SPECTRAL SYNTHESIS AND APPLICATIONS TO C₀-GROUPS

M. ZARRABI

(Received 22 February 1993; revised 6 May 1993)

Communicated by I. Raeburn

Abstract

Let $k \ge 0$ be an integer, $T = (T(t))_{t \in \mathbb{R}}$ a C_0 -group of bounded operators and A the infinitesimal generator of T. We prove that if,

 $||T(t)|| = o(t^{k+1})$ and $\log^+ ||T(-t)|| = o(t^{1/2})$ $(t \to +\infty),$

and if the spectrum of A is equal to $\{\lambda\}$, then A is bounded and $(A - \lambda)^{k+1} = 0$. Examples are given to show that these conditions are, essentially, the best possible.

1991 Mathematics subject classification (Amer. Math. Soc.): 47D03.

1. Introduction

Let X be a Banach space and let $T : \mathbb{R} \to L(X)$ be a C_0 -group, that is, T satisfies the following conditions:

- (i) T(0) = I, where I is the identity operator;
- (ii) T(t+s) = T(t)T(s) $(t, s \in \mathbb{R});$
- (iii) For each $x \in \mathbb{R}$, the map $t \to T(t)x$ is norm-continuous from \mathbb{R} into X.

Let \mathcal{D} be the set of all $x \in X$ such that the limit

$$Ax = \lim_{t \to 0} \frac{T(t)x - x}{t}$$

exists. Then \mathcal{D} is a linear space dense in X and A is a closed linear operator with domain \mathcal{D} [11, p. 5]; A is called the *infinitesimal generator* of T.

In this paper we consider the following problem: Under what conditions on T do we have $(A - \lambda)^{k+1} = 0$, when the spectrum of A, $\sigma(A)$, is equal to $\{\lambda\}$ and where $k \ge 0$ is a given integer?

^{© 1996} Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00

We prove that if T satisfies the conditions

(a) $||T(t)|| = o(t^{k+1})$ $(t \to +\infty),$ (b) $\log^+ ||T(-t)|| = o(t^{1/2})$ $(t \to +\infty),$

and if $\sigma(A) = \{\lambda\}$, then A is bounded and $(A - \lambda)^{k+1} = 0$.

We obtain this result by using spectral sythesis arguments in weighted algebras. For k = 0 we give the equivalence between the above result and the spectral synthesis property for points. We prove that if ω is a weight on \mathbb{R} then points satisfy the ω -spectral synthesis if and only if for all C_0 -groups T dominated by ω such that $\sigma(A) = \{\lambda\}$, we have $A = \lambda I$.

For the analogous problem in the discrete case, some results are known. Let R be a bounded and invertible operator on a Banach space with spectrum equal to $\{\lambda\}$. Gelfand proved that if the sequence $(R^n)_{n \in \mathbb{Z}}$ is bounded then $R = \lambda I$ (see [1, 12]). This result is extended in [2] and [14] to contractions R such that

(b')
$$\log^+ ||R^{-n}|| = o(n^{\frac{1}{2}}) \quad (n \to +\infty).$$

More generally, it is proved in [2] that if (b') and

(c)
$$||R^n|| = O(n^k)$$
 $(n \to +\infty)$

hold, then $(R - \lambda)^{k+1} = 0$. We improve this result by replacing (c) by the condition

(a') $||R^n|| = o(n^{k+1})$ $(n \to +\infty).$

Finally, we construct examples to show that (a), (b) and (a'), (b') are, essentially, the best growth conditions for the two results.

2. Entire functions of exponential type zero

Let f be an entire function. Then f is said to be of *exponential type* if there exists a constant c > 0 such that $|f(z)| = O(e^{c|z|})$ ($z \in \mathbb{C}$).

The infimum τ of all constants c for which the above inequality holds is called the *exponential type* of f. It is easy to see that

$$\tau = \limsup_{|z| \to +\infty} \frac{\log |f(z)|}{|z|}.$$

THEOREM 2.1. Let f be an entire function of exponential type zero. If f is bounded on $[0, +\infty)$ and satisfies $\log^+ |f(-t)| = o(t^{1/2})$ $(t \to +\infty)$, then f is constant.

PROOF. Set, for $z \in \mathbb{C} \setminus (-\infty, 0]$, $\log z = \log |z| + i \operatorname{Arg}(z)$, where $\operatorname{Arg}(z)$ is the determination of the argument of z which belongs to $(-\pi, +\pi]$. The function $z \to z^{1/2} = e^{(\log z)/2}$ is analytic on $\mathbb{C} \setminus (-\infty, 0]$ and continuous on $\mathbb{C} \setminus (-\infty, 0)$. Denote by \mathbb{C}_+ the right-hand half plane { $z \in \mathbb{C}$: Re z > 0}. Let $\epsilon > 0$ and set

$$g_{\epsilon}(z) = e^{-\epsilon z^{1/2}} f(iz) \quad (z \in \overline{\mathbb{C}}_+).$$

[2]

Then g_{ϵ} is analytic on \mathbb{C}_+ and continuous on $\overline{\mathbb{C}}_+$. We have

$$|g_{\epsilon}(z)| = e^{-\epsilon \operatorname{Re}(z^{1/2})} |f(iz)| = e^{-\epsilon |z|^{1/2} \cos(\frac{1}{2}\operatorname{Arg} z)} |f(iz)|.$$

For $z \in \mathbb{C}_+$, $\cos(\frac{1}{2}\operatorname{Arg} z) \ge 0$ and so $|g_{\epsilon}(z)| \le |f(iz)|$. Since f is of exponential type zero, we have for an arbitrary a > 0,

$$|g_{\epsilon}(z)| = O\left(e^{a|z|}\right) \qquad (|z| \to +\infty, \operatorname{Re} z \ge 0).$$

