REARRANGEMENTS THAT PRESERVE RATES OF DIVERGENCE

ELGIN H. JOHNSTON

1. Introduction. Let $\sum a_{k}$ be an infinite series of real numbers and let π be a permutation of \mathbf{N}, the set of positive integers. The series $\sum a_{\pi(k)}$ is then called a rearrangement of $\sum a_{k}$. A classical theorem of Riemann states that if $\sum a_{k}$ is a conditionally convergent series and s is any fixed real number (or $\pm \infty$), then there is a permuation π such that $\sum a_{\pi(k)}=s$. The problem of determining those permutations that convert any conditionally convergent series into a convergent rearrangement (such permuations are called convergence preserving) has received wide attention (see, for example [6]). Of special interest is a paper by P. A. B. Pleasants [5] in which is shown that the set of convergence preserving permutations do not form a group.

In this paper we consider questions similar to those above, but for rearrangements of divergent series of positive terms. We establish some notation before stating the precise problem.

Definition 1. Let $\sum a_{k}$ and $\sum b_{k}$ be divergent series of positive terms. For positive integer n, let $A_{n}=\sum_{k=1}^{n} a_{k}$ be the nth partial sum of $\sum a_{k}$. We say that $\sum a_{k}$ and $\sum b_{k}$ diverge at the same rate if

$$
\begin{equation*}
0<\alpha=\liminf _{n \rightarrow \infty} \frac{B_{n}}{A_{n}} \leqq \limsup _{n \rightarrow \infty} \frac{B_{n}}{A_{n}}=\beta<+\infty . \tag{1}
\end{equation*}
$$

If $\alpha=\beta=1$ in (1), we say the two series are asymtotic and write $\sum a_{k} \sim \sum b_{k}$.

In (1), (2) and (3), Diananda, assuming $n a_{n} \rightarrow 0$, found conditions on π that guarantee $\sum a_{k} \sim \sum a_{\pi(k)}$. Stenberg [7] studied rearrangements of divergent series and the divergent subseries of these rearrangements. In [4], the author showed that divergent series of positive terms can be rearranged to give some predesignated rates of divergence. More precisely:
Theorem 2. Let $\sum a_{k}$ be a divergent series of positive real numbers with $a_{k} \rightarrow 0$. Let $f(x)$, defined for $x \geqq 0$, be a positive, strictly increasing, concave function with
(i) $\lim _{x \rightarrow \infty} f(x)=+\infty$
(ii) $\lim _{x \rightarrow \infty}\{f(x+1)-f(x)\}=0$
(iii) $\limsup _{n \rightarrow \infty} f(n) / A_{n} \leqq 1$.

[^0]Then there is a permutation π such that $A_{n}{ }^{\pi} \sim f(n)($ as $n \rightarrow \infty)$ where

$$
A_{n}{ }^{\pi}=\sum_{k=1}^{n} a_{\pi(k)} .
$$

In view of the above it is natural to ask for a characterization of these permutations that do not affect the rate of divergence of any divergent series of positive terms. In this paper we give a combinatoric characterization of such permutations and show that this collection of permutations forms a subgroup (though not a normal subgroup) of the group of all permutations on \mathbf{N}. We will assume that all series are divergent series of positive, bounded terms.
2. Results. The collection of permutations that we wish to characterize are called divergence preserving (DP) and defined as follows.

Definition 3. A permutation π on the positive integers is called divergence preserving if for each series $\sum a_{k}$, the two series $\sum a_{k}$ and $\sum a_{\pi(k)}$ diverge at the same rate. Let DP denote the collection of all divergence preserving permutations.
Theorem 4. The permutations in DP form a group.
Proof. It is clear that i (the identity permutation) is in DP and that if $\pi, \rho \in \mathrm{DP}$, then $\pi \rho \in \mathrm{DP}$. Finally, if $\pi \in \mathrm{DP}$, then $\sum a_{\pi^{-1}(k)}$ diverges. But then $\sum a_{\pi}^{-1}(k)$ and $\sum a_{\pi \pi^{-1}}(k)=\sum a_{k}$ diverge at the same rate. Hence $\pi^{-1} \in \mathrm{DP}$.

