SPECTRAL SYNTHESIS AND APPLICATIONS TO C_{0}-GROUPS

M. ZARRABI

(Received 22 February 1993; revised 6 May 1993)

Communicated by I. Raeburn

Abstract

Let $k \geq 0$ be an integer, $T=(T(t))_{t \in \mathbb{R}}$ a C_{0}-group of bounded operators and A the infinitesimal generator of T. We prove that if, $$
\|T(t)\|=o\left(t^{k+1}\right) \quad \text { and } \quad \log ^{+}\|T(-t)\|=o\left(t^{1 / 2}\right) \quad(t \rightarrow+\infty),
$$ and if the spectrum of A is equal to $\{\lambda\}$, then A is bounded and $(A-\lambda)^{k+1}=0$. Examples are given to show that these conditions are, essentially, the best possible.

1991 Mathematics subject classification (Amer. Math. Soc.): 47D03.

1. Introduction

Let X be a Banach space and let $T: \mathbb{R} \rightarrow L(X)$ be a C_{0}-group, that is, T satisfies the following conditions:
(i) $T(0)=I$, where I is the identity operator;
(ii) $T(t+s)=T(t) T(s) \quad(t, s \in \mathbb{R})$;
(iii) For each $x \in \mathbb{R}$, the map $t \rightarrow T(t) x$ is norm-continuous from \mathbb{R} into X.

Let \mathscr{D} be the set of all $x \in X$ such that the limit

$$
A x=\lim _{t \rightarrow 0} \frac{T(t) x-x}{t}
$$

exists. Then \mathscr{D} is a linear space dense in X and A is a closed linear operator with domain $\mathscr{D}[11, \mathrm{p} .5] ; A$ is called the infinitesimal generator of T.

In this paper we consider the following problem: Under what conditions on T do we have $(A-\lambda)^{k+1}=0$, when the spectrum of $A, \sigma(A)$, is equal to $\{\lambda\}$ and where $k \geq 0$ is a given integer?

We prove that if T satisfies the conditions
(a) $\quad\|T(t)\|=o\left(t^{k+1}\right) \quad(t \rightarrow+\infty)$,
(b) $\quad \log ^{+}\|T(-t)\|=o\left(t^{1 / 2}\right) \quad(t \rightarrow+\infty)$,
and if $\sigma(A)=\{\lambda\}$, then A is bounded and $(A-\lambda)^{k+1}=0$.
We obtain this result by using spectral sythesis arguments in weighted algebras. For $k=0$ we give the equivalence between the above result and the spectral synthesis property for points. We prove that if ω is a weight on \mathbb{R} then points satisfy the ω-spectral synthesis if and only if for all C_{0}-groups T dominated by ω such that $\sigma(A)=\{\lambda\}$, we have $A=\lambda I$.

For the analogous problem in the discrete case, some results are known. Let R be a bounded and invertible operator on a Banach space with spectrum equal to $\{\lambda\}$. Gelfand proved that if the sequence $\left(R^{n}\right)_{n \in \mathbb{Z}}$ is bounded then $R=\lambda I$ (see [1, 12]). This result is extended in [2] and [14] to contractions R such that

$$
\log ^{+}\left\|R^{-n}\right\|=o\left(n^{\frac{1}{2}}\right) \quad(n \rightarrow+\infty)
$$

More generally, it is proved in [2] that if $\left(b^{\prime}\right)$ and
(c) $\quad\left\|R^{n}\right\|=O\left(n^{k}\right) \quad(n \rightarrow+\infty)$
hold, then $(R-\lambda)^{k+1}=0$. We improve this result by replacing (c) by the condition

$$
\left\|R^{n}\right\|=o\left(n^{k+1}\right) \quad(n \rightarrow+\infty)
$$

Finally, we construct examples to show that (a), (b) and (a^{\prime}), (b^{\prime}) are, essentially, the best growth conditions for the two results.

2. Entire functions of exponential type zero

Let f be an entire function. Then f is said to be of exponential type if there exists a constant $c>0$ such that $|f(z)|=O\left(e^{c|z|}\right)(z \in \mathbb{C})$.

The infimum τ of all constants c for which the above inequality holds is called the exponential type of f. It is easy to see that

$$
\tau=\limsup _{|z| \rightarrow+\infty} \frac{\log |f(z)|}{|z|}
$$

THEOREM 2.1. Let f be an entire function of exponential type zero. If f is bounded on $[0,+\infty)$ and satisfies $\log ^{+}|f(-t)|=o\left(t^{1 / 2}\right)(t \rightarrow+\infty)$, then f is constant.

Proof. Set, for $z \in \mathbb{C} \backslash(-\infty, 0], \log z=\log |z|+i \operatorname{Arg}(z)$, where $\operatorname{Arg}(z)$ is the determination of the argument of z which belongs to $(-\pi,+\pi]$. The function $z \rightarrow z^{1 / 2}=e^{(\log z) / 2}$ is analytic on $\mathbb{C} \backslash(-\infty, 0]$ and continuous on $\mathbb{C} \backslash(-\infty, 0)$. Denote by \mathbb{C}_{+}the right-hand half plane $\{z \in \mathbb{C}: \operatorname{Re} z>0\}$. Let $\epsilon>0$ and set

$$
g_{\epsilon}(z)=e^{-\epsilon z^{1 / 2}} f(i z) \quad\left(z \in \overline{\mathbb{C}}_{+}\right)
$$

Then g_{ϵ} is analytic on \mathbb{C}_{+}and continuous on $\overline{\mathbb{C}}_{+}$. We have

$$
\left|g_{\epsilon}(z)\right|=e^{-\epsilon \operatorname{Re}\left(z^{1 / 2}\right)}|f(i z)|=e^{-\epsilon|z|^{1 / 2} \cos \left(\frac{1}{2} \operatorname{Arg} z\right)}|f(i z)| .
$$

For $z \in \mathbb{C}_{+}, \cos \left(\frac{1}{2} \operatorname{Arg} z\right) \geq 0$ and so $\left|g_{\epsilon}(z)\right| \leq|f(i z)|$. Since f is of exponential type zero, we have for an arbitrary $a>0$,

$$
\left|g_{\epsilon}(z)\right|=O\left(e^{a|z|}\right) \quad(|z| \rightarrow+\infty, \operatorname{Re} z \geq 0)
$$