Moreover, we obtain for $t \in \mathbb{R}$, $|g_{\epsilon}(it)| = e^{-\epsilon(|t|/2)^{1/2}} |f(-t)|$. The hypothesis on f implies that there exists a constant $m_{\epsilon} > 0$ such that $|f(t)| \le m_{\epsilon} e^{\epsilon(|t|/2)^{1/2}}$ $(t \in \mathbb{R})$. Thus g_{ϵ} is bounded by m_{ϵ} on the imaginary axis. It follows from [4, Theorem 1.4.3] that g_{ϵ} is bounded by m_{ϵ} on $\overline{\mathbb{C}}_+$. We have

$$|f(iz)| = |e^{\epsilon z^{1/2}}g_{\epsilon}(z)| = e^{\epsilon |z|^{1/2}\cos(\frac{1}{2}\operatorname{Arg} z)}|g_{\epsilon}(z)| \le m_{\epsilon}e^{\epsilon |z|^{1/2}}$$

So

$$\limsup_{|z| \to +\infty, \text{ Re } z \ge 0} \frac{\log |f(iz)|}{|iz|^{1/2}} = 0.$$

Applying the same method to the function f(-z), we obtain

$$\lim_{|z|\to+\infty, \text{ Re}z<0} \frac{\log |f(iz)|}{|iz|^{1/2}} = 0.$$

Finally, the function f is of growth (1/2, 0) in the sense of [4, Chapter 2] and bounded on $[0, +\infty)$. Hence f is constant by [4, Theorem 3.1.5].

COROLLARY 2.2. Let $k \ge 0$ be an integer and let f be an entire function of exponential type zero. If f satisfies the two following conditions,

(i) $f(t) = o(t^{k+1})$ $(t \to +\infty)$,

(ii)
$$\log^+ |f(t)| = o(t^{\frac{1}{2}}) \quad (t \to +\infty),$$

then f is a polynomial of degree $\leq k$.

PROOF. Consider the function

$$g(z) = \frac{1}{z^{k+1}} \left(f(z) - \sum_{i=0}^{k} \frac{f^{(i)}(0)}{i!} z^{i} \right).$$

It is easily verified that g satisfies the hypothesis of Theorem 1.1 and thus g is constant. It follows from the definition of g that f is a polynomial of degree $\leq k + 1$, and from condition (i) that f is polynomial of degree $\leq k$.

3. Spectral synthesis in weighted algebras

Let ω be a continuous function on \mathbb{R} such that $\omega(t) \ge 1$ and $\omega(t+s) \le \omega(t)\omega(s)$ $(t, s \in \mathbb{R})$. The function ω is called a *weight*.

Denote by $M_{\omega}(\mathbb{R})$ the space of all complex-valued measures μ on \mathbb{R} such that

$$\|\mu\|_{\omega} = \int_{-\infty}^{+\infty} \omega(t) \, d|\mu|(t) < +\infty,$$

where $|\mu|$ is the total variation of μ . Let $\mu, \nu \in M_{\omega}(\mathbb{R})$. By the Riesz representation theorem there exists a unique measure, denoted $\mu \star \nu$ and called the *convolution product* of μ and ν , such that

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s+t) d\mu(s) d\nu(t) = \int_{-\infty}^{+\infty} f(s) d(\mu \star \nu)(s)$$

for all continuous functions f on \mathbb{R} which vanish at infinity. We have $\mu \star \nu \in M_{\omega}(\mathbb{R})$ and $\|\mu \star \nu\|_{\omega} \leq \|\mu\|_{\omega} \|\nu\|_{\omega}$.

The space $M_{\omega}(\mathbb{R})$ with convolution product and norm $\|.\|_{\omega}$ is a unital Banach algebra (see [9, Sec. 4.16]). If we denote by δ_t the Dirac measure concentrated at $\{t\}$, then δ_0 is the unit of $M_{\omega}(\mathbb{R})$ and $\|\delta_t\|_{\omega} = \omega(t)$ ($t \in \mathbb{R}$).

Set $L_{\omega}(\mathbb{R})$ to be the space of all measurable functions f such that

$$\|f\|_{\omega}=\int_{-\infty}^{+\infty}|f(t)|\omega(t)dt<+\infty.$$

The space $L_{\omega}(\mathbb{R})$ is naturally identifiable with a closed ideal of $M_{\omega}(\mathbb{R})$. The convolution product of $f, g \in L_{\omega}(\mathbb{R})$ is defined almost everywhere in the formula

$$(f \star g)(s) = \int_{-\infty}^{+\infty} f(t)g(s-t) dt$$

The dual of $L_{\omega}(\mathbb{R})$, denoted by $L_{\omega^{-1}}^{\infty}(\mathbb{R})$, is the set of all measurable functions g such that $\operatorname{esssup}_{t \in \mathbb{R}} |g(t)| / \omega(-t) < +\infty$, and the duality is implemented by the formula

$$\langle f,g\rangle = \int_{-\infty}^{+\infty} f(t)g(-t)\,dt \qquad (f\in L_{\omega}(\mathbb{R}),\ g\in L_{\omega^{-1}}^{\infty}(\mathbb{R})).$$

We say the weight ω is regular if

$$\int_{-\infty}^{+\infty} \frac{\log \omega(t)}{1+t^2} \, dt < +\infty.$$

It is well-known that the algebra $L_{\omega}(\mathbb{R})$ is regular in the sense of [10, pp. 221, 226] if and only if the weight ω is regular [10, p. 118].

For $\mu \in M_{\omega}(\mathbb{R})$ we denote by $\hat{\mu}$ the Fourier transformation of μ , so that

$$\hat{\mu}(x) = \int_{-\infty}^{+\infty} e^{-ixt} d\mu(t) \qquad (x \in \mathbb{R}).$$

If *I* is a closed ideal of $L_{\omega}(\mathbb{R})$, the *hull* of *I* is the set $h(I) = \{x \in \mathbb{R} : \hat{f}(x) = 0 \ (f \in I)\}$.

