
13
Nucleation theory

The dynamics of first-order phase transitions has fascinated scientists at
least since the time of Maxwell and Van der Waals. Much work on the
classical theory of the nucleation of gases and liquids was carried out
in the early part of the 1900s, culminating in the theory of Becker and
Döring [1]. There were and still are many important applications, such
as cloud and bubble chambers, the freezing of liquids, and precipitation
in the atmosphere. The modern theory of nucleation was pioneered by
Langer [2]. Langer’s theory is based in a more fundamental way on the
microscopic interactions of atoms and molecules. It can also be applied
close to a critical point. Nucleation theory has been extended to relativis-
tic quantum field theory by Coleman and Callan [3] for zero temperature
and by Affleck [4] and Linde [5] for finite temperature. A coarse-grained
relativistic field theory description was developed by Csernai and Kapusta
[6] for finite temperature and extended to finite density by Venugopalan
and Vischer [7]. Langer’s results are recovered in the nonrelativistic limit.
Applications here are to elementary particle phase transitions in the early
universe, heavy ion collisions, and even the nucleation of black holes.

The goal of nucleation theory is to compute the probability that a
bubble or droplet of the A-phase appears in a system initially in the
B-phase near the critical temperature. Homogeneous nucleation theory
applies when the system is pure; inhomogeneous nucleation theory applies
when impurities cause the formation of bubbles or droplets. For the appli-
cations we have in mind, namely the early universe and very-high-energy
nuclear collisions, it seems that homogeneous nucleation theory is appro-
priate. In the everyday world it is usually the opposite; dust or ions in the
atmosphere are much more efficient in producing precipitation. Nucleation
theory is applicable for first-order phase transitions when the matter is
not dramatically supercooled or superheated. If substantial supercooling
or superheating is present, or if the phase transition is second-order, then
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Fig. 13.1. A potential with two nondegenerate minima.

the relevant dynamics is spinodal decomposition. In this chapter we con-
cern ourselves only with homogeneous nucleation theory.

13.1 Quantum nucleation

A relativistic quantum field theory approach has been worked out by
Coleman and Callan [3] for nucleation from one vacuum to another. This
is essentially a straightforward extension of the semiclassical formula for
tunneling through a barrier in quantum mechanics, generalizing from one
degree of freedom to many degrees of freedom and then to an infinite
number – a field theory. This approach will be illustrated for a single
scalar field.

The Lagrangian is

L = 1
2∂μφ∂

μφ− U(φ) (13.1)

Suppose that U has a local minimum at φ+ and a global minimum at
φ−, with U(φ−) < U(φ+), as illustrated in Figure 13.1. If the system is
at φ+, the false vacuum, it can tunnel through the barrier to enter the
region near the true vacuum, φ−. In nonrelativistic quantum mechanics,
the tunneling probability amplitude is dominated by the exponential of
minus the action of a trajectory which goes from one side of the barrier
to the other. The probability itself is proportional to the exponential of
minus the action for a trajectory which begins near φ+, goes through the
barrier, and returns to its starting point (on account of time reversal).
In the path integral approach to quantum mechanics, this corresponds to
the motion of a point particle in imaginary time, as opposed to real time,
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13.1 Quantum nucleation 291

or equivalently to the motion of a particle in the inverted potential. The
process of starting near the false vacuum, going through the barrier, and
returning to the starting point was called a “bounce” by Coleman.

Although we are interested in the vacuum tunneling rate we can still
use the formalism of finite-temperature field theory, taking the zero tem-
perature, or β → ∞, limit in the end. In Euclidean space the classical
equation of motion is

∂2φ

∂τ2
+ ∇2φ = U ′(φ) (13.2)

The boundary conditions we impose are

φ(x, 0) = φ(x, β) = φ+ (13.3)
lim

|x|→∞
φ(x, τ) = φ+ (13.4)

∂φ

∂τ
(x, τ0) = 0 (13.5)

The first of these means that the bounce begins and ends at the false
vacuum. The second means that the bounce is localized, being surrounded
by false vacuum. The third means that the field has zero velocity at the
time τ0, the time at which the field penetrates the barrier: U(φ(x, τ0)) =
U(φ+). Solutions to the classical field equation will be dominant in the
classical (� → 0) limit since they have minimal values of the action.