Moreover, we obtain for $t \in \mathbb{R},\left|g_{\epsilon}(i t)\right|=e^{-\epsilon(t \mid / 2)^{1 / 2}}|f(-t)|$. The hypothesis on f implies that there exists a constant $m_{\epsilon}>0$ such that $|f(t)| \leq m_{\epsilon} e^{\epsilon(|t| / 2)^{1 / 2}}(t \in \mathbb{R})$. Thus g_{ϵ} is bounded by m_{ϵ} on the imaginary axis. It follows from [4, Theorem 1.4.3] that g_{ϵ} is bounded by m_{ϵ} on $\overline{\mathbb{C}}_{+}$. We have

$$
|f(i z)|=\left|e^{\epsilon z^{1 / 2}} g_{\epsilon}(z)\right|=e^{\epsilon|z|^{1 / 2} \cos \left(\frac{1}{2} \operatorname{Arg} z\right)}\left|g_{\epsilon}(z)\right| \leq m_{\epsilon} e^{\epsilon|z|^{1 / 2}}
$$

So

$$
\limsup _{|z| \rightarrow+\infty, \operatorname{Re} z \geq 0} \frac{\log |f(i z)|}{|i z|^{1 / 2}}=0
$$

Applying the same method to the function $f(-z)$, we obtain

$$
\limsup _{|z| \rightarrow+\infty, \operatorname{Re} z \leq 0} \frac{\log |f(i z)|}{|i z|^{1 / 2}}=0
$$

Finally, the function f is of growth $(1 / 2,0)$ in the sense of [4, Chapter 2] and bounded on $[0,+\infty)$. Hence f is constant by [4, Theorem 3.1.5].

COROLLARY 2.2. Let $k \geq 0$ be an integer and let f be an entire function of exponential type zero. If f satisfies the two following conditions,
(i) $f(t)=o\left(t^{k+1}\right) \quad(t \rightarrow+\infty)$,
(ii) $\log ^{+}|f(t)|=o\left(t^{\frac{1}{2}}\right) \quad(t \rightarrow+\infty)$,
then f is a polynomial of degree $\leq k$.
Proof. Consider the function

$$
g(z)=\frac{1}{z^{k+1}}\left(f(z)-\sum_{i=0}^{k} \frac{f^{(i)}(0)}{i!} z^{i}\right)
$$

It is easily verified that g satisfies the hypothesis of Theorem 1.1 and thus g is constant. It follows from the definition of g that f is a polynomial of degree $\leq k+1$, and from condition (i) that f is polynomial of degree $\leq k$.

3. Spectral synthesis in weighted algebras

Let ω be a continuous function on \mathbb{R} such that $\omega(t) \geq 1$ and $\omega(t+s) \leq$ $\omega(t) \omega(s)(t, s \in \mathbb{R})$. The function ω is called a weight.

Denote by $M_{\omega}(\mathbb{R})$ the space of all complex-valued measures μ on \mathbb{R} such that

$$
\|\mu\|_{\omega}=\int_{-\infty}^{+\infty} \omega(t) d|\mu|(t)<+\infty
$$

where $|\mu|$ is the total variation of μ. Let $\mu, v \in M_{\omega}(\mathbb{R})$. By the Riesz representation theorem there exists a unique measure, denoted $\mu \star \nu$ and called the convolution product of μ and ν, such that

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s+t) d \mu(s) d v(t)=\int_{-\infty}^{+\infty} f(s) d(\mu \star v)(s)
$$

for all continuous functions f on \mathbb{R} which vanish at infinity. We have $\mu \star v \in M_{\omega}(\mathbb{R})$ and $\|\mu \star \nu\|_{\omega} \leq\|\mu\|_{\omega}\|\nu\|_{\omega}$.

The space $M_{\omega}(\mathbb{R})$ with convolution product and norm $\|\cdot\|_{\omega}$ is a unital Banach algebra (see [9, Sec. 4.16]). If we denote by δ_{\imath} the Dirac measure concentrated at $\{t\}$, then δ_{0} is the unit of $M_{\omega}(\mathbb{R})$ and $\left\|\delta_{t}\right\|_{\omega}=\omega(t)(t \in \mathbb{R})$.

Set $L_{\omega}(\mathbb{R})$ to be the space of all measurable functions f such that

$$
\|f\|_{\omega}=\int_{-\infty}^{+\infty}|f(t)| \omega(t) d t<+\infty .
$$

The space $L_{\omega}(\mathbb{R})$ is naturally identifiable with a closed ideal of $M_{\omega}(\mathbb{R})$. The convolution product of $f, g \in L_{\omega}(\mathbb{R})$ is defined almost everywhere in the formula

$$
(f \star g)(s)=\int_{-\infty}^{+\infty} f(t) g(s-t) d t
$$

The dual of $L_{\omega}(\mathbb{R})$, denoted by $L_{\omega^{-1}}^{\infty}(\mathbb{R})$, is the set of all measurable functions g such that $\operatorname{esssup}_{t \in \mathbb{R}}|g(t)| / \omega(-t)<+\infty$, and the duality is implemented by the formula

$$
\langle f, g\rangle=\int_{-\infty}^{+\infty} f(t) g(-t) d t \quad\left(f \in L_{\omega}(\mathbb{R}), g \in L_{\omega^{-1}}^{\infty}(\mathbb{R})\right)
$$

We say the weight ω is regular if

$$
\int_{-\infty}^{+\infty} \frac{\log \omega(t)}{1+t^{2}} d t<+\infty
$$

It is well-known that the algebra $L_{\omega}(\mathbb{R})$ is regular in the sense of $[10, \mathrm{pp} .221,226]$ if and only if the weight ω is regular [10, p. 118].

For $\mu \in M_{\omega}(\mathbb{R})$ we denote by $\hat{\mu}$ the Fourier transformation of μ, so that

$$
\hat{\mu}(x)=\int_{-\infty}^{+\infty} e^{-i x t} d \mu(t) \quad(x \in \mathbb{R}) .
$$

If I is a closed ideal of $L_{\omega}(\mathbb{R})$, the hull of I is the set $h(I)=\{x \in \mathbb{R}: \hat{f}(x)=0(f \in$ I) \}.