Let *E* be a closed subset of \mathbb{R} . We set $I_{\omega}(E) = \{f \in L_{\omega}(\mathbb{R}) : \hat{f}_{|E} = 0\}$, and we denote by $J_{\omega}(E)$ the closure, with respect to the norm $\|.\|_{\omega}$, of the set $\{f \in L_{\omega}(\mathbb{R}) : \hat{f} = 0 \text{ on some neighbourhood of } E\}$. It is easily seen that $I_{\omega}(E)$ and $J_{\omega}(E)$ are closed ideals of $L_{\omega}(\mathbb{R})$. If the weight ω is regular then $h(I_{\omega}(E)) = h(J_{\omega}(E)) = E$ and $J_{\omega}(E) \subseteq I \subseteq I_{\omega}(E)$ for all closed ideals *I* of $L_{\omega}(\mathbb{R})$ such that h(I) = E [10, p. 224].

DEFINITION 3.1. Let ω be a regular weight and let *E* be a closed subset of \mathbb{R} . Then

- (i) E satisfies ω -synthesis if $J_{\omega}(E) = I_{\omega}(E)$;
- (ii) f satisfies ω -synthesis for E if $f \in J_{\omega}(E)$.

Thus E satisfies the ω -synthesis when there exists exactly one closed ideal in $L_{\omega}(\mathbb{R})$ with hull E.

In [13] it is proved that closed countable subsets of \mathbb{R} satisfy the ω -synthesis for all weights ω such that

(1)
$$\begin{cases} \omega(t) = 1 & (t \ge 0), \\ \log \omega(-t) = o(t^{\frac{1}{2}}) & (t \to +\infty) \end{cases}$$

THEOREM 3.2. Let $x \in \mathbb{R}$, let $k \ge 0$ be an integer and let ω be a weight such that:

- (i) $\omega(t) = o(t^{k+1})$ $(t \to +\infty);$
- (ii) $\log \omega(-t) = o(t^{\frac{1}{2}})$ $(t \to +\infty);$
- (iii) $\liminf_{|t| \to +\infty} \omega(t)/(1+|t|^k) > 0.$

Then a function $f \in L_{\omega}(\mathbb{R})$ satisfies ω -synthesis for $\{x\}$ if and only if $\hat{f}^{(i)}(x) = 0$ for i = 0, 1, ..., k.

PROOF. By using the transformation $f(t) \to e^{ixt} f(t)$ we can suppose that x = 0. Assume that f satisfies the ω -synthesis for $\{0\}$. Let $(f_n)_{n\geq 0}$ be a sequence in $L_{\omega}(\mathbb{R})$ such that for each integer n, \hat{f}_n vanishes on a neighborhood of $\{0\}$ and $||f_n - f||_{\omega} \to 0$ as $n \to +\infty$. Condition (iii) ensures the existence of the first k derivatives for all Fourier transforms of elements of $L_{\omega}(\mathbb{R})$, and we have for i = 0, ..., k $\hat{f}_{n}^{(i)}(0) = 0$, $\hat{f}_{n}^{(i)}(0) \rightarrow \hat{f}^{(i)}(0)$ as $n \rightarrow +\infty$, and so $\hat{f}^{(i)}(0) = 0$.

Conversely, let π be the canonical surjection from $L_{\omega}(\mathbb{R})$ onto $L_{\omega}(\mathbb{R})/J_{\omega}(\{0\})$. There exists $p \in L_{\omega}(\mathbb{R})$ such that $\pi(p)$ is the unit of the quotient algebra $L_{\omega}(\mathbb{R})/J_{\omega}\{(0)\}$ (see [13, Proposition 1.2]).

For all $t \in \mathbb{R}$ set $\pi(\delta_t) = \pi(p \star \delta_t)$; $(\pi(\delta_t))_{t \in \mathbb{R}}$ is a norm-continuous C_0 -group, and so there exists $u = \lim_{t \to +\infty} (\pi(\delta_t) - \pi(\delta_0))/t$ such that $\pi(\delta_t) = e^{tu}$ $(t \in \mathbb{R})$ [9, Theorem 9.4.2].

The weight ω is regular and so $h(J_{\omega}(\{0\})) = \{0\}$. Thus the set of characters of the algebra $L_{\omega}(\mathbb{R})/J_{\omega}(\{0\})$ is equal to $\{\chi_0\}$, where $\chi_0(\pi(f)) = \hat{f}(0)$, $(f \in L_{\omega}(\mathbb{R}))$. Hence the spectrum of u equals $\{\chi_0(u)\} = \{0\}$ and so $\lim_{n \to +\infty} ||u^n||^{1/n} = 0$. Hence, for each $\epsilon > 0$, there exists a constant $m_{\epsilon} > 0$ such that $||u^n|| \le m_{\epsilon}\epsilon^n$ $(n \ge 0)$.