We will shortly show that DP is not a normal subgroup of the group of all permutations on \mathbf{N}. It is convenient to first establish a combinatorial condition that is necessary and sufficient for a permutation to be in DP. In what follows, I will denote an interval in \mathbf{N}; that is

$$
\mathrm{I}=\{a, a+1, \ldots, b\} \subseteq \mathbf{N}
$$

for some $a, b \in \mathbf{N}(a \leqq b)$. If S, T are subsets of \mathbf{N}, then $S<T$ will mean

$$
\max \{k: k \in S\}<\min \{k: k \in T\} .
$$

Theorem 5. Let π be a permuation on \mathbf{N}. Then $\pi \in \mathrm{DP}$ if and only if there is a positive integer $M(=M(\pi))$ such that

$$
\begin{equation*}
\#\{n: n \in I \backslash \pi(I)\} \leqq M \tag{2}
\end{equation*}
$$

for every interval I in \mathbf{N}.
Proof. (Sufficiency) Suppose π satisfies condition (2) and $\sum a_{k}$ is a divergent series of positive, bounded real numbers; say $a_{k} \leqq B$ for all k. Then for any positive integer N

$$
\left|A_{N}-A_{N^{\pi}}\right| \leqq 2 M B
$$

is bounded. Thus $A_{N} \sim A_{N}{ }^{\pi}$, so $\sum a_{k}$ and $\sum a_{\pi(k)}$ certainly diverge at the same rate.
(Necessity) Suppose π does not satisfy condition (2). We will produce a series $\sum a_{k}$ (with, in fact, $a_{k} \rightarrow 0$) whose rate of divergence is different from $\sum a_{\pi^{-1}(k)}$. Since π does not satisfy (2), we can find a sequence $\left\{I_{k}\right\}$ of intervals in \mathbf{N} with
(3) $I_{k} \cup \pi\left(I_{k}\right)<I_{k+1} \cup \pi\left(I_{k+1}\right)$
and
(4) $\#\left\{n: n \in\left(I_{k} \backslash \pi\left(I_{k}\right)\right)\right\} \geqq 2(k+1)$!

We consider two similar cases. In the first case assume that instead of (4) we actually have

$$
\begin{equation*}
\#\left\{n: n \in I_{k}, \pi(n)>I_{k}\right\}=M_{k} \geqq(k+1)! \tag{5}
\end{equation*}
$$

Let $J_{k}=\left\{n \in I_{k}: \pi(n)>I_{k}\right\}$, so \# $J_{k}=M_{k} \geqq(k+1)$! We then define

$$
a_{j}=\left\{\begin{array}{cl}
\frac{k!-\frac{(k-1)!}{M_{k}}}{}\left(\begin{array}{cc}
& \left(\in J_{k}, k \geqq 2\right) \\
2^{-j} & \left(j \notin \bigcup_{k=2}^{\infty} J_{k}\right) .
\end{array} .\right.
\end{array}\right.
$$

Then $a_{j} \rightarrow 0$ as $j \rightarrow \infty$. Also, if $N_{k}=\max \left\{j: j \in I_{k}\right\}$ then

$$
\sum_{j \leqq N_{k}} a_{j} \geqq k!-1 .
$$

Furthermore, since $\pi(j)>N_{k}$ for $j \in J_{n}(n \geqq k)$ it follows that

$$
\sum_{j \leqq N_{k}} a_{\pi-1(j)} \leqq(k-1)!
$$

Thus

$$
\limsup _{N \rightarrow \infty} \frac{A_{N}}{A_{N}{ }^{\pi-1}} \geqq \underset{\limsup _{k \rightarrow \infty}}{ } \frac{k!-1}{(k-1)!}=+\infty .
$$

Hence $\sum a_{k}$ and $\sum a_{\pi-1(k)}$ do not diverge at the same rate. Thus $\pi^{-1} \notin$ DP and it follows from Theorem 4 that $\pi \notin$ DP.

If a sequence $\left\{I_{k}\right\}$ of intervals satisfying (3) and (5) is not possible, then we can find a sequence $\left\{I_{k}\right\}$ of intervals satisfying (3) with

$$
\#\left\{n: n \in I_{k}, \pi(n)<I_{k}\right\}=M_{k}^{\prime} \geqq(k+1)!
$$

Let $J_{k}{ }^{\prime}=\left\{n \in I_{k}: \pi(n)<I_{k}\right\}$, so $\# J_{k}{ }^{\prime}=M_{k}{ }^{\prime} \geqq(k+1)$! We then define

$$
a_{j}=\left\{\begin{array}{cl}
\frac{k!-(k-1)!}{M_{k}^{\prime}} & \left(j \in J_{k^{\prime}}^{\prime}, k \geqq 2\right) \\
2^{-\jmath} & \left(j \notin \bigcup_{k=2}^{\infty} J_{k}^{\prime}\right) .
\end{array}\right.
$$