Let E be a closed subset of \mathbb{R}. We set $I_{\omega}(E)=\left\{f \in L_{\omega}(\mathbb{R}): \hat{f}_{\mid E}=0\right\}$, and we denote by $J_{\omega}(E)$ the closure, with respect to the norm $\|\cdot\|_{\omega}$, of the set $\left\{f \in L_{\omega}(\mathbb{R})\right.$: $\hat{f}=0$ on some neighbourhood of $E\}$. It is easily seen that $I_{\omega}(E)$ and $J_{\omega}(E)$ are closed ideals of $L_{\omega}(\mathbb{R})$. If the weight ω is regular then $h\left(I_{\omega}(E)\right)=h\left(J_{\omega}(E)\right)=E$ and $J_{\omega}(E) \subseteq I \subseteq I_{\omega}(E)$ for all closed ideals I of $L_{\omega}(\mathbb{R})$ such that $h(I)=E[10, \mathrm{p}$. 224].

Definition 3.1. Let ω be a regular weight and let E be a closed subset of \mathbb{R}. Then
(i) E satisfies ω-synthesis if $J_{\omega}(E)=I_{\omega}(E)$;
(ii) f satisfies ω-synthesis for E if $f \in J_{\omega}(E)$.

Thus E satisfies the ω-synthesis when there exists exactly one closed ideal in $L_{\omega}(\mathbb{R})$ with hull E.

In [13] it is proved that closed countable subsets of \mathbb{R} satisfy the ω-synthesis for all weights ω such that

$$
\begin{cases}\omega(t)=1 & (t \geq 0) \tag{1}\\ \log \omega(-t)=o\left(t^{\frac{1}{2}}\right) & (t \rightarrow+\infty)\end{cases}
$$

Theorem 3.2. Let $x \in \mathbb{R}$, let $k \geq 0$ be an integer and let ω be a weight such that:
(i) $\omega(t)=o\left(t^{k+1}\right) \quad(t \rightarrow+\infty)$;
(ii) $\log \omega(-t)=o\left(t^{\frac{1}{2}}\right) \quad(t \rightarrow+\infty)$;
(iii) $\lim \inf _{|t| \rightarrow+\infty} \omega(t) /\left(1+|t|^{k}\right)>0$.

Then a function $f \in L_{\omega}(\mathbb{R})$ satisfies ω-synthesis for $\{x\}$ if and only if $\hat{f}^{(i)}(x)=0$ for $i=0,1, \ldots, k$.

Proof. By using the transformation $f(t) \rightarrow e^{i x t} f(t)$ we can suppose that $x=0$. Assume that f satisfies the ω-synthesis for $\{0\}$. Let $\left(f_{n}\right)_{n \geq 0}$ be a sequence in $L_{\omega}(\mathbb{R})$ such that for each integer n, \hat{f}_{n} vanishes on a neighborhood of $\{0\}$ and $\left\|f_{n}-f\right\|_{\omega} \rightarrow 0$ as $n \rightarrow+\infty$. Condition (iii) ensures the existence of the first k derivatives for all

Fourier transforms of elements of $L_{\omega}(\mathbb{R})$, and we have for $i=0, \ldots, k \hat{f}_{n}^{(i)}(0)=0$, $\hat{f}_{n}^{(i)}(0) \rightarrow \hat{f}^{(i)}(0)$ as $n \rightarrow+\infty$, and so $\hat{f}^{(i)}(0)=0$.

Conversely, let π be the canonical surjection from $L_{\omega}(\mathbb{R})$ onto $L_{\omega}(\mathbb{R}) / J_{\omega}(\{0\})$. There exists $p \in L_{\omega}(\mathbb{R})$ such that $\pi(p)$ is the unit of the quotient algebra $L_{\omega}(\mathbb{R}) / J_{\omega}\{(0)\}$ (see [13, Proposition 1.2]).

For all $t \in \mathbb{R}$ set $\pi\left(\delta_{t}\right)=\pi\left(p \star \delta_{t}\right) ;\left(\pi\left(\delta_{t}\right)\right)_{t \in \mathbb{R}}$ is a norm-continuous C_{0}-group, and so there exists $u=\lim _{t \rightarrow+\infty}\left(\pi\left(\delta_{t}\right)-\pi\left(\delta_{0}\right)\right) / t$ such that $\pi\left(\delta_{t}\right)=e^{t u}(t \in \mathbb{R})$ [9, Theorem 9.4.2].

The weight ω is regular and so $h\left(J_{\omega}(\{0\})\right)=\{0\}$. Thus the set of characters of the algebra $L_{\omega}(\mathbb{R}) / J_{\omega}(\{0\})$ is equal to $\left\{\chi_{0}\right\}$, where $\chi_{0}(\pi(f))=\hat{f}(0),\left(f \in L_{\omega}(\mathbb{R})\right)$. Hence the spectrum of u equals $\left\{\chi_{0}(u)\right\}=\{0\}$ and so $\lim _{n \rightarrow+\infty}\left\|u^{n}\right\|^{1 / n}=0$. Hence, for each $\epsilon>0$, there exists a constant $m_{\epsilon}>0$ such that $\left\|u^{n}\right\| \leq m_{\epsilon} \epsilon^{n}(n \geq 0)$.

Set $\varphi(z)=e^{z u}(z \in \mathbb{C})$. Then,

$$
\|\varphi(z)\| \leq \sum_{n=0}^{+\infty} \frac{\left\|u^{n}\right\||z|^{n}}{n!} \leq m_{\epsilon} \sum_{n=0}^{+\infty} \frac{\epsilon^{n}|z|^{n}}{n!}=m_{\epsilon} e^{\epsilon|z|},
$$

and so $\varphi(z)$ is a vector-valued entire function of exponential type zero. Moreover $\varphi(t)=\pi\left(\delta_{t}\right)(t \in \mathbb{R})$, and so

$$
\|\varphi(t)\|=\left\|\pi\left(\delta_{t}\right)\right\|=\left\|\pi\left(p \star \delta_{t}\right)\right\| \leq\|p\|_{\omega} \omega(t)
$$