Set $\varphi(z) = e^{zu}$ ($z \in \mathbb{C}$). Then,

$$\|\varphi(z)\| \leq \sum_{n=0}^{+\infty} \frac{\|u^n\| |z|^n}{n!} \leq m_{\epsilon} \sum_{n=0}^{+\infty} \frac{\epsilon^n |z|^n}{n!} = m_{\epsilon} e^{\epsilon|z|},$$

and so $\varphi(z)$ is a vector-valued entire function of exponential type zero. Moreover $\varphi(t) = \pi(\delta_t)$ ($t \in \mathbb{R}$), and so

$$\|\varphi(t)\| = \|\pi(\delta_t)\| = \|\pi(p \star \delta_t)\| \le \|p\|_{\omega}\omega(t).$$

It follows from the Hahn-Banach theorem and from Corollary 2.2 that $\varphi(z)$ is a polynomial of degree $\leq k$. Let $a_0, \ldots, a_k \in L_{\omega}(\mathbb{R})/J_{\omega}(\{0\})$ be such that

$$\varphi(z) = a_0 + a_1 z + \dots + a_k z^k.$$

Recall that the dual of $L_{\omega}(\mathbb{R})/J_{\omega}(\{0\})$ can be identified with $J_{\omega}(\{0\})^{\perp}$ by using the isomorphism

$$\theta: J_{\omega}(\{0\})^{\perp} \to (L_{\omega}(\mathbb{R})/J_{\omega}(\{0\}))^{\star}$$

defined by $\theta(g) = \tilde{g}$ where $g = \tilde{g} \circ \pi$ $(g \in J_{\omega}(\{0\})^{\perp})$. We obtain, for $g \in J_{\omega}(\{0\})^{\perp}$, $t \in \mathbb{R}$,

$$\langle p \star \delta_i, g \rangle = \langle \pi(\delta_i), \tilde{g} \rangle = \sum_{i=0}^k \langle a_i, \tilde{g} \rangle t^i.$$

Let $f \in L_{\omega}(\mathbb{R})$ be such that $\hat{f}_n^{(i)}(0) = 0$ for i = 0, ..., k and let $g \in J_{\omega}(\{0\})^{\perp}$. We

have

$$\langle f,g \rangle = \langle f \star p,g \rangle$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s)p(t-s)g(-t) dt ds$$

$$= \int_{-\infty}^{+\infty} f(s) \int_{-\infty}^{+\infty} p(t-s)g(-t) dt ds$$

$$= \int_{-\infty}^{+\infty} f(s) \langle p \star \delta_s, g \rangle ds = \int_{-\infty}^{+\infty} f(s) \left(\sum_{j=0}^k \langle a_j, \tilde{g} \rangle s^j \right) ds$$

$$= \sum_{j=0}^k \langle a_j, \tilde{g} \rangle \int_{-\infty}^{+\infty} f(s)s^j ds = \sum_{j=0}^k \langle a_j, \tilde{g} \rangle (-i)^j \hat{f}^{(j)}(0) = 0.$$

So $f \in J_{\omega}(\{0\})$.

REMARK. For k = 0, Theorem 3.2 shows that points satisfy ω -synthesis for all weights ω such that

(2)
$$\begin{cases} \omega(t) = o(t) & (t \to +\infty), \\ \log \omega(-t) = o(t^{\frac{1}{2}}) & (t \to +\infty), \end{cases}$$

and this improves [8, Theorem 8.1].

Suppose that ω satisfies $\lim \inf_{|t|\to+\infty} \omega(t)/|t| > 0$. Set $I = \{f \in L_{\omega}(\mathbb{R}) : \hat{f}(0) = \hat{f}'(0) = 0\}$; I is a closed ideal of $L_{\omega}(\mathbb{R})$ different from $I_{\omega}(\{0\})$ and with $h(I) = \{0\}$. So $\{0\}$ does not satisfy the ω -synthesis.

It follows from this observation that (2) gives, essentially, the best growth conditions on ω for which points satisfy ω -synthesis.

4. C_0 -groups satisfying some growth conditions

Let T be a C_0 -group with a generator A and let ω be a regular weight such that $||T(t)|| = O(\omega(t))$ ($|t| \to +\infty$). For example, ω can be the weight $\omega_T = (||T(t)||)_{t \in \mathbb{R}}$.

For $\mu \in M_{\omega}(\mathbb{R})$, we define

$$\mu(T) = \int_{-\infty}^{+\infty} T(t) \, d\mu(t).$$

(Here the integral is the Bochner integral with respect to the strong operator topology [9, Theorem 3.8.2].) The map $\psi : M_{\omega}(\mathbb{R}) \to \mathcal{L}(X), \ \mu \to \mu(T)$ is a continuous algebra homomorphism satisfying

$$\|\mu(T)\| \leq \sup_{t\in\mathbb{R}}\frac{\|T(t)\|}{\omega(t)}\|\mu\|_{\omega}.$$

Denote by $\sigma(A)$ the spectrum of A [9, Definition 2.16.1]. Let $\mathscr{R}(\lambda) = (\lambda - A)^{-1}$ be the resolvent of A, so that \mathscr{R} is defined and analytic on $\mathbb{C} \setminus \sigma(A)$.

Since ω is a weight, the limits $\lim_{t\to\pm\infty} \log \omega(t)/t$ exist; and since ω is regular, $\lim_{|t|\to+\infty} \log \omega(t)/|t| = 0$. In particular, $||T(n)||^{1/n} \to 1$ as $|n| \to +\infty$, and so $\sigma(T(1)) \subset \Gamma$, where Γ denotes the unit circle. By [9, p. 457] we have $e^{\sigma(A)} \subset \sigma(T(1))$. Hence Re $\lambda = 0$ for all $\lambda \in \sigma(A)$, and we have [9, p. 344]

$$\mathscr{R}(z) = \begin{cases} \int_0^{+\infty} T(t)e^{-zt} dt & (\text{Re } z > 0), \\ -\int_{-\infty}^0 T(t)e^{-zt} dt & (\text{Re } z < 0). \end{cases}$$

LEMMA 4.1. Let $\mu \in M_{\omega}(\mathbb{R})$. Then

$$\mu(T)x = \lim_{\epsilon \to 0+} \int_{-\infty}^{+\infty} \hat{\mu}(t) \left[\mathscr{R}(\epsilon - it)x - \mathscr{R}(-\epsilon - it)x \right] dt,$$

for all x in the domain of A^2 .

