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A NATURAL PROOF OP THE CYCLOTOMIC IDENTITY

D.E. TAYLOR

The cyclotomic identity

where M(a, n) = 1/n ^ ft{d)an^d and ft is the classical Mobius function, is shown
<f|n

to be a consequence of a natural isomorphism of species.

1. INTRODUCTION

In this note we give a natural combinatorial proof of the cyclotomic identity:

where M(a,n) = 1/n J^ y.{d)anld and /i is the classical Mobius function.
d\n

A combinatorial proof of this identity has previously been given by Metropolis
and Rota [2, 3]. Their proof uses a sequence of bijections between structures built
from linear and cyclic orders. But some of the bijections they use depend on a choice
of labelling and are not natural in the categorical sense. The Metropolis-Rota proof
has been translated into the language of species (a la Joyal [1]) by Varadarajan and
Wehrhahn [5]. The lemmas which depend on a choice of labelling give an equipotence
rather than an isomorphism of species. However the species identity which corresponds
to the cyclotomic identity is in fact an isomorphism of species, not just an equipotence.
It is the purpose of this note to give a short proof of this result.

Recently Nelson [4] has generalised this proof to obtain an identity for each group
G satisfying certain finiteness conditions. The cyclotomic identity corresponds to the
case G = Z.
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186 D.E. Taylor [2]

2. SPECIES

A species S is a functor from the category of finite sets and bijections to the
category of finite sets. The generating function of S is the formal power series

n=0

where [n] = {1,2,... , n} . The elements of S(N) are called the S-structures on N.
The S-structures <r G S(N) and T G S(JV') are said to be of the same type if there

is a bijection u : N —> N' such that T = S(u)<r.
In what follows we write S = T to indicate that the species S and T are naturally

isomorphic.
Species were introduced by Joyal [1] to provide a combinatorial underpinning for

the calculus of formal power series. He showed that the usual operations on power
series such as addition, multiplication, substitution, et cetera, have species analogues.
Refer to [1] for the details. The important point is that passing from a species to its
generating function respects these operations.

A sequence of species So, Si , S2, ••• is said to be summabh if for each finite
set N there are only finitely many S,- such that S<(iV) ^ 0. In this case the sum of

00 / 00 \

the sequence is the species ]T) S<, where I 53 S,- I (N) is the disjoint union of the sets
t=0 \t=0 /

Si(N) and the action on bijections is defined in the obvious way.
The species I such that I(N) = 0 for N ^ 0 and 1(0) = {0} is the identity element

for multiplication; its generating function is 1. The species X has just one structure on
each singleton and no structures on any other set. Its generating function is x and we
have S(X) = S for all S.

If So , S i , S2 , . . . is summable, the product

»=o

is well-defined. A structure of this product species on a finite set N consists of a
sequence (K\, K2,... , Km) of disjoint subsets of N whose union is N and an (I + S;)-
structure on Ki for all i. The condition that So, S j , S2 , . . . be summable ensures
that each finite set carries only a finite number of Sj-structures and that

»=0 t=0

We use S y m to denote the species of permutations. That is, S y m (N) is the set
of all permutations of N and for every bijection u : N —• N', S y m (u) : S y m (N) —>
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S y m (JV1) sends a to v.<ru~l. Its generating function is (1 — x)~ . A related species
is Ci rc , the species of all circular permutations. The Cire-structures on N are the
permutations of N having only one cycle.

The fact that every permutation can be written as a product of uniquely determined
disjoint cycles translates into the species identity

Sym = Exp (Circ),

where Exp denotes the species that has exactly one structure on each finite set — so
called because #Exp (x) = exp(z).

3. THE CYCLOTOMIC IDENTITY

Let A be a finite set. We also use A to denote the constant species such that
4(0) = A and A(N) = 0 for N ^ 0. If |A| = a, the generating function of Sym {A • X)
is (1 — ax)~ . Our intention is to find a species factorisation of Sym {A • X).

The Sym {A • X)-structures on a set N can be regarded as pairs (n, f), where
ir £ Sym (N) and / : N —> A. We think of (n,f) as a coloured permutation (with
colours from A).

First consider the coloured permutations (TT, / ) with 7r € Circ(JV). The group
Sym (N) acts on them by conjugation. That is, a € Sym (N) sends (TT, / ) to
(aira~1,f(r~1). The orbits of Sym (N) are called necklaces. In species terminology a
necklace is a type of structure for Circ (A • X).

The period of the necklace ( represented by (ir,f) is the least positive integer
d such that nd fixes / . In particular, / is constant on every orbit of (nd) on N.
The necklaces on N of period \N\ are said to be primitive. The number of primitive
necklaces of period n with colours from A depends only on n and a and so we denote
this number by M(a,n). An explicit formula for M(a,n) is well-known and easily
found. Indeed, if n0 is a fixed element of Circ[n], then by counting the number of
coloured permutations (foj/) we find that a" = ^dM(a, d). By Mobius inversion we

d\n
have

d\n

If (TT,/) is a coloured permutation of period d, then IT induces a permutation TT
on the orbits N/{ird) of {itd) and as / is constant on these orbits it induces a function
/ : N/^) —* A. The coloured permutation (fr,/) represents a primitive necklace,
called the necklace associated with (ir, f).

If v is a primitive necklace, we define Circ(A • X) to be the species of coloured
permutations whose associated primitive necklace is r\.

The species version of the cyclotomic identity is based on the following lemma.
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LEMMA . If rj has period d, then Circ(i4 • X)^ and Circ(Xd) are naturally iso-
morphic species.

PROOF: Choose a representative (ir0,/o) 6 Circ(AX)(D) for T). If (?r,/) €
Circ(A-X)n(N), we will define 0N(ir,f) 6 Circ(X<J)(AT) and show that $ is a nat-
ural isomorphism. It turns out that there are many natural isomorphisms between
Circ(j4 • X) and Circ(Xd) . In order to describe one we first choose an element a G D.

Because (* , / ) represents T/, and TJ is primitive, there is a unique orbit
{ei , e2 , et} of (ird) on N such that for all t and j

f(A'j)) = /*(<(>))•

Thus N is the disjoint union of the k subsets {ir*(e,-) | 0 < i < d}, each of which
carries a linear order induced by ir. Moreover, these k subsets are permuted cyclically
by ir. That is, (TT,/) determines a Circ(Xrf)-structure BN(ir,f) on N. If u : N -»

N' is a bijection, then {«(ej) | 1 ^ j ^ k} is an orbit of ((UTTU"1) ) on N' and

( / u - 1 ) I (ttTrtt"1) u(ej) J = /O(TO(*)) • Thus Off defines an isomorphism of species. U

THEOREM . Sym {A. X) = JJ Sym (x*)M(AA

PROOF: Let A be the set of primitive necklaces. Every coloured circular permu-
tation is associated with a unique primitive necklace and thus

Circ(.4 • X) =

By definition there are M(af d) primitive necklaces of period d and thus by the Lemma

we have
oo

C\rc{A • X) = Y, M{a,d)Circ(Xd).
d=\

Applying Exp and using the fact that Sym = Exp (Circ) yields the isomorphism

Sym (A -X) = JJ Sym (Xr f)M ( M ).
d=\

This completes the proof. U

The cydotomic identity follows from this theorem on taking generating functions.
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