It follows from the Hahn-Banach theorem and from Corollary 2.2 that $\varphi(z)$ is a polynomial of degree $\leq k$. Let $a_{0}, \ldots, a_{k} \in L_{\omega}(\mathbb{R}) / J_{\omega}(\{0\})$ be such that

$$
\varphi(z)=a_{0}+a_{1} z+\cdots+a_{k} z^{k}
$$

Recall that the dual of $L_{\omega}(\mathbb{R}) / J_{\omega}(\{0\})$ can be identified with $J_{\omega}(\{0\})^{\perp}$ by using the isomorphism

$$
\theta: J_{\omega}(\{0\})^{\perp} \rightarrow\left(L_{\omega}(\mathbb{R}) / J_{\omega}(\{0\})\right)^{\star}
$$

defined by $\theta(g)=\tilde{g}$ where $g=\tilde{g} \circ \pi\left(g \in J_{\omega}(\{0\})^{\perp}\right)$. We obtain, for $g \in$ $J_{\omega}(\{0\})^{\perp}, t \in \mathbb{R}$,

$$
\left\langle p \star \delta_{t}, g\right\rangle=\left\langle\pi\left(\delta_{t}\right), \tilde{g}\right\rangle=\sum_{i=0}^{k}\left\langle a_{i}, \tilde{g}\right\rangle t^{i}
$$

Let $f \in L_{\omega}(\mathbb{R})$ be such that $\hat{f}_{n}^{(i)}(0)=0$ for $i=0, \ldots, k$ and let $g \in J_{\omega}(\{0\})^{\perp}$. We
have

$$
\begin{aligned}
\langle f, g\rangle & =\langle f \star p, g\rangle \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s) p(t-s) g(-t) d t d s \\
& =\int_{-\infty}^{+\infty} f(s) \int_{-\infty}^{+\infty} p(t-s) g(-t) d t d s \\
& =\int_{-\infty}^{+\infty} f(s)\left\langle p \star \delta_{s}, g\right\rangle d s=\int_{-\infty}^{+\infty} f(s)\left(\sum_{j=0}^{k}\left\langle a_{j}, \tilde{g}\right\rangle s^{j}\right) d s \\
& =\sum_{j=0}^{k}\left\langle a_{j}, \tilde{g}\right\rangle \int_{-\infty}^{+\infty} f(s) s^{j} d s=\sum_{j=0}^{k}\left\langle a_{j}, \tilde{g}\right\rangle(-i)^{j} \hat{f}^{(j)}(0)=0
\end{aligned}
$$

So $f \in J_{\omega}(\{0\})$.

REMARK. For $k=0$, Theorem 3.2 shows that points satisfy ω-synthesis for all weights ω such that

$$
\begin{cases}\omega(t)=o(t) & (t \rightarrow+\infty) \tag{2}\\ \log \omega(-t)=o\left(t^{\frac{1}{2}}\right) & (t \rightarrow+\infty)\end{cases}
$$

and this improves [8, Theorem 8.1].
Suppose that ω satisfies $\liminf _{|t| \rightarrow+\infty} \omega(t) /|t|>0$. Set $I=\left\{f \in L_{\omega}(\mathbb{R}): \hat{f}(0)=\right.$ $\left.\hat{f}^{\prime}(0)=0\right\} ; I$ is a closed ideal of $L_{\omega}(\mathbb{R})$ different from $I_{\omega}(\{0\})$ and with $h(I)=\{0\}$. So $\{0\}$ does not satisfy the ω-synthesis.

It follows from this observation that (2) gives, essentially, the best growth conditions on ω for which points satisfy ω-synthesis.

4. C_{0}-groups satisfying some growth conditions

Let T be a C_{0}-group with a generator A and let ω be a regular weight such that $\|T(t)\|=O(\omega(t))(|t| \rightarrow+\infty)$. For example, ω can be the weight $\omega_{T}=$ $(\|T(t)\|)_{t \in \mathbb{R}}$.

For $\mu \in M_{\omega}(\mathbb{R})$, we define

$$
\mu(T)=\int_{-\infty}^{+\infty} T(t) d \mu(t)
$$

(Here the integral is the Bochner integral with respect to the strong operator topology [9, Theorem 3.8.2].) The map $\psi: M_{\omega}(\mathbb{R}) \rightarrow \mathscr{L}(X), \mu \rightarrow \mu(T)$ is a continuous algebra homomorphism satisfying

$$
\|\mu(T)\| \leq \sup _{t \in \mathbb{R}} \frac{\|T(t)\|}{\omega(t)}\|\mu\|_{\omega}
$$

Denote by $\sigma(A)$ the spectrum of $A\left[9\right.$, Definition 2.16.1]. Let $\mathscr{R}(\lambda)=(\lambda-A)^{-1}$ be the resolvent of A, so that \mathscr{R} is defined and analytic on $\mathbb{C} \backslash \sigma(A)$.

Since ω is a weight, the limits $\lim _{t \rightarrow \pm \infty} \log \omega(t) / t$ exist; and since ω is regular, $\lim _{|t| \rightarrow+\infty} \log \omega(t) /|t|=0$. In particular, $\|T(n)\|^{1 / n} \rightarrow 1$ as $|n| \rightarrow+\infty$, and so $\sigma(T(1)) \subset \Gamma$, where Γ denotes the unit circle. By [9, p. 457] we have $e^{\sigma(A)} \subset$ $\sigma(T(1))$. Hence $\operatorname{Re} \lambda=0$ for all $\lambda \in \sigma(A)$, and we have [9, p. 344]

$$
\mathscr{R}(z)= \begin{cases}\int_{0}^{+\infty} T(t) e^{-z t} d t & (\operatorname{Re} z>0) \\ -\int_{-\infty}^{0} T(t) e^{-z t} d t & (\operatorname{Re} z<0)\end{cases}
$$