PROOF. Let $x \in X$. For $\epsilon > 0$ and $t \in \mathbb{R}$, we set $S_{\epsilon}(t) = e^{-\epsilon|t|}T(-t)$ and

$$g_{\epsilon}(t) = \int_{-\infty}^{+\infty} S_{\epsilon}(t-s) x \, d\mu(s),$$

so that $g_{\epsilon} : \mathbb{R} \to X$ is continuous. Since $||T(t)|| = O(\omega(t))$ $(|t| \to +\infty)$, we have $\int_{-\infty}^{+\infty} ||S_{\epsilon}(t)|| dt < +\infty$. Hence by Fubini's theorem

$$\int_{-\infty}^{+\infty} \|g_{\epsilon}(t)\| dt \leq \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \|S_{\epsilon}(t-s)\| \|x\| d|\mu|(s) dt$$
$$\leq \|x\| \|\mu\|_{\omega} \int_{-\infty}^{+\infty} \|S_{\epsilon}(t)\| dt < +\infty.$$

The Fourier transform of g_{ϵ} is given by the formula

$$\hat{g}_{\epsilon}(u) = \int_{-\infty}^{+\infty} e^{-iut} g_{\epsilon}(t) dt$$

$$= \int_{-\infty}^{+\infty} e^{-iut} \left[\int_{-\infty}^{+\infty} S_{\epsilon}(t-s) x d\mu(s) \right] dt$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} e^{-iut} e^{-\epsilon|t-s|} T(s-t) x dt \right] d\mu(s)$$

We have

$$\int_{-\infty}^{+\infty} e^{-iut} e^{-\epsilon|s-t|} T(s-t) x \, dt = \int_{-\infty}^{+\infty} e^{iu(v-s)} e^{-\epsilon|v|} T(v) x \, dv$$
$$= e^{-ius} \left[\int_{-\infty}^{0} e^{(iu+\epsilon)v} T(v) x \, dv + \int_{0}^{+\infty} e^{(iu-\epsilon)v} T(v) x \, dv \right]$$
$$= e^{-ius} \left[\mathscr{R}(\epsilon - iu) x - \mathscr{R}(-\epsilon - iu) x \right].$$

So

$$\hat{g}_{\epsilon}(u) = \hat{\mu}(u) \left(\mathscr{R}(\epsilon - iu)x - \mathscr{R}(-\epsilon - iu)x \right) \\ = -2\epsilon \hat{\mu}(u) \mathscr{R}(\epsilon - iu) \mathscr{R}(-\epsilon - iu)x.$$

Suppose that x is in the domain of A. We have for all $\lambda \notin \sigma(A)$, $\mathscr{R}(\lambda)(\lambda - A)x = x$. So $\mathscr{R}(\lambda)x = (x + \mathscr{R}(\lambda)Ax)/\lambda$. It follows from the fact that $\lim_{|t|\to+\infty} \log \omega(t)/|t| = 0$ and [11, Remark 5.4], that there exists a constant M such that $\|\mathscr{R}(\lambda)\| \leq M$ for all λ , $|\operatorname{Re} \lambda| \geq \epsilon$. Then we obtain

$$\|\mathscr{R}(\lambda)x\| \leq (\|x\| + M\|Ax\|)/|\lambda|, \qquad |\operatorname{Re} \lambda| \geq \epsilon.$$

Suppose now that x is in the domain of A^2 . We deduce from the above inequality that

$$\begin{aligned} \|\mathscr{R}(\epsilon - iu)\mathscr{R}(-\epsilon - iu)x\| &\leq \frac{1}{(\epsilon^2 + u^2)^{1/2}} \left(\|\mathscr{R}(-\epsilon - iu)x\| + M\|\mathscr{R}(-\epsilon - iu)Ax\| \right) \\ &\leq \frac{1}{(\epsilon^2 + u^2)} \left(\|x\| + 2M\|Ax\| + M^2\|A^2x\| \right). \end{aligned}$$

This estimate and the fact that $\hat{\mu}$ is a bounded function show that \hat{g}_{ϵ} is integrable. Since g_{ϵ} is continuous, we obtain by the inverse Fourier transform, for all $t \in \mathbb{R}$,

$$g_{\epsilon}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{itu} \hat{g}_{\epsilon}(u) \, du$$

= $\frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{\mu}(s) e^{ist} \left(\mathscr{R}(\epsilon - is)x - \mathscr{R}(-\epsilon - is)x \right) \, ds.$

We have

$$g_{\epsilon}(0) = \int_{-\infty}^{+\infty} e^{-\epsilon|s|} T(s) x \, d\mu(s),$$

which implies that $\mu(T)x = \lim_{\epsilon \to 0} g_{\epsilon}(0)$, and this proves the lemma.

The following result is certainly known but we have not been able to find a precise reference.

THEOREM 4.2. Let T be a C_0 -group with a generator A and let ω be a regular weight such that $||T(t)|| = O(\omega(t)) (|t| \to +\infty)$. Let

$$\varphi: L_{\omega}(\mathbb{R}) \to L(X), \qquad f \to f(T) = \int_{-\infty}^{+\infty} f(t)T(t) dt.$$

Then ker φ is a closed ideal of $L_{\omega}(\mathbb{R})$ and $h(\ker \varphi) = i\sigma(A)$.

PROOF. Note that φ is the restriction of ψ to $L_{\omega}(\mathbb{R})$ and so φ is a continuous algebra homomorphism. So ker φ is a closed ideal of $L_{\omega}(\mathbb{R})$.