One should expect that the vacuum tunneling solution with the small-
est action has O(4) invariance, from the symmetry of the problem.
The bounce solution, referred to as φ̄, depends only on the variable
ρ =

√
τ2 + x2. Rather than taking 0 < τ < β one may just as well take

−β/2 < τ < β/2. Then the equation of motion simplifies to

d2φ̄

d2ρ
+

3
ρ

dφ̄

dρ
= U ′(φ̄) (13.6)

The boundary conditions are

lim
ρ→∞ φ̄(ρ) = φ+ (13.7)

∂φ̄

∂ρ
(0) = 0 (13.8)

The last of these is needed to avoid a singularity at the origin. The action
is then computed from

S = 2π2

∫ ∞

0
dρ ρ2

[
1
2

(
dφ

dρ

)2

+ U(φ)

]
(13.9)
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292 Nucleation theory

Let us refer to S evaluated with the bounce solution φ̄ as SB. Since the
bounce is a solution to the equation of motion and is localized, it will
have finite action.

At zero temperature the system would sit at φ−, where the potential
energy is a minimum. Of course there will be quantum corrections to the
energy density. The most important of these will arise from fluctuations
about φ−. From Chapter 2 we know that we can express the quadratic
fluctuations to the partition function around this minimum as

N
{
det
[−∂2

τ −∇2 + U ′′(φ−)
]}−1/2 (13.10)

where N is a normalization constant. The bounce solution, together with
the quadratic fluctuations about it, will contribute

NβV exp(−SB)
{
det
[−∂2

τ −∇2 + U ′′(φ̄)
]}−1/2 (13.11)

where N is the same normalization. This expression neglects complica-
tions due to any zero eigenvalues when performing the functional inte-
gral. The factor of spacetime volume βV arises from integration over the
position of the center of the bounce: it may be centered anywhere, not
necessarily at τ = 0, x = 0 as assumed above. The vacuum energy density
is computed in the limit β → ∞ from the formula E0 = −∂ lnZ0/∂β. In
this semiclassical approximation,

lnZ0 = ln
{
N
[−∂2

τ −∇2 + U ′′(φ−)
]−1/2

}
+ ln

{
1 +

det[−∂2
τ −∇2 + U ′′(φ̄)]−1/2

det[−∂2
τ −∇2 + U ′′(φ−)]−1/2

exp(−SB)

}
(13.12)

Notice that the normalization N drops out from the second logarithm.
The operator −∂2

τ −∇2 + U ′′(φ̄) has four zero eigenvalues owing to the
invariance of the bounce solution under translation of its center. Thus, if φ̄
is a solution to the classical equation of motion then so are the φμ = b∂μφ̄,
where b is a constant. The normalization b can be determined as follows.
First, since φ̄ is a solution to the classical equation of motion, the action is
stationary under general variations, in particular under the infinitesimal
scale transformation

δφ̄ = xν∂ν φ̄ (13.13)

Evaluating the action with φ̄ + δφ̄ and setting the first-order variation of
it to zero, we get∫

d4x(∂μφ̄)(∂μφ̄) = 4
∫

d4xL(φ̄) = 4SB (13.14)
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13.1 Quantum nucleation 293

Requiring that each φμ be normalized to unity determines the factor b =
S
−1/2
B .
The functions ∂μφ̄ all have one node, hence none of them represents the

lowest state. There must be at least one mode with a negative eigenvalue.
Owing to the power 1/2 in (13.12), the bounce solution contributes an
imaginary part to the vacuum energy density. This means that the bounce
solution is actually a saddle point of the action, not a local minimum.