Lemma 4.1. Let $\mu \in M_{\omega}(\mathbb{R})$. Then

$$
\mu(T) x=\lim _{\epsilon \rightarrow 0+} \int_{-\infty}^{+\infty} \hat{\mu}(t)[\mathscr{R}(\epsilon-i t) x-\mathscr{R}(-\epsilon-i t) x] d t
$$

for all x in the domain of A^{2}.
Proof. Let $x \in X$. For $\epsilon>0$ and $t \in \mathbb{R}$, we set $S_{\epsilon}(t)=e^{-\epsilon|t|} T(-t)$ and

$$
g_{\epsilon}(t)=\int_{-\infty}^{+\infty} S_{\epsilon}(t-s) x d \mu(s)
$$

so that $g_{\epsilon}: \mathbb{R} \rightarrow X$ is continuous. Since $\|T(t)\|=O(\omega(t))(|t| \rightarrow+\infty)$, we have $\int_{-\infty}^{+\infty}\left\|S_{\epsilon}(t)\right\| d t<+\infty$. Hence by Fubini's theorem

$$
\begin{aligned}
\int_{-\infty}^{+\infty}\left\|g_{\epsilon}(t)\right\| d t & \leq \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left\|S_{\epsilon}(t-s)\right\|\|x\| d|\mu|(s) d t \\
& \leq\|x\|\|\mu\|_{\omega} \int_{-\infty}^{+\infty}\left\|S_{\epsilon}(t)\right\| d t<+\infty
\end{aligned}
$$

The Fourier transform of g_{ϵ} is given by the formula

$$
\begin{aligned}
\hat{g}_{\epsilon}(u) & =\int_{-\infty}^{+\infty} e^{-i u t} g_{\epsilon}(t) d t \\
& =\int_{-\infty}^{+\infty} e^{-i u t}\left[\int_{-\infty}^{+\infty} S_{\epsilon}(t-s) x d \mu(s)\right] d t \\
& =\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} e^{-i u t} e^{-\epsilon|t-s|} T(s-t) x d t\right] d \mu(s)
\end{aligned}
$$

We have

$$
\begin{aligned}
\int_{-\infty}^{+\infty} e^{-i u t} e^{-\epsilon|s-t|} T(s-t) x d t & =\int_{-\infty}^{+\infty} e^{i u(v-s)} e^{-\epsilon|v|} T(v) x d v \\
& =e^{-i u s}\left[\int_{-\infty}^{0} e^{(i u+\epsilon) v} T(v) x d v+\int_{0}^{+\infty} e^{(i u-\epsilon) v} T(v) x d v\right] \\
& =e^{-i u s}[\mathscr{R}(\epsilon-i u) x-\mathscr{R}(-\epsilon-i u) x]
\end{aligned}
$$

So

$$
\begin{aligned}
\hat{g}_{\epsilon}(u) & =\hat{\mu}(u)(\mathscr{R}(\epsilon-i u) x-\mathscr{R}(-\epsilon-i u) x) \\
& =-2 \epsilon \hat{\mu}(u) \mathscr{R}(\epsilon-i u) \mathscr{R}(-\epsilon-i u) x .
\end{aligned}
$$

Suppose that x is in the domain of A. We have for all $\lambda \notin \sigma(A), \mathscr{R}(\lambda)(\lambda-A) x=x$. So $\mathscr{R}(\lambda) x=(x+\mathscr{R}(\lambda) A x) / \lambda$. It follows from the fact that $\lim _{|t| \rightarrow+\infty} \log \omega(t) /|t|=0$ and [11, Remark 5.4], that there exists a constant M such that $\|\mathscr{R}(\lambda)\| \leq M$ for all $\lambda,|\operatorname{Re} \lambda| \geq \epsilon$. Then we obtain

$$
\|\mathscr{R}(\lambda) x\| \leq(\|x\|+M\|A x\|) /|\lambda|, \quad|\operatorname{Re} \lambda| \geq \epsilon .
$$

Suppose now that x is in the domain of A^{2}. We deduce from the above inequality that

$$
\begin{aligned}
\|\mathscr{R}(\epsilon-i u) \mathscr{R}(-\epsilon-i u) x\| & \leq \frac{1}{\left(\epsilon^{2}+u^{2}\right)^{1 / 2}}(\|\mathscr{R}(-\epsilon-i u) x\|+M\|\mathscr{R}(-\epsilon-i u) A x\|) \\
& \leq \frac{1}{\left(\epsilon^{2}+u^{2}\right)}\left(\|x\|+2 M\|A x\|+M^{2}\left\|A^{2} x\right\|\right) .
\end{aligned}
$$

This estimate and the fact that $\hat{\mu}$ is a bounded function show that \hat{g}_{ϵ} is integrable. Since g_{ϵ} is continuous, we obtain by the inverse Fourier transform, for all $t \in \mathbb{R}$,

$$
\begin{aligned}
g_{\epsilon}(t) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i t u} \hat{g}_{\epsilon}(u) d u \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \hat{\mu}(s) e^{i s t}(\mathscr{R}(\epsilon-i s) x-\mathscr{R}(-\epsilon-i s) x) d s
\end{aligned}
$$

We have

$$
g_{\epsilon}(0)=\int_{-\infty}^{+\infty} e^{-\epsilon|s|} T(s) x d \mu(s)
$$

which implies that $\mu(T) x=\lim _{\epsilon \rightarrow 0} g_{\epsilon}(0)$, and this proves the lemma.

The following result is certainly known but we have not been able to find a precise reference.

TheOrem 4.2. Let T be a C_{0}-group with a generator A and let ω be a regular weight such that $\|T(t)\|=O(\omega(t))(|t| \rightarrow+\infty)$. Let

$$
\varphi: L_{\omega}(\mathbb{R}) \rightarrow L(X), \quad f \rightarrow f(T)=\int_{-\infty}^{+\infty} f(t) T(t) d t
$$

Then $\operatorname{ker} \varphi$ is a closed ideal of $L_{\omega}(\mathbb{R})$ and $h(\operatorname{ker} \varphi)=i \sigma(A)$.
PROOF. Note that φ is the restriction of ψ to $L_{\omega}(\mathbb{R})$ and $\operatorname{so} \varphi$ is a continuous algebra homomorphism. So $\operatorname{ker} \varphi$ is a closed ideal of $L_{\omega}(\mathbb{R})$.