Set $\mathscr{A} = L_{\omega}(\mathbb{R}) + \mathbb{C}\delta_0$; ker φ is also a closed ideal of \mathscr{A} . The set of characters of \mathscr{A} can be identified with the set $\{\chi_x : x \in \mathbb{R}\} \cup \{\chi_\infty\}$ where $\chi_x(\mu) = \hat{\mu}(x)$ and $\chi_\infty(\mu) = \lim_{|x|\to\infty} \hat{\mu}(x) \ (\mu \in \mathscr{A})$. So, the set of characters of $\mathscr{A}/\ker\varphi$ can be indentified with the set $\{\chi_x : x \in h(\ker\varphi)\} \cup \{\chi_\infty\}$. Since ker $\varphi \subset \ker \psi \cap \mathscr{A}$ there exists a homomorphism $\tilde{\psi} : \mathscr{A}/\ker\varphi \to L(X)$ such that $\tilde{\psi} \circ \pi = \psi$, where π is the canonical surjection from \mathscr{A} onto $\mathscr{A}/\ker\varphi$.

Let $v(x) = e^{-x}$ $(x \ge 0)$ and v(x) = 0 (x < 0), so that $v \in L_{\omega}(\mathbb{R})$. The spectrum $\sigma(\pi(v))$ of $\pi(v)$ in $\mathscr{A}/\ker \varphi$ is given by

$$\sigma(\pi(v)) = \{(1+ix)^{-1} : x \in h(\ker\varphi)\} \cup \{0\}.$$

We have

$$v(T) = \int_0^{+\infty} T(t) e^{-t} dt,$$

and the relation between the Carlemann transform of T and the resolvent of A, recalled in the beginning of this paragraph, implies that $v(T) = (I - A)^{-1}$. Since $v(T) = \varphi(v) = \tilde{\psi}(\pi(v))$, we have $\sigma(v(T)) \subset \sigma(\pi(v))$. So if $x \in \sigma(A)$ then $x \neq 1$, $1/(1 - x) \in \sigma(v(T)) \subset \sigma(\pi(v))$, and 1/(1 - x) = 1/(1 + iy) with $y \in h(\ker \varphi)$, and so $ix = y \in h(\ker \varphi)$. Thus $i\sigma(A) \subset h(\ker \varphi)$.

For $n \ge 1$, set $e_n = n \mathbb{1}_{[0,1/n]}$, where $\mathbb{1}_{[0,1/n]}$ is the characteristic function of the interval [0, 1/n]. We have for all $f \in L_{\omega}(\mathbb{R})$, $||f \star e_n - f||_{\omega} \to 0$ as $n \to +\infty$ [13, Proposition 1.1].

Let *I* be the closure of the set of all functions $f \in L_{\omega}(\mathbb{R})$ such that \hat{f} has compact support; *I* is a closed ideal of $L_{\omega}(\mathbb{R})$ such that $h(I) = \phi$. Wiener's Tauberian theorem for regular Beurling algebras shows that $I = L_{\omega}(\mathbb{R})$ (see [2] and [5]). It follows that for $n \ge 1$, there exists $k_n \in L_{\omega}(\mathbb{R})$ such that the support of \hat{k}_n is compact and $||k_n - e_n||_{\omega} < 1/n$. Thus $||f \star k_n - f||_{\omega} \to 0$ as $n \to +\infty$ ($f \in L_{\omega}(\mathbb{R})$).

Fix now $f \in L_{\omega}(\mathbb{R})$ and let x be in the domain of A^2 , which we denote by $\mathcal{D}(A^2)$. It follows from Lemma 4.1 that

$$(f \star k_n)(T)x = \frac{1}{2\pi} \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \hat{f}(t)\hat{k}_n(t) \left[\mathscr{R}(\epsilon - it)x - \mathscr{R}(-\epsilon - it)x\right] dt.$$

Suppose that f vanishes on a neighbourhood of $i\sigma(A)$. Then it is clear that $(f \star k_n)(T)x = 0$. Since $\mathcal{D}(A^2)$ is dense in X [11, Theorem 2.7] and since $(f \star k_n)(T)$ is a bounded operator, we have $(f \star k_n)(T) = 0$. Using the inequality

$$\|f(T) - (f \star k_n)(T)\| \leq \sup_{t \in \mathbb{R}} \frac{\|T(t)\|}{\omega(t)} \|f \star k_n - f\|_{\omega}$$

we see that f(T) = 0.

The map φ is continuous and so $J_{\omega}(i\sigma(A)) \subseteq \ker \varphi$. Thus $h(\ker \varphi) \subseteq h(J_{\omega}(i\sigma(A)))$. Since the algebra $L_{\omega}(\mathbb{R})$ is regular, $h(J_{\omega}(i\sigma(A))) = i\sigma(A)$, which concludes the proof of the theorem.

THEOREM 4.3. Let $k \ge 0$ be an integer and let T be a C_0 -group with a generator A. Assume that the following conditions hold:

- (i) $||T(t)|| = o(t^{k+1})$ $(t \to +\infty);$
- (ii) $\log^+ ||T(-t)|| = o(t^{1/2})$ $(t \to +\infty).$

If $\sigma(A) = \{\lambda\}$, then A is bounded and $(A - \lambda)^{k+1} = 0$.

PROOF. We have $\operatorname{Re} \lambda = 0$ and multiplying T(t) by $e^{-\lambda t}$ we can assume without loss of generality that $\lambda = 0$.

Set $\omega(t) = \max(||T(t)||, (1+|t|)^k)$, $(t \in \mathbb{R})$; ω is a weight satisfying the three conditions of Theorem 3.2 and we have $||T(t)|| = O(\omega(t))$ $(t \to +\infty)$.