If we somehow prepare the system in a state at or near φ+ then it will
decay by quantum tunneling, and this is reflected in the imaginary part
of the energy. If the bounce solution is left out of the sum over states
in the partition function then the energy density is real, as it must be if
we explicitly sum over the energy eigenstates of the Hamiltonian. If the
bounce solution is kept, its contribution should be isolated and identified
as an instability of a state that does not belong to the spectrum of the
Hamiltonian.

Putting Planck’s constant back into our formulae for the moment, we
realize that in the semiclassical limit the bounce solution is exponentially
suppressed via the factor exp(−SB/�). To lowest order in this small quan-
tity, the imaginary part of the energy density is

I =
(
SB

2π

)2 ∣∣∣∣ det′[−∂2
τ −∇2 + U ′′(φ̄)]

det[−∂2
τ −∇2 + U ′′(φ−)]

∣∣∣∣−1/2

exp(−SB) (13.15)

where the prime means that the four zero eigenvalues are omitted from the
determinant. The first factor arises from the integration over the four zero
modes. The factor involving the ratio of determinants has the dimension
1/length4 since four eigenvalues are deleted from one of the operators,
yielding an I with the proper dimensions of the number of tunnelings
per unit time per unit volume. The exponential is the dominant factor in
the tunneling, and is analogous to the Boltzmann factor in producing a
critical-sized droplet in the classical nucleation rate.

Generally the classical equation of motion must be solved numerically
to obtain the bounce solution, which is then used to compute the bounce
action and the tower of eigenvalues of the fluctuation operator. However,
in some circumstances one can make a thin-wall approximation to obtain
the bounce solution, the action, and the negative eigenvalue. For example,
consider the potential

U(φ) = λ
(
φ2 − a2

)2 +
ε

2a
(φ− a) (13.16)

where ε is a small quantity that represents the breaking of the reflection
symmetry of the potential. To lowest order in this quantity, φ± = ±a.
The bounce solution has the behavior that it equals −a for ρ � R and a
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294 Nucleation theory

for ρ � R, and crosses zero at ρ = R. This defines the four-dimensional
radius of the bounce R. The approximate solution is

φ̄(ρ) =

⎧⎪⎪⎨⎪⎪⎩
−a ρ � R

a tanh
(
ρ−R

2ξ

)
ρ ≈ R

a ρ � R

(13.17)

Here ξ ≡ 1/
√

8λa is the correlation length. This ought to be a good
approximation when the wall thickness, characterized by ξ, is much less
than the radius R. Substitution into the action yields

SB = −π2ε

2
R4 +

π2

12λξ3
R3 (13.18)

which displays the competition between the four-dimensional volume
energy and the three-dimensional surface energy. The radius is determined
by minimization:

RB =
1

8λεξ3
(13.19)

For self-consistency, we must therefore require ε � 1/(8λξ4). The result-
ing action is

SB =
π2

6
εR4

B (13.20)

The semiclassical calculation ought to be valid when SB � 1. A detailed
calculation proves that there is one and only one negative eigenvalue,
which is −3/(2R2

B).

13.2 Classical nucleation

The classical theory of nucleation culminated in the work of Becker and
Döring [1]; it was nicely reviewed by McDonald [8]. This theory was devel-
oped to describe the nucleation of a liquid droplet in a dilute yet super-
saturated vapor.

The classical expression for the nucleation of a droplet of dense liquid
in a dilute gas is

I = a(i∗)
( |ΔE′′(i∗)|

2πT

)1/2

n1 exp
(−ΔE(i∗)

T

)
(13.21)

where ΔE(i∗) is the formation energy of a critical sized droplet consisting
of i∗ molecules, a prime denotes differentiation with respect to the number
of molecules i, T is the temperature, n1 is the density of single molecules,
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and a(i∗) is the accretion rate of single molecules on a critical droplet.
Usually the accretion rate is taken to be

a(i∗) = 1
2n1v̄4πR2

∗s (13.22)

which is the flux of particles (v̄ is the mean speed of gas molecules) strik-
ing the surface of the critical droplet times a “sticking fraction” s less
than unity. The first term in the nucleation rate is a dynamical factor
influencing the growth rate, the second term characterizes fluctuations
about the critical droplet, and the product of the third and fourth terms
gives the quasi-equilibrium number density of critical-sized droplets. The
energy is measured with respect to the gas molecules, so that ΔE(1) = 0.