Let $N_{k}{ }^{\prime}=\min \left\{j: j \in I_{k}\right\}-1$. Then

$$
\liminf _{N \rightarrow \infty}-\frac{A_{N}}{A_{N}{ }^{\pi-1}} \leqq \liminf _{k \rightarrow \infty} \frac{A_{N k}}{A_{N k}} \lim _{k}^{\pi-1} \leqq \liminf _{n \rightarrow \infty} \frac{(k-1)!}{k!-1}=0
$$

again showing $\pi \notin \mathrm{DP}$.
As an immediate consequence of the proof of Theorem 5 we have
Corollary 6. If $\pi \in \mathrm{DP}$, then $\sum a_{k} \sim \sum a_{\pi(k)}$.
Remark 7. We now present an example showing that DP is not a normal subgroup of the group of all permutations on \mathbf{N}. Take $\pi \in$ DP with

$$
\pi(n)= \begin{cases}n+1 & (n \text { odd }) \\ n-1 & (n \text { even })\end{cases}
$$

and let σ be defined by

$$
\sigma(n)= \begin{cases}\frac{2}{3} n & (n \equiv 0(\bmod 3)) \\ \frac{4 n-1}{3} & (n \equiv 1(\bmod 3)) \\ \frac{4 n+1}{3} & (n \equiv 2(\bmod 3))\end{cases}
$$

Then for any positive integer of the form $4 k(k \in \mathbf{N})$ we have

$$
\sigma \pi \sigma^{-1}(4 k)=8 k-1
$$

But then if $I_{4 k}$ is the interval $\{1,2, \ldots, 4 k\} \subseteq \mathbf{N}$, we see that

$$
\#\left\{n: n \in I_{4 k} \backslash \sigma \pi \sigma^{-1}\left(I_{4 k}\right)\right\} \geqq k / 2 .
$$

Hence $\sigma \pi \sigma^{-1} \notin$ DP, showing DP is not normal.
Remark 8. Any finite set S of positive integers can be written as a union of disjoint, nonadjacent intervals. Let $v(S)$ denote the number of such intervals. In [5], Pleasants showed that a permutation π preserves the sum of all conditionally convergent series if and only if there is a constant $C(=C(\pi))$ such that $v\left(\pi^{-1}(I)\right) \leqq C$ for all intervals I in \mathbf{N}. The set of such permutations is denoted by CP (for convergence preserving).

Now let $\pi \in$ DP. By Theorems 4 and 5 there is a constant M_{π}^{-1} such that

$$
\#\left\{n: n \in I \backslash \pi^{-1}(I)\right\} \leqq M_{\pi^{-1}}
$$

for all intervals I in \mathbf{N}. It follows immediately that

$$
v\left(\pi^{-1}(I)\right) \leqq 2 M_{\pi^{-1}}+1 \quad \text { for all } I
$$

Thus DP CCP, and the inclusion is proper since DP is a group but CP is not (see [5]). Thus there is a permutation $\rho \in C P \backslash D P$. This permutation will preserve the sum of all conditionally convergent series but will alter the rate of divergence of some divergent series of positive terms. Thus in one sense divergent series of positive terms are "more delicate" than conditionally convergent series.

References

1. P. H. Diananda, On rearrangements of series, Proc. Cambridge Philos. Soc. 58 (1962), 158-159.
2. -_On rearrangements of Series II, Colloq. Math. 9 (1962), 277-279.
3. - On rearrangements of Series IV, Colloq. Math. 12 (1964), 85-86.
4. E. H. Johnston, Rearrangements of diverqent series, to appear in Rocky Mountain J. of Math.
5. P. A. B. Pleasants, Rearrangements that preserve convergence, J. London Math. Soc. 15 (1977), 134-142.
6. P. Schaefer, Sum-preserving rearrangements of infinite series, Amer. Math. Monthly 88 (1981), 33-40.
7. W. Stenberg, On rearrangements of infinite series, Nederl. Akad. Wetenesh. Proc. Ser. 23 (1961), 459-475.

Iowa State University, Ames, Iowa

[^0]: Received May 1, 1981 and in revised form September 16, 1981. This research was partially supported by an Iowa State University SHRI grant.