Let

$$u(t) = \begin{cases} 0 & \text{if } |t| \ge 1, \\ c e^{-1/(1-|t|^2)} & \text{if } |t| < 1. \end{cases}$$

the constant c is chosen such that $\int_{-1}^{1} u(t) dt = 1$. The function u is infinitely differentiable and Supp(u) = [-1, 1]. Set, for $n \ge 1$, and for $t \in \mathbb{R}$, $u_n(t) = nu(nt)$ and $e_n(t) = u_n^{(k+1)}(t)$. Clearly, Supp $(e_n) = [-1/n, 1/n]$ and $e_n \in L_{\omega}(\mathbb{R})$. We have $\hat{e}_n(t) = (it)^{k+1}\hat{u}_n(t)$. Thus $\hat{e}_n^{(i)}(0) = 0$ for i = 0, 1, ..., k and Theorem 3.2 shows that e_n satisfies ω -synthesis for $\{0\}$. It follows from Theorem 4.2 that $h(\ker \varphi) = \{0\}$, so that $e_n \in \ker \varphi$. So $e_n(T) = 0$.

Let x be in the domain of A^{k+1} . The map $h_x : \mathbb{R} \to X$, $t \mapsto T(t)x$ is (k+1)-times continuously differentiable and $h_x^{(k+1)}(t) = T(t)A^{k+1}x$ [9, Theorem 11.5.3].

We have

$$e_n(T)x = \int_{-\infty}^{+\infty} e_n(t)h_x(t)\,dt;$$

applying integration by parts (k + 1)-times we obtain

$$e_n(T) = (-1)^{k+1} \int_{-\infty}^{+\infty} u_n(t) h_x^{(k+1)}(t) dt.$$

[12] So

$$\begin{aligned} \|e_{n}(T)x - (-1)^{k+1}A^{k+1}x\| &= \left\| \int_{-\infty}^{+\infty} u_{n}(t)(T(t)A^{k+1}x - A^{k+1}x) dt \right\| \\ &= \left\| \int_{-\infty}^{+\infty} \frac{1}{n}u_{n}\left(\frac{t}{n}\right)\left(T\left(\frac{t}{n}\right)A^{k+1}x - A^{k+1}x\right) dt \right\| \\ &= \left\| \int_{-1}^{1} u(t)\left(T\left(\frac{t}{n}\right)A^{k+1}x - A^{k+1}x\right) dt \right\| \\ &\leq \sup_{-1 \leq t \leq 1} \left\| T\left(\frac{t}{n}\right)A^{k+1}x - A^{k+1}x\right) \right\|.\end{aligned}$$

Since the map $t \mapsto T(t)A^{k+1}x$ is continuous, the latter quantity converges to 0 as $n \to +\infty$. Thus $e_n(T)x \to (-1)^{k+1}A^{k+1}x$ as $n \to +\infty$. Since $e_n(T) = 0$, we obtain $A^{k+1}x = 0$. Hence $A^{k+1} = 0$. It follows from [9, p. 56] that A is bounded.

We will make precise the relation between Theorem 3.2 and Theorem 4.3 in the case k = 0. We will say that a regular weight ω satisfies property (P) if :

(P) For all C₀-groups T with $\sigma(A) = \{0\}$ and $||T(t)|| = O(\omega(t)) (|t| \to +\infty)$, we have A = 0.

THEOREM 4.4. Let ω be a regular weight. Then ω satisfies property (P) if and only if points satisfy ω -synthesis.

PROOF. We will use the notations introduced in the proof of Theorem 3.2. Suppose that ω satisfies property (P). The C_0 -group $(\pi(\delta_t))_{t \in \mathbb{R}} \subseteq L_{\omega}(\mathbb{R})/J_{\omega}(\{0\})$ is such that $\sigma(u) = 0$ and $\|\pi(\delta_t)\| \leq \|p\|_{\omega}\omega(t)$ ($t \in \mathbb{R}$). Hence u = 0 and $\pi(\delta_t) = \pi(\delta_0)$ ($t \in \mathbb{R}$).

Let $f \in I_{\omega}(\{0\})$ and let $g \in J_{\omega}(\{0\})^{\perp}$. Then

$$\langle f, g \rangle = \langle f \star p, g \rangle = \int_{-\infty}^{+\infty} f(s) \langle p \star \delta_s, g \rangle \, ds$$

= $\int_{-\infty}^{+\infty} f(s) \langle \pi(\delta_s), \tilde{g} \rangle \, ds = \langle \pi(p), \tilde{g} \rangle \hat{f}(0) = 0$

Thus $g \in I_{\omega}(\{0\})^{\perp}$. It follows that $I_{\omega}(\{0\}) = J_{\omega}(\{0\})$.

Conversely, suppose that $\{0\}$ satisfies ω -synthesis and let T be such that $\sigma(A) = \{0\}$ and $||T(t)|| = O(\omega(t)) (|t| \to +\infty)$.

Consider the function $\varphi : L_{\omega}(\mathbb{R}) \to \mathcal{L}(X), f \mapsto f(T)$. By Theorem 4.2, $h(\ker \varphi) = \{0\}$. Since $\{0\}$ satisfies ω -synthesis, $\ker \varphi = I_{\omega}(\{0\})$. For each integer $n \ge 1$ let e_n be the function defined in the proof of Theorem 4.3 for k = 0. We have $e_n(T)x \to -Ax$ for all x in the domain of A. Since $\hat{e}_n(0) = 0, e_n(T) = 0$. Hence A = 0.

5. The discrete case

We now give a result, analogous to Theorem 4.3 as announced in the introduction.

THEOREM 5.1. Let $k \ge 0$ be an integer and let R be a bounded operator on a Banach space with spectrum equal to $\{\lambda\}$ and such that

- (i) $||R^n|| = o(n^{k+1}) \ (n \to +\infty);$
- (ii) $\log^+ ||R^{-n}|| = o(n^{1/2}) \ (n \to +\infty).$

Then $(R - \lambda)^{k+1} = 0$.

PROOF. We have $|\lambda| = 1$ and we can assume without loss of generality that $\lambda = 1$. Let

$$A = \log R = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n} (R - I)^n.$$

(This series is convergent since $\lim_{n \to +\infty} ||(R-I)^n||^{1/n} = 0$.) Set $T(t) = e^{tA}$ $(t \in \mathbb{R})$. It is well-known and easy to check that $\sigma(A) = \{0\}$ and $T(n) = \mathbb{R}^n$ $(n \in \mathbb{Z})$.