To extend the classical expression to the nucleation of a droplet in a
somewhat denser gas, the first thing to do is to multiply the Boltzmann
factor by the number of states available to the hot droplet:

e−ΔE/T → e−ΔE/T eΔS (13.23)

Owing to the thermodynamic identities S = −dF/dT and F = E − TS,
this modifies the Boltzmann factor to e−ΔF/T .

The size of the droplet can be characterized not by the number of
molecules it contains but by its radius. Then integration over quadratic
fluctuations about the mean size will give the prefactor( |ΔF ′′(R∗)|

2πT

)1/2

(13.24)

The accretion rate must be multiplied by the increase in radius per particle
absorbed to compensate for this change of variable. Upon absorption of
one more particle, the droplet free energy changes by

δΔF = ΔF ′(R∗)δR + 1
2ΔF ′′(R∗) (δR)2 (13.25)

The derivatives are evaluated at R∗, where the first derivative vanishes.
The (Gibbs) free energy added by one gas molecule is just minus the
pressure of the gas molecules divided by their number density. Therefore
the accretion rate is multiplied by the factor

δR =
(
− P1

n1ΔF ′′(R∗)

)1/2

(13.26)

Putting everything together we arrive at

I = 2πsv̄R2
∗n

2
1

(
P1

n1πT

)1/2

exp
(−ΔF∗

T

)
(13.27)
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Generalizing to different species of molecules we write

I = 2πR2
∗n1 exp

(−ΔF∗
T

) ∑
j

sj v̄jnj

(
Pj

njπT

)1/2

(13.28)

where Pj is the partial pressure of the jth species, nj is their density,
etc. The quasi-equilibrium density of critical droplets is normalized to
the density of the lightest species of particles, n1. Note especially the
appearance of R2∗ in the prefactor. This arises from the fact that the
absorption rate is proportional to the surface area. In contrast, when the
growth rate is dominated by dissipation, as will be the case in Sections
13.3 and 13.4, the prefactor has only one power of R∗.

13.3 Nonrelativistic thermal nucleation

The theory of nucleation developed by Langer [2] starts with the intro-
duction of a set of variables ηi, i = 1, . . . , N , that describe N collective
degrees of freedom of the system. We introduce a distribution function
ρ({η}, t) that is a probability density for the configurations {η} as a func-
tion of time t. We assume that ρ({η}, t) satisfies a continuity equation of
the form

∂ρ

∂t
= ∂tρ = −

N∑
i=1

∂Ji
∂ηi

(13.29)

where the probability current is given by

Ji = −
N∑
j=1

Mij

(
∂F

∂ηj
ρ + T

∂ρ

∂ηj

)
(13.30)

Here M is a generalized mobility matrix and F{η} is a coarse-grained free
energy. Both of these quantities will be discussed in more detail below.
Note that (13.29)–(13.30) can be derived via standard statistical tech-
niques by adding a suitable Langevin force to the Hamiltonian equations
of motion

∂tηi = −
N∑
j=1

Aij
∂F

∂ηj
(13.31)

where A is an antisymmetric matrix with entries 0 or 1.
The choice of variables ηi will depend on the problem. Generally one

chooses the smallest set that describes the system to sufficient accuracy
yet allows for a tractable analysis. The equilibrium configurations, for
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which ∂tρ = 0, have a probability distribution of the form

ρeq{η} ∝ exp
(−F{η}

T

)
(13.32)