Set $\mathscr{A}=L_{\omega}(\mathbb{R})+\mathbb{C} \delta_{0} ; \operatorname{ker} \varphi$ is also a closed ideal of \mathscr{A}. The set of characters of \mathscr{A} can be identified with the set $\left\{\chi_{x}: x \in \mathbb{R}\right\} \cup\left\{\chi_{\infty}\right\}$ where $\chi_{x}(\mu)=\hat{\mu}(x)$ and $\chi_{\infty}(\mu)=\lim _{|x| \rightarrow \infty} \hat{\mu}(x)(\mu \in \mathscr{A})$. So, the set of characters of $\mathscr{A} / \operatorname{ker} \varphi$ can be indentified with the set $\left\{\chi_{x}: x \in h(\operatorname{ker} \varphi)\right\} \cup\left\{\chi_{\infty}\right\}$. Since $\operatorname{ker} \varphi \subset \operatorname{ker} \psi \cap \mathscr{A}$ there exists a homomorphism $\tilde{\psi}: \mathscr{A} / \operatorname{ker} \varphi \rightarrow L(X)$ such that $\tilde{\psi} \circ \pi=\psi$, where π is the canonical surjection from \mathscr{A} onto $\mathscr{A} / \operatorname{ker} \varphi$.

Let $v(x)=e^{-x}(x \geq 0)$ and $v(x)=0(x<0)$, so that $v \in L_{\omega}(\mathbb{R})$. The spectrum $\sigma(\pi(v))$ of $\pi(v)$ in $\mathscr{A} / \operatorname{ker} \varphi$ is given by

$$
\sigma(\pi(v))=\left\{(1+i x)^{-1}: x \in h(\operatorname{ker} \varphi)\right\} \cup\{0\}
$$

We have

$$
v(T)=\int_{0}^{+\infty} T(t) e^{-t} d t
$$

and the relation between the Carlemann transform of T and the resolvent of A, recalled in the beginning of this paragraph, implies that $v(T)=(I-A)^{-1}$. Since $v(T)=\varphi(v)=\tilde{\psi}(\pi(v))$, we have $\sigma(v(T)) \subset \sigma(\pi(v))$. So if $x \in \sigma(A)$ then $x \neq 1,1 /(1-x) \in \sigma(v(T)) \subset \sigma(\pi(v))$, and $1 /(1-x)=1 /(1+i y)$ with $y \in h(\operatorname{ker} \varphi)$, and so $i x=y \in h(\operatorname{ker} \varphi)$. Thus $i \sigma(A) \subset h(\operatorname{ker} \varphi)$.

For $n \geq 1$, set $e_{n}=n 1_{[0,1 / n]}$, where $1_{[0,1 / n]}$ is the characteristic function of the interval $[0,1 / n]$. We have for all $f \in L_{\omega}(\mathbb{R}),\left\|f \star e_{n}-f\right\|_{\omega} \rightarrow 0$ as $n \rightarrow+\infty$ [13, Proposition 1.1].

Let I be the closure of the set of all functions $f \in L_{\omega}(\mathbb{R})$ such that \hat{f} has compact support; I is a closed ideal of $L_{\omega}(\mathbb{R})$ such that $h(I)=\phi$. Wiener's Tauberian theorem for regular Beurling algebras shows that $I=L_{\omega}(\mathbb{R})$ (see [2] and [5]). It follows that for $n \geq 1$, there exists $k_{n} \in L_{\omega}(\mathbb{R})$ such that the support of \hat{k}_{n} is compact and $\left\|k_{n}-e_{n}\right\|_{\omega}<1 / n$. Thus $\left\|f \star k_{n}-f\right\|_{\omega} \rightarrow 0$ as $n \rightarrow+\infty\left(f \in L_{\omega}(\mathbb{R})\right)$.

Fix now $f \in L_{\omega}(\mathbb{R})$ and let x be in the domain of A^{2}, which we denote by $\mathscr{D}\left(A^{2}\right)$. It follows from Lemma 4.1 that

$$
\left(f \star k_{n}\right)(T) x=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{+\infty} \hat{f}(t) \hat{k}_{n}(t)[\mathscr{R}(\epsilon-i t) x-\mathscr{R}(-\epsilon-i t) x] d t
$$

Suppose that f vanishes on a neighbourhood of $i \sigma(A)$. Then it is clear that $\left(f \star k_{n}\right)(T) x=0$. Since $\mathscr{D}\left(A^{2}\right)$ is dense in $X\left[11\right.$, Theorem 2.7] and since $\left(f \star k_{n}\right)(T)$ is a bounded operator, we have $\left(f \star k_{n}\right)(T)=0$. Using the inequality

$$
\left\|f(T)-\left(f \star k_{n}\right)(T)\right\| \leq \sup _{t \in \mathbb{R}} \frac{\|T(t)\|}{\omega(t)}\left\|f \star k_{n}-f\right\|_{\omega}
$$

we see that $f(T)=0$.
The map φ is continuous and so $J_{\omega}(i \sigma(A)) \subseteq \operatorname{ker} \varphi$. Thus $h(\operatorname{ker} \varphi) \subseteq h\left(J_{\omega}(i \sigma(A))\right.$. Since the algebra $L_{\omega}(\mathbb{R})$ is regular, $h\left(J_{\omega}(i \sigma(A))\right)=i \sigma(A)$, which concludes the proof of the theorem.

Theorem 4.3. Let $k \geq 0$ be an integer and let T be a C_{0}-group with a generator A. Assume that the following conditions hold:
(i) $\|T(t)\|=o\left(t^{k+1}\right) \quad(t \rightarrow+\infty)$;
(ii) $\log ^{+}\|T(-t)\|=o\left(t^{1 / 2}\right) \quad(t \rightarrow+\infty)$.

If $\sigma(A)=\{\lambda\}$, then A is bounded and $(A-\lambda)^{k+1}=0$.
Proof. We have $\operatorname{Re} \lambda=0$ and multiplying $T(t)$ by $e^{-\lambda t}$ we can assume without loss of generality that $\lambda=0$.

Set $\omega(t)=\max \left(\|T(t)\|,(1+|t|)^{k}\right),(t \in \mathbb{R}) ; \omega$ is a weight satisfying the three conditions of Theorem 3.2 and we have $\|T(t)\|=O(\omega(t))(t \rightarrow+\infty)$.