For all $t \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that |t - n| < 1 and $|n| \le |t|$. We have

$$||T(t)|| \le ||T(t-n)|| ||T(n)|| \le \sup_{-1 \le s \le 1} ||T(s)|| ||T(n)|| \le e^{||A||} ||T(n)||.$$

Since $|n| \le |t|$, we see that the group T satisfies conditions (i) and (ii) of Theorem 4.3. Hence $A^{k+1} = 0$. We have

$$A^{k+1} = (R-I)^{k+1} \left(\sum_{n \ge 1} \frac{(-1)^{n-1}}{n} (R-I)^{n-1} \right)^{k+1}$$

Since the operator $\sum_{n\geq 1}((-1)^{n-1}/n)(R-I)^{n-1}$ is invertible, we obtain $(R-I)^{k+1}=0$.

REMARK. Let ω be a weight on \mathbb{Z} and let

$$A_{\omega}(\Gamma) = \left\{ f \in \mathscr{C}(\Gamma) : \sum_{n \in \mathbb{Z}} |\hat{f}(n)| \omega(n) < +\infty \right\},\$$

where Γ is the unit circle. As in Definition 3.1 we can define the ω -spectral synthesis property for a closed subset of Γ [14]. By the same methods we can prove results analogous to Theorems 3.2 and 4.4 in the discrete case. The result analogous to Theorem 4.2 is given in [14].

Finally we give examples to show that conditions (i) and (ii) in Theorem 4.3 and Theorem 5.1 are essentially the best possible.

EXAMPLE 1. Let $k \ge 0$ be an integer and let $A : \mathbb{C}^{k+2} \to \mathbb{C}^{k+2}$ be the operator defined by the matrix

with respect to the canonical basis of \mathbb{C}^{k+2} . Define $T(t) = e^{tA}$ $(t \in \mathbb{R})$. A direct calculation gives $||T(t)|| = O(|t|^{k+1})$ $(|t| \to +\infty)$. But is is clear that $A^{k+1} \neq 0$.

EXAMPLE 2. Let H^2 be the Hardy space, let $\theta(z) = e^{(z+1)/(z-1)}$, (|z| < 1) and let $\mathscr{H} = H^2 \ominus \theta H^2$. Denote by $P_{\mathscr{H}}$ the orthogonal projection on \mathscr{H} and set $R(f) = P_{\mathscr{H}}(zf)$ $(f \in \mathscr{H})$. Then R is a contraction with spectrum {1} such that $\log ||R^{-n}|| = O(n^{1/2})$ $(n \to +\infty)$ [11, Remark 2.c]. But $(R - I)^k \neq 0$ for all integers $k \ge 0$.

If we set

$$A = \sum_{n \ge 1} \frac{(-1)^n}{n} (R - I)^n,$$

then $\sigma(A) = \{0\}$ and A is the infinitesimal generator of a norm-continuous group T which satisfies ||T(t)|| = O(1) $(t \to +\infty)$, $\log^+ ||T(-t)|| = O(t^{1/2})$ $(t \to +\infty)$ and $A^k \neq 0$ for all integers $k \ge 0$ (see the proof of Theorem 5.1).

Acknowledgements

I wish to thank Professors W. Arendt and J. Esterle for helpful conversations concerning this work.

References

- G. R. Allan and T. J. Ransford, 'Power-dominated elements in a Banach algebra', *Studia Math.* 94 (1989), 63–79.
- [2] A. Atzmon, 'Operators which are annihilated by analytic functions and invariant subspaces', Acta Math. 144 (1980), 27–63.
- [3] A. Beurling, 'Sur les integrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle', in: *Neuvième Cong. Math. Scandinaves, Helsinki 1938* (Tryekeri, Helsinki, 1939) pp. 199–210.
- [4] R. P. Boas, Entire functions (Academic Press, New York, 1954).
- [5] H. G. Dales and W. K. Hayman, 'Esterle's proof of the Tauberian theorem for Beurling algebras', Ann. Inst. Fourier (Grenoble) 31 (1981), 141–150.

- [6] J. Esterle, 'Distributions on Kronecker sets, strong form of uniqueness and closed ideals of A⁺', J. Reine Angew. Math. 450 (1994), 43-82.
- [7] J. Esterle, E. Strouse and F. Zouakia, 'Stabilité asymptotique de certains semi-groupes d'opérateurs', J. Operator Theory 28 (1992), 203-227.
- [8] V. P. Gurarii, 'Harmonic analysis in spaces with weights', Trans. Moscow Math. Soc. 35 (1979), 21-75.
- [9] E. Hille and R. S. Phillips, *Functional analysis and semi-groups*, Amer. Math. Soc. Colloq. Publ. 31 (Amer. Math. Soc., Providence, 1957).
- [10] Y. Katznelson, An introduction to harmonic analysis (Wiley, New York, 1968).
- [11] A. Pazy, Semigroups of linear operators and applications to partial differential equations (Springer, New York, 1983).
- [12] H. H. Schaefer, M. Wolf and W. Arendt, 'On lattice isomorphisms with positive real spectrum and group operators', *Math. Z.* 164 (1978), 115–123.
- [13] M. Zarrabi, 'Ensembles de synthèse pour certaines algèbres de Beurling', Rev. Roumaine Math. Pures Appl. 35 (1990), 385–396.
- [14] ——, 'Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle', Ann. Inst. Fourier (Grenoble) 43 (1993), 251–263.

U.F.R de Mathématiques et Informatique

Université Bordeaux I

351, cours de la Liberation

33405 Talence

France

e-mail: zarrabi@math.u-bordeaux.fr