(\left(g_{k m} v_{i} v_{j}-g_{j m} v_{i} v_{j}\right)+\left(g_{i j} v_{m} v_{k}-g_{i k} v_{m} v_{j}\right)\right)
\end{aligned}
$$

Therefore (M^{n}, g) is of quasi-constant curvature, and from Lemma $1\left(M^{n}, \bar{g}\right)$ is also of quasi-constant curvature. Thus we have

THEOREM 4. If there is a non-trivial concircular transformation (1.9), where $\psi=$ constant, between two C^{\prime}-semi-symmetric spaces, then both spaces are of quasi-constant curvature.

In particular, we have

THEOREM 5. If there is a non-trivial concircular transformation (1.9), where $\psi=$ constant, between two semi-symmetric spaces, then $\left(M^{n}, g\right)$ is locally Euclidean and $\left(M^{n}, \bar{g}\right)$ is of constant curvature.

THEOREM 6. If there is a non-trivial concircular transformation (1.9), where $\psi=$ constant, between two conformally semi-symmetric spaces, then both spaces are of quasi-constant curvature.

From Theorems 1 and 4, we have the following theorem.

THEOREM 7. If there is a non-trivial concircular transformation between C^{\prime}-semisymmetric spaces, then both spaces are of quasi-constant curvature.

Remark. Applying the method of this paper to the study of concircular transformations of Ricci semi-symmetric spaces we may get the following conclusion: if there is a non-trivial concircular transformation between Ricci semi-symmetric spaces, then both spaces are Einstein spaces.

References

[1] K. Yano, 'Concircular transformation', Proc. Imp. Acad. Tokyo 16 (1940), 195-200 and 254-360.
[2] L. P. Eisenhart, Riemannian geometry (Princeton University Press, 1949).
[3] P. Venzi, 'On concircular mappings in Riemannian and pseudo-Riemannian manifolds with symmetric conditions', Tensor (N.S.) 33 (1979), 109-113.
[4] Yuen-da Wang, 'On some properties of Riemannian spaces of quasi-constant curvature', Tensor (N.S.) 35 (1981), 173-176.
[5] Hwang Cheng-chung, 'Some theorems on the spaces of quasi-constant curvature', Mathematical Research and Exposition (China) 3 (1983), No. 1, 1-16.

Department of Mathematics
Sichuan Teachers' College
Chengdu
People's Republic of China

[^0]: (C) 1986 Australian Mathematical Society 0263-6115/86\$A2.00 +0.00