Such configurations represent either the initial metastable point in the
η-space denoted by {η0}, or the final state. The phase transition starts
from a metastable point {η0} and moves to the vicinity of a stable point,
a point where F has its minimum. In this process the system is likely to
pass a saddle point. The configuration at the saddle point, {η̄}, is close to
{η0} except for the presence of one critical-sized droplet of the new phase.
At the saddle point we assume stationary flow, ∂tρ = 0, and calculate the
current across this saddle. The rate of probability flow, {η̄}, determines
the droplet-formation rate in the system. This rate is

I = I0 exp
(−ΔF

T

)
(13.33)

It gives the number of critical-sized droplets created in unit volume in
unit time. The activation energy ΔF is given by

ΔF = F{η̄} − F{η0} (13.34)

The prefactor I0 in (13.33) is the product of two terms:

I0 =
κ

2π
Ω0 (13.35)

Here the dynamical prefactor is κ (with dimension inverse time) and the
statistical prefactor is Ω0 (with dimension inverse volume). Langer showed
that the statistical prefactor can be written as

Ω0 = V
(

2πT
|λ̄1|

)1/2 N∏
α=α0+2

(
2πT
λ̄α

)1/2 N∏
α=1

(
λ

(0)
α

2πT

)1/2

(13.36)

Here V is the volume of η-space available for the flux of probability flow
and {η̄} and {η0} are the eigenvalues of the matrix

∂2F{η}
∂ηi∂ηj

evaluated at the points {η̄} and {η0}. We will evaluate Ω0 in the next
section.

Since {η0} is a minimum of F , all the λ
(0)
α must be positive. Because

{η̄} resides at the highest point along the path of lowest energy leading
away from {η0}, there is only one eigenvalue λ̄α that is negative. This is
the eigenvalue denoted by λ̄1 in (13.36). If F{η} has translational symme-
try in three-space then there will be at least three other eigenvalues λ̄α,
which are zero. These correspond to the three independent translations
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of the position of the symmetry-breaking fluctuation (bubble or droplet)
described by {η̄}. The product of λ̄’s appearing in (13.36) starts with
α = α0 + 2, where α0 is the total number of symmetries of F which are
broken by {η̄}. The integration over these α0 degrees of freedom defines
the factor V in (13.36).

The dynamical factor κ is the exponential growth rate of the unstable
mode {η̄}. To compute κ, we linearize (13.31) about ηi = η̄i:

∂tνi = −
N∑

j,l=1

Aij
∂2F

∂η̄j∂η̄l
νl (13.37)

where νi = ηi − η̄i. Then, setting ν ∝ eκt, we identify κ as the positive
eigenvalue of the matrix

−
N∑
j=1

Aij
∂2F

∂η̄j∂η̄l
(13.38)

In the nucleation problem the instability described by κ is the initial
growth rate of a bubble or droplet that has just exceeded the critical size.

The dynamical prefactor has been calculated by Langer and Turski
[9, 10] and by Kawasaki [11] for a liquid–gas phase transition near the
critical point, where the gas is not dilute, to be

κ =
2λσT
�2n2

�R
3∗

(13.39)

This involves the thermal conductivity λ, the surface free energy σ, the
latent heat per molecule �, and the density of molecules in the liquid
phase n�. The interesting physics in this expression is the appearance
of the thermal conductivity. In order for the droplet to grow beyond the
critical size, latent heat must be conducted away from the surface into the
gas. For a relativistic system of particles or quantum fields that has no
net conserved charge, such as baryon number, the thermal conductivity
vanishes. The reason is that there is no rest frame defined by the baryon
density to refer to heat transport. Hence this formula obviously cannot
be applied to such systems.

13.4 Relativistic thermal nucleation

The relativistic quantum field theory approach for nucleation from one
vacuum to another as worked out in Section 13.1 was extended by
Affleck [4] and Linde [5] to finite temperature. In the limit where thermal
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fluctuations dominate quantum fluctuations the rate is

I =
ω−
π

(
S3

2πT

)3/2{det′[−∇2 + U ′′(φ̄