Let

$$
u(t)= \begin{cases}0 & \text { if }|t| \geq 1 \\ c e^{-1 /\left(1-|t|^{2}\right)} & \text { if }|t|<1\end{cases}
$$

the constant c is chosen such that $\int_{-1}^{1} u(t) d t=1$. The function u is infinitely differentiable and $\operatorname{Supp}(u)=[-1,1]$. Set, for $n \geq 1$, and for $t \in \mathbb{R}, u_{n}(t)=n u(n t)$ and $e_{n}(t)=u_{n}^{(k+1)}(t)$. Clearly, $\operatorname{Supp}\left(e_{n}\right)=[-1 / n, 1 / n]$ and $e_{n} \in L_{\omega}(\mathbb{R})$. We have $\hat{e}_{n}(t)=(i t)^{k+1} \hat{u}_{n}(t)$. Thus $\hat{e}_{n}^{(i)}(0)=0$ for $i=0,1, \ldots, k$ and Theorem 3.2 shows that e_{n} satisfies ω-synthesis for $\{0\}$. It follows from Theorem 4.2 that $h(\operatorname{ker} \varphi)=\{0\}$, so that $e_{n} \in \operatorname{ker} \varphi$. So $e_{n}(T)=0$.

Let x be in the domain of A^{k+1}. The map $h_{x}: \mathbb{R} \rightarrow X, t \mapsto T(t) x$ is $(k+1)$-times continuously differentiable and $h_{x}^{(k+1)}(t)=T(t) A^{k+1} x[9$, Theorem 11.5.3].

We have

$$
e_{n}(T) x=\int_{-\infty}^{+\infty} e_{n}(t) h_{x}(t) d t
$$

applying integration by parts $(k+1)$-times we obtain

$$
e_{n}(T)=(-1)^{k+1} \int_{-\infty}^{+\infty} u_{n}(t) h_{x}^{(k+1)}(t) d t
$$

So

$$
\begin{aligned}
\left\|e_{n}(T) x-(-1)^{k+1} A^{k+1} x\right\| & =\left\|\int_{-\infty}^{+\infty} u_{n}(t)\left(T(t) A^{k+1} x-A^{k+1} x\right) d t\right\| \\
& =\left\|\int_{-\infty}^{+\infty} \frac{1}{n} u_{n}\left(\frac{t}{n}\right)\left(T\left(\frac{t}{n}\right) A^{k+1} x-A^{k+1} x\right) d t\right\| \\
& =\left\|\int_{-1}^{1} u(t)\left(T\left(\frac{t}{n}\right) A^{k+1} x-A^{k+1} x\right) d t\right\| \\
& \left.\leq \sup _{-1 \leq t \leq 1} \| T\left(\frac{t}{n}\right) A^{k+1} x-A^{k+1} x\right) \|
\end{aligned}
$$

Since the map $t \mapsto T(t) A^{k+1} x$ is continuous, the latter quantity converges to 0 as $n \rightarrow+\infty$. Thus $e_{n}(T) x \rightarrow(-1)^{k+1} A^{k+1} x$ as $n \rightarrow+\infty$. Since $e_{n}(T)=0$, we obtain $A^{k+1} x=0$. Hence $A^{k+1}=0$. It follows from [9, p. 56] that A is bounded.

We will make precise the relation between Theorem 3.2 and Theorem 4.3 in the case $k=0$. We will say that a regular weight ω satisfies property (P) if :
(P) For all C_{0}-groups T with $\sigma(A)=\{0\}$ and $\|T(t)\|=O(\omega(t))(|t| \rightarrow+\infty)$, we have $A=0$.

Theorem 4.4. Let ω be a regular weight. Then ω satisfies property (P) if and only if points satisfy ω-synthesis.

Proof. We will use the notations introduced in the proof of Theorem 3.2. Suppose that ω satisfies property (P). The C_{0}-group $\left(\pi\left(\delta_{t}\right)\right)_{t \in \mathbb{R}} \subseteq L_{\omega}(\mathbb{R}) / J_{\omega}(\{0\})$ is such that $\sigma(u)=0$ and $\left\|\pi\left(\delta_{t}\right)\right\| \leq\|p\|_{\omega} \omega(t)(t \in \mathbb{R})$. Hence $u=0$ and $\pi\left(\delta_{t}\right)=\pi\left(\delta_{0}\right)(t \in \mathbb{R})$.

Let $f \in I_{\omega}(\{0\})$ and let $g \in J_{\omega}(\{0\})^{\perp}$. Then

$$
\begin{aligned}
\langle f, g\rangle & =\langle f \star p, g\rangle=\int_{-\infty}^{+\infty} f(s)\left\langle p \star \delta_{s}, g\right\rangle d s \\
& =\int_{-\infty}^{+\infty} f(s)\left\langle\pi\left(\delta_{s}\right), \tilde{g}\right\rangle d s=\langle\pi(p), \tilde{g}\rangle \hat{f}(0)=0
\end{aligned}
$$

Thus $g \in I_{\omega}(\{0\})^{\perp}$. It follows that $I_{\omega}(\{0\})=J_{\omega}(\{0\})$.
Conversely, suppose that $\{0\}$ satisfies ω-synthesis and let T be such that $\sigma(A)=\{0\}$ and $\|T(t)\|=O(\omega(t))(|t| \rightarrow+\infty)$.

Consider the function $\varphi: L_{\omega}(\mathbb{R}) \rightarrow \mathscr{L}(X), f \mapsto f(T)$. By Theorem 4.2, $h(\operatorname{ker} \varphi)=\{0\}$. Since $\{0\}$ satisfies ω-synthesis, $\operatorname{ker} \varphi=I_{\omega}(\{0\})$. For each integer $n \geq 1$ let e_{n} be the function defined in the proof of Theorem 4.3 for $k=0$. We have $e_{n}(T) x \rightarrow-A x$ for all x in the domain of A. Since $\hat{e}_{n}(0)=0, e_{n}(T)=0$. Hence $A=0$.

5. The discrete case

We now give a result, analogous to Theorem 4.3 as announced in the introduction.
THEOREM 5.1. Let $k \geq 0$ be an integer and let R be a bounded operator on a Banach space with spectrum equal to $\{\lambda\}$ and such that
(i) $\left\|R^{n}\right\|=o\left(n^{k+1}\right)(n \rightarrow+\infty)$;
(ii) $\log ^{+}\left\|R^{-n}\right\|=o\left(n^{1 / 2}\right)(n \rightarrow+\infty)$.

Then $(R-\lambda)^{k+1}=0$.
Proof. We have $|\lambda|=1$ and we can assume without loss of generality that $\lambda=1$. Let

$$
A=\log R=\sum_{n \geq 1} \frac{(-1)^{n-1}}{n}(R-I)^{n}
$$

(This series is convergent since $\lim _{n \rightarrow+\infty}\left\|(R-I)^{n}\right\|{ }^{1 / n}=0$.) Set $T(t)=e^{t A}(t \in \mathbb{R})$. It is well-known and easy to check that $\sigma(A)=\{0\}$ and $T(n)=R^{n}(n \in \mathbb{Z})$.

For all $t \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that $|t-n|<1$ and $|n| \leq|t|$. We have

$$
\|T(t)\| \leq\|T(t-n)\|\|T(n)\| \leq \sup _{-1 \leq s \leq 1}\|T(s)\|\|T(n)\| \leq e^{\|A\|}\|T(n)\|
$$

Since $|n| \leq|t|$, we see that the group T satisfies conditions (i) and (ii) of Theorem 4.3. Hence $A^{k+1}=0$. We have

$$
A^{k+1}=(R-I)^{k+1}\left(\sum_{n \geq 1} \frac{(-1)^{n-1}}{n}(R-I)^{n-1}\right)^{k+1}
$$

Since the operator $\sum_{n \geq 1}\left((-1)^{n-1} / n\right)(R-I)^{n-1}$ is invertible, we obtain $(R-I)^{k+1}=0$.

REMARK. Let ω be a weight on \mathbb{Z} and let

$$
A_{\omega}(\Gamma)=\left\{f \in \mathscr{C}(\Gamma): \sum_{n \in \mathbb{Z}}|\hat{f}(n)| \omega(n)<+\infty\right\}
$$

where Γ is the unit circle. As in Definition 3.1 we can define the ω-spectral synthesis property for a closed subset of Γ [14]. By the same methods we can prove results analogous to Theorems 3.2 and 4.4 in the discrete case. The result analogous to Theorem 4.2 is given in [14].

Finally we give examples to show that conditions (i) and (ii) in Theorem 4.3 and Theorem 5.1 are essentially the best possible.

Example 1. Let $k \geq 0$ be an integer and let $A: \mathbb{C}^{k+2} \rightarrow \mathbb{C}^{k+2}$ be the operator defined by the matrix

$$
\left(\begin{array}{ccccc}
0 & 1 & & & \\
& \cdot & \cdot & 0 & \\
& & \cdot & \cdot & \\
& 0 & & \cdot & 1 \\
& & & & 0
\end{array}\right)
$$

with respect to the canonical basis of \mathbb{C}^{k+2}. Define $T(t)=e^{t A}(t \in \mathbb{R})$. A direct calculation gives $\|T(t)\|=O\left(|t|^{k+1}\right)(|t| \rightarrow+\infty)$. But is is clear that $A^{k+1} \neq 0$.

Example 2. Let H^{2} be the Hardy space, let $\theta(z)=e^{(z+1) /(z-1)},(|z|<1)$ and let $\mathscr{H}=H^{2} \ominus \theta H^{2}$. Denote by $P_{\mathscr{H}}$ the orthogonal projection on \mathscr{H} and set $R(f)=P_{\mathscr{H}}(z f)(f \in \mathscr{H})$. Then R is a contraction with spectrum $\{1\}$ such that $\log \left\|R^{-n}\right\|=O\left(n^{1 / 2}\right)(n \rightarrow+\infty)\left[11\right.$, Remark 2.c]. But $(R-I)^{k} \neq 0$ for all integers $k \geq 0$.

If we set

$$
A=\sum_{n \geq 1} \frac{(-1)^{n}}{n}(R-I)^{n},
$$

then $\sigma(A)=\{0\}$ and A is the infinitesimal generator of a norm-continuous group T which satisfies $\|T(t)\|=O(1)(t \rightarrow+\infty), \log ^{+}\|T(-t)\|=O\left(t^{1 / 2}\right)(t \rightarrow+\infty)$ and $A^{k} \neq 0$ for all integers $k \geq 0$ (see the proof of Theorem 5.1).

Acknowledgements

I wish to thank Professors W. Arendt and J. Esterle for helpful conversations concerning this work.

References

[1] G. R. Allan and T. J. Ransford, 'Power-dominated elements in a Banach algebra', Studia Math. 94 (1989), 63-79.
[2] A. Atzmon, 'Operators which are annihilated by analytic functions and invariant subspaces', Acta Math. 144 (1980), 27-63.
[3] A. Beurling, 'Sur les integrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle', in: Neuvième Cong. Math. Scandinaves, Helsinki 1938 (Tryekeri, Helsinki, 1939) pp. 199-210.
[4] R. P. Boas, Entire functions (Academic Press, New York, 1954).
[5] H. G. Dales and W. K. Hayman, 'Esterle's proof of the Tauberian theorem for Beurling algebras', Ann. Inst. Fourier (Grenoble) 31 (1981), 141-150.
[6] J. Esterle, 'Distributions on Kronecker sets, strong form of uniqueness and closed ideals of A^{+}, J. Reine Angew. Math. 450 (1994), 43-82.
[7] J. Esterle, E. Strouse and F. Zouakia, 'Stabilité asymptotique de certains semi-groupes d'opérateurs', J. Operator Theory 28 (1992), 203-227.
[8] V. P. Gurarii, 'Harmonic analysis in spaces with weights', Trans. Moscow Math. Soc. 35 (1979), 21-75.
[9] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31 (Amer. Math. Soc., Providence, 1957).
[10] Y. Katznelson, An introduction to harmonic analysis (Wiley, New York, 1968).
[11] A. Pazy, Semigroups of linear operators and applications to partial differential equations (Springer, New York, 1983).
[12] H. H. Schaefer, M. Wolf and W. Arendt, 'On lattice isomorphisms with positive real spectrum and group operators', Math. Z. 164 (1978), 115-123.
[13] M. Zarrabi, 'Ensembles de synthèse pour certaines algèbres de Beurling', Rev. Roumaine Math. Pures Appl. 35 (1990), 385-396.
[14] ___, 'Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle', Ann. Inst. Fourier (Grenoble) 43 (1993), 251-263.
U.F.R de Mathématiques et Informatique

Université Bordeaux I
351, cours de la Liberation
33405 Talence

France

e-mail: zarrabi@math.u-bordeaux.fr

