J. Austral. Math. Soc. (Series A) 40 (1986), 218-225

ON CONCIRCULAR TRANSFORMATIONS IN RIEMANNIAN SPACES

LUO CHONGSHAN

(Received 3 July 1984)

Abstract

This paper introduces a tensor that contains the Riemannian curvature tensor and the conformal curvature tensor as special examples in the Riemannian space (M^n, g) , and by using this tensor we define C'-semi-symmetric space. In this paper, we have the following main result: if there is a non-trivial concircular transformation between two C'-semi-symmetric spaces, then both spaces are of quasi-constant curvature.

1980 Mathematics subject classification (Amer. Math. Soc.): 53 B 20, 53 A 30.

1. Introduction and preliminaries

It is well known that if a curvature tensor in Riemannian space (M^n, g) satisfies $R^h_{ijk,lm} = R^h_{ijk,ml}$, then (M^n, g) is said to be S-manifold or semi-symmetric space (here the comma "," followed by a Latin index denotes covariant derivative with respect to g). If the conformal curvature tensor

$$C^{h}_{ijk} = R^{h}_{ijk} + \frac{1}{n-2} \left(\delta^{h}_{j} R_{ik} - \delta^{h}_{k} R_{ij} + g_{ik} R^{h}_{j} - g_{ij} R^{h}_{k} \right) \\ + \frac{R}{(n-1)(n-2)} \left(\delta^{h}_{k} g_{ij} - \delta^{h}_{j} g_{ik} \right)$$

of (M^n, g) satisfies $C^h_{ijk,lm} = C^h_{ijk,ml}$, then (M^n, g) is said to be a *conformally* semi-symmetric space. In order to treat a semi-symmetric space and conformally semi-symmetric space simultaneously, we introduce the following tensor in the

^{© 1986} Australian Mathematical Society 0263-6115/86 \$A2.00 + 0.00

Riemannian space (M^n, g) :

(1.1)
$$C^{h'}{}_{ijk} = R^{h}{}_{ijk} + a \left(\delta^{h}{}_{j}R_{ik} - \delta^{h}{}_{k}R_{ij} + g_{ik}R^{h}{}_{j} - g_{ij}R^{h}{}_{k} \right) \\ + b R \left(\delta^{h}{}_{k}g_{ij} - \delta^{h}{}_{j}g_{ik} \right)$$

where a and b are constants $(a \neq -1)$. It is obvious that if a = b = 0, then $C_{ijk}^{h} = R_{ijk}^{h}$; if a = 0, b = -1/n(n-1), then $C_{ijk}^{h} = Z_{ijk}^{h}$ is the concircular curvature tensor; if a = 1/(n-2), b = 0, then $C_{ijk}^{h'} = Z_{ijk}^{h'} = R_{ijk}^{h} + 1/(n-2)(\delta_{j}^{h}R_{ik} - \delta_{k}^{h}R_{ij} + g_{ik}R_{j}^{h} - g_{ij}R_{k}^{h})$ is the conharmonic curvature tensor; if a = 1/(n-2), b = 1/(n-1)(n-2), then $C_{ijk}^{h'} = C_{ijk}^{h}$ is the conformal curvature tensor.

It is easy to verify that the tensors $C_{ijk}^{h'}$ and $C_{hijk}' \equiv g_{hl}C_{ijk}^{l'}$ satisfy the following identities

(1.2)
$$C_{ijk}^{h'} = -C_{ikj}^{h'}$$

(1.3)
$$C^{a'}_{ajk} = 0,$$

(1.4)
$$C^{h'}_{ijk} + C^{h'}_{jki} + C^{h'}_{kij} = 0,$$

(1.5)
$$C'_{hijk} = C'_{jkhi} = -C'_{ihjk} = -C'_{hikj}$$

(1.6)
$$C'_{ij} \equiv C^{a'}_{ija} = (1 - (n-2)a)R_{ij} + (b(n-1)-a)Rg_{ij}.$$

If tensor (1.1) satisfies

(1.7)
$$C_{ijk,lm}^{h'} = C_{ijk,m}^{h'}$$

then we say that (M^n, g) is a C'-semi-symmetric space. If the Ricci tensor R_{ij} satisfies

$$(1.8) R_{ij,lm} = R_{ij,ml}$$

then (M^n, g) is called a Ricci semi-symmetric space.

In 1940 to 1942 K. Yano [1] introduced the concept of a concircular transformation between two Riemannian spaces (M^n, g) and (M^n, \overline{g}) . A concircular transformation between two Riemannian spaces (M^n, g) and (M^n, \overline{g}) is by definition a conformal transformation of (M^n, g) to (M^n, \overline{g}) which carries geodesic circles in (M^n, g) to geodesic circles in (M^n, \overline{g}) . K. Yano showed that a conformal transformation $\overline{g}_{ij} = e^{2p}g_{ij}$ is a concircular transformation if and only if the equation $\rho_{,ij} - \rho_{,i}\rho_{,j} = \varphi g_{ij}$ holds. Using the change $1/\sigma = e^{\rho}$, it is easy to verify that a conformal transformation $\overline{g}_{ij} = \sigma^{-2}g_{ij}$ is concircular if and only if the equation $\sigma_{,ij} = \psi g_{ij}$ holds for a certain function ψ . We shall use this simple form. It is obvious that if σ = constant, then the concircular transformation

(1.9)
$$\bar{g}_{ij} = \sigma^{-2}g_{ij}, \qquad \sigma_{,ij} = \psi g_{ij}$$

are the homothety or trivial transformation. In this paper, we only study non-trivial transformations.

Luo Chongshan

It is easy to verify that, under the concircular transformation (1.9), the Christoffel symbols, the Riemannian curvature tensors, the Ricci tensors, the scalar curvature and tensor (1.1) of (M^n, \bar{g}) and (M^n, g) are related as follows:

(1.10)
$$\left\{ \begin{array}{l} \tilde{h}\\ ij \end{array} \right\} = \left\{ \begin{array}{l} h\\ ij \end{array} \right\} - \frac{1}{\sigma} \left(\delta^{h}_{\ j} \sigma_{,j} + \delta^{h}_{\ i} \sigma_{,j} - g_{ij} \sigma_{,}^{\ h} \right),$$

(1.11)
$$\overline{R}^{h}_{ijk} = R^{h}_{ijk} + \alpha \left(\delta^{h}_{j} g_{ik} - \delta^{h}_{k} g_{ij} \right),$$

(1.12)
$$R_{ij} = R_{ij} - (n-1)\alpha g_{ij},$$

(1.13)
$$\overline{R}_{j}^{i} = \sigma^{2} \left(R_{j}^{i} - (n-1)\alpha \delta_{j}^{i} \right)$$

(1.14)
$$\overline{R} = \sigma^2 (R - n(n-1)\alpha),$$

(1.15)
$$\overline{C}^{h'}{}_{ijk} = C^{h'}{}_{ijk} + \alpha\beta \left(\delta^{h}{}_{j}g_{ik} - \delta^{h}{}_{k}g_{ij}\right)$$
where $\sigma_{,}^{h} = g^{kh}\sigma_{,k}$

(1.16)
$$\alpha = \frac{2\psi}{\sigma} + \frac{1}{\sigma^2} \Delta_1 \sigma,$$

(1.17)
$$\Delta_1 \sigma = g^{ab} \alpha_{,a} \sigma_{,b},$$
$$\beta = 1 - 2a(n-1) + b(n-1)n.$$

We know that when n > 3 a space of quasi-constant curvature is a Riemannian space whose curvature tensor satisfies

(1.18)
$$R^{h}_{ijk} = p\left(\delta^{h}_{k}g_{ij} - \delta^{h}_{j}g_{ij}\right) + q\left(\left(\delta^{h}_{k}v_{j} - \delta^{h}_{j}v_{k}\right)v_{i} + \left(v_{k}g_{ij} - v_{j}g_{ik}\right)v^{h}\right)$$

where p and q are scalar functions and v_{i} is a unit covariant vector field. The vector field v^{i} is called the generator of the space ([4] and [5]).

The purpose of this paper is to study the non-trivial concircular transformations of C'-semi-symmetric Riemannian spaces. In Section 2 we study concircular transformations of a C'-semi-symmetric space to a Riemannian space; in Section 3 we study concircular transformations between two C'-semi-symmetric spaces. In this paper we always assume that n > 3, the metrics are positive definite and the indices h, i, j, k, l, m,... run over the range 1, 2, ..., n.

2. Concircular transformations of a C'-semi-symmetric space to a Riemannian space

It is obvious that a semi-symmetric space is C'-semi-symmetric. Conversely, a C'-semi-symmetric space is semi-symmetric if it is Ricci semi-symmetric.

LEMMA 1. If there is a concircular transformation of a space (M^n, g) of quasi-constant curvature to a Riemannian space (M^n, \overline{g}) , then (M^n, \overline{g}) is also of quasi-constant curvature.

PROOF. Substituting (1.18) into (1.11) and from $\bar{g}_{ij} = \sigma^{-2}g_{ij}$ we get

$$\overline{R}^{h}{}_{ijk} = (p - \alpha)\sigma^{2} \left(\delta^{h}{}_{k} \overline{g}_{ij} - \delta^{h}{}_{j} \overline{g}_{ik} \right) + q\sigma^{2} \left(\left(\delta^{h}{}_{k} \overline{v}_{j} - \delta^{h}{}_{j} \overline{v}_{k} \right) \overline{v}_{i} + \left(\overline{v}_{k} \overline{g}_{ij} - \overline{v}_{j} \overline{g}_{ik} \right) \overline{v}^{h} \right)$$

where $\bar{v}_j = \sigma^{-1} v_j$ is a unit covariant vector field under the metric \bar{g} . Consequently (M^n, \bar{g}) is also of quasi-constant curvature.

LEMMA 2. If a Riemannian space (M^n, g) admits a concircular transformation (1.9), then there is a scalar function K such that the following equations hold:

(2.1)
$$K(\sigma_{,k}g_{ik} - \sigma_{,j}g_{ik}) = \sigma_{,a}R^a_{ijk}$$

(2.2)
$$(n-1)K\sigma_{,k} = \sigma_{,a}R^a_{\ k}.$$

PROOF. If a Riemannian space (M^n, g) admits a concircular transformation (1.9), then we have

(2.3)
$$\sigma_{,ij} = \psi g_{ij}.$$

Covariant differentiation of (2.3) with respect to g_{ij} and Ricci's identity give us

(2.4)
$$\psi_{,k}g_{ij} - \psi_{,j}g_{ik} = \sigma_{,a}R^a_{\ ijk}.$$

Transvecting (2.4) with σ^{i} , we obtain

$$\psi_{,k}\sigma_{,j}-\psi_{,j}\sigma_{,k}=0.$$

Consequently there exists a function K such that

(2.5)
$$\psi_{,k} = K\sigma_{,k}.$$

Substituting (2.5) into (2.4), we get (2.1). Again contracting (2.1) with g^{ij} we get (2.2).

Now we study non-trivial concircular transformations of a C'-semi-symmetric space (M^n, g) to a Riemannian space (M^n, \overline{g}) . Twice covariant differentiation of (2.1) with respect to g_{ii} , and (2.3) and (2.5) give us that

$$(2.6) \quad K_{,lm}(\sigma_{,k}g_{ij} - \sigma_{,j}g_{ik}) + K_{,l}\psi(g_{km}g_{ij} - g_{jm}g_{ik}) + \sigma_{,m}K^{2}(g_{kl}g_{ij} - g_{jl}g_{ik}) + \psi K_{,m}(g_{kl}g_{ij} - g_{jl}g_{ik}) = \psi_{,m}R_{lijk} + \psi R_{lijk,m} + \psi R_{mijk,l} + \sigma_{,a}R^{a}_{ijk,lm}.$$

Interchanging the place of the indices l and m in (2.6), and subtracting equation (2.6) from the obtained relation, we get

(2.7)
$$K\sigma_{,l}(R_{mijk} - K(g_{km}g_{ij} - g_{jm}g_{ik})) - K\sigma_{,m}(R_{lijk} - K(g_{kl}g_{ij} - g_{jl}g_{ik}))$$

= $\sigma_{,a}(R^{a}_{ijk,lm} - R^{a}_{ijk,ml}).$

On the other hand, from (1.1) we obtain easily that

$$C^{h'}{}_{ijk,lm} - C^{h'}{}_{ijk,ml} = R^{h}{}_{ijk,lm} - R^{h}{}_{ijk,ml} + a \Big(\delta^{h}{}_{j} (R_{ik,lm} - R_{ik,ml}) - \delta^{h}{}_{k} (R_{ij,lm} - R_{ij,ml}) + g_{ij} \Big(R^{h}{}_{j,lm} - R^{h}{}_{j,ml} \Big) - g_{ij} \Big(R^{h}{}_{k,lm} - R^{h}{}_{k,ml} \Big) \Big).$$

Assume that (M^n, g) is a C'-semi-symmetric space. Consequently the above mentioned equation becomes

$$R^{h}_{ijk,lm} - R^{h}_{ijk,ml} = a \Big(\delta^{h}_{k} \big(R_{ij,lm} - R_{ij,ml} \big) - \delta^{h}_{j} \big(R_{ik,lm} - R_{ik,ml} \big) \\ + g_{ij} \big(R^{h}_{k,lm} - R^{h}_{k,ml} \big) - g_{ik} \big(R^{h}_{j,lm} - R^{h}_{j,ml} \big) \Big).$$

Substituting (2.8) into (2.7) and using the Ricci identity, we get (2.9)

$$K\sigma_{,l}(R_{mijk} - K(g_{km}g_{ij} - g_{jm}g_{ik})) - K\sigma_{,m}(R_{lijk} - K(g_{kl}g_{ij} - g_{jm}g_{ik}))$$

= $a(\sigma_{,k}(R_{aj}R^{a}_{ilm} + R_{ia}R^{a}_{jlm}) - \sigma_{,j}(R_{ak}R^{a}_{ilm} + R_{ia}R^{a}_{klm})$
+ $g_{ij}\sigma_{,a}(R^{a}_{b}R^{b}_{klm} - R^{b}_{k}R^{a}_{blm}) - g_{ik}\sigma_{,a}(R^{a}_{b}R^{b}_{jlm} - R^{b}_{j}R^{a}_{blm})).$

From (2.1) and (2.2), equation (2.9) becomes

$$(2.10) \quad K\sigma_{,l} \Big(R_{mijk} + dK \big(g_{mk} g_{ij} - g_{ik} g_{jm} \big) - a \big(g_{ij} R_{mk} - g_{ik} R_{mj} \big) \Big) \\ - K\sigma_{,m} \Big(R_{lijk} + dK \big(g_{kl} g_{ij} - g_{ik} g_{jl} \big) - a \big(g_{ij} R_{lk} - g_{ik} R_{lj} \big) \Big) \\ = a\sigma_{,k} \Big(R^{a}_{j} R_{lmai} + R^{a}_{i} R_{lmaj} \big) - a\sigma_{,j} \Big(R^{a}_{k} R_{lmai} + R^{a}_{i} R_{lmak} \big)$$

where

(2.11) d = a(n-1) - 1.

Transvecting (2.10) with σ'_{i} , we obtain K = 0 or

(2.12)
$$\Delta_{1}\sigma \Big(R_{mijk} + dK \Big(g_{mk}g_{ij} - g_{ik}g_{jm} \Big) - a \Big(g_{ij}R_{mk} - g_{ik}R_{mj} \Big) \Big) \\ = a \Big\{ \sigma_{,k}\sigma_{,i} \Big(R_{mj} - (n-1)Kg_{mj} \Big) - \sigma_{,j}\sigma_{,i} \Big(R_{mk} - (n-1)Kg_{mk} \Big) \Big\}.$$

If K = 0, then from (2.5) we have $\psi = \text{constant.}$ If (2.12) holds, contracting (2.12) with g^{mk} , we get (2.13)

$$\Delta_1 \sigma(1+a) R_{ij} = \Delta_1 \sigma(aR - (n-1)dK) g_{ij} + a(n(n-1)K - R)\sigma_{,i}\sigma_{,j}.$$

We put

(2.14)
$$v_i = \sigma_{,i} / \sqrt{\Delta_1 \sigma} \,.$$

Then it is obvious that v_i is a unit vector field under the metric g. Substituting (2.14) into (2.13), we get

(2.15)
$$R_{ij} = \frac{1}{1+a} (aR - (n-1)dK)g_{ij} + \frac{a}{1+a} (n(n-1)K - R)v_i v_j.$$

Substituting (2.14) and (2.15) into (2.12), we finally obtain

$$R_{mijk} = p(g_{mk}g_{ij} - g_{mj}g_{ik}) + q(v_i(g_{mk}v_j - g_{mj}v_k) + (v_kg_{ij} - v_jg_{ik})v_m)$$

where

$$p = \frac{1}{1+a} (a^2 R - (an+1)(an-a-1)K), \qquad q = \frac{a^2}{1+a} (n(n-1)K - R).$$

Therefore (M^n, g) is of quasi-constant curvature, and from Lemma 1 (M^n, \overline{g}) is also of quasi-constant curvature. Thus we have

THEOREM 1. If there is a non-trivial concircular transformation (1.9) of a C'-semi-symmetric space to a Riemannian space, then both spaces are of quasi-constant curvature or $\psi = \text{constant}$.

In particular, different values of a and b must be considered, and then from Theorem 1 we have

THEOREM 2. If there is a non-trivial concircular transformation (1.9) of a semi-symmetric space to a Riemannian space, then both spaces are of constant curvature or $\psi = \text{constant}$.

THEOREM 3. If there is a non-trivial concircular transformation (1.9) of a conformally semi-symmetric space to a Riemannian space, then both spaces are of quasi-constant curvature or $\psi = \text{constant}$.

3. Concircular transformations between two C'-semi-symmetric spaces

Now we further investigate the case $\psi = \text{constant}$. In this case (2.1), (2.2) become respectively

$$\sigma_{,a}R^{a}_{\ i/k}=0,$$

$$\sigma_{a}R^{a}_{\ k}=0$$

Again assume that (M^n, \bar{g}) is also C'-semi-symmetric, namely that

(3.3)
$$\overline{C}_{ijk|lm}^{h\prime} = C_{ijk|ml}^{h\prime}$$

where "j" denotes covariant differentiation with respect to \bar{g}_{ik} . Applying the Ricci identity to (3.3), we have

(3.4)
$$\overline{C}^{h'}{}_{ajk}\overline{R}^{a}{}_{ilm} + \overline{C}^{h'}{}_{iak}\overline{R}^{a}{}_{jlm} + \overline{C}^{h'}{}_{ija}\overline{R}^{a}{}_{klm} - \overline{C}^{a'}{}_{ijk}\overline{R}^{h}{}_{alm} = 0.$$

Luo Chongshan

Substituting (1.11) and (1.16) into (3.4), we have

$$(3.5) \qquad C^{h'}{}_{ajk}R^{a}{}_{ilm} + C^{h'}{}_{iak}R^{a}{}_{jlm} + C^{h'}{}_{ija}R^{a}{}_{klm} - C^{a'}{}_{ijk}R^{h}{}_{alm} + \alpha \Big(g_{im}C^{h'}{}_{ljk} - g_{il}C^{h'}{}_{mjk} + g_{jm}C^{h'}{}_{ilk} - g_{jl}C^{h'}{}_{imk} + g_{km}C^{h'}{}_{ijl} - g_{kl}C^{h'}{}_{ijm} - \delta^{h}{}_{l}C'{}_{mijk} + \delta^{h}{}_{m}C'{}_{lijk} \Big) = 0.$$

Since (M^n, g) is a C'-semi-symmetric space, from (3.5) we have $\alpha = 0$ or

(3.6)
$$g_{im}C^{h'}{}_{ljk} - g_{il}C^{h'}{}_{mjk} + g_{jm}C^{h'}{}_{ilk} - g_{jl}C^{h'}{}_{imk} + g_{km}C^{h'}{}_{ijl} - g_{lk}C^{h'}{}_{ijm} - \delta^{h}{}_{l}C'{}_{mijk} + \delta^{h}{}_{m}C'{}_{lijk} = 0.$$

If $\alpha = 0$, then in consequence of (1.14), we have

(3.7)
$$2\psi\sigma + \Delta_1\sigma = 0$$
 $(\psi = \text{constant}).$

Differentiation (3.7), we get

$$(3.8) 2\psi\sigma_{,k} = 0.$$

Since the transformation is non-trivial, equation (3.8) does not hold, and therefore $\alpha \neq 0$. Next we investigate the case where (3.6) holds. It will be contracted for h and l, and from (1.3), (1.4) and (1.5), we obtain

(3.9)
$$g_{km}C'_{ij} - g_{jm}C'_{ik} - (n-1)C'_{mijk} = 0.$$

Substituting (1.6) in (3.9), we get

(3.10)
$$(n-1)C'_{mijk} + (1-(n-2)a)(g_{jm}R_{ik} - g_{km}R_{ij}) + (b(n-1)-a)R(g_{mj}g_{ik} - g_{km}g_{ij}) = 0.$$

Transvecting (3.10) with σ_{i}^{k} , and considering (1.1), (3.1) and (3.2), we obtain (3.11) $(1 + a)\sigma_{im}R_{ij} = (n - 1)a\sigma_{i}R_{jm} + aR(\sigma_{im}g_{ji} - \sigma_{i}g_{jm}).$

Again transvecting (3.11) with σ^{i} , and considering (2.14), we get

(3.12)
$$aR_{jm} = \frac{a}{n-1}R(g_{jm} - v_j v_m).$$

On the other hand, transvecting (3.11) with σ^m , and considering (2.14), we have

$$R_{ij} = \frac{a}{1+a}R(g_{ij} - v_iv_j).$$

Again transvecting the above equation with g^{ij} , we find

$$(3.13) \qquad \qquad \frac{a}{1+a}R = \frac{R}{n-1}$$

Substituting (3.12) and (1.1) into (3.10), and considering (3.13), we finally obtain

$$R_{mijk} = \frac{a}{n-1} R(g_{mk}g_{ij} - g_{mj}g_{ik}) - \frac{a}{n-1} R((g_{km}v_iv_j - g_{jm}v_iv_j) + (g_{ij}v_mv_k - g_{ik}v_mv_j)).$$

Therefore (M^n, g) is of quasi-constant curvature, and from Lemma 1 (M^n, \overline{g}) is also of quasi-constant curvature. Thus we have

THEOREM 4. If there is a non-trivial concircular transformation (1.9), where $\psi = \text{constant}$, between two C'-semi-symmetric spaces, then both spaces are of quasi-constant curvature.

In particular, we have

THEOREM 5. If there is a non-trivial concircular transformation (1.9), where $\psi = \text{constant}$, between two semi-symmetric spaces, then (M^n, g) is locally Euclidean and (M^n, \overline{g}) is of constant curvature.

THEOREM 6. If there is a non-trivial concircular transformation (1.9), where $\psi = \text{constant}$, between two conformally semi-symmetric spaces, then both spaces are of quasi-constant curvature.

From Theorems 1 and 4, we have the following theorem.

THEOREM 7. If there is a non-trivial concircular transformation between C'-semisymmetric spaces, then both spaces are of quasi-constant curvature.

REMARK. Applying the method of this paper to the study of concircular transformations of Ricci semi-symmetric spaces we may get the following conclusion: if there is a non-trivial concircular transformation between Ricci semi-symmetric spaces, then both spaces are Einstein spaces.

References

- K. Yano, 'Concircular transformation', Proc. Imp. Acad. Tokyo 16 (1940), 195-200 and 254-360.
- [2] L. P. Eisenhart, Riemannian geometry (Princeton University Press, 1949).
- [3] P. Venzi, 'On concircular mappings in Riemannian and pseudo-Riemannian manifolds with symmetric conditions', *Tensor* (N.S.) 33 (1979), 109–113.
- [4] Yuen-da Wang, 'On some properties of Riemannian spaces of quasi-constant curvature', Tensor (N.S.) 35 (1981), 173-176.
- [5] Hwang Cheng-chung, 'Some theorems on the spaces of quasi-constant curvature', Mathematical Research and Exposition (China) 3 (1983), No. 1, 1-16.

Department of Mathematics Sichuan Teachers' College Chengdu People's Republic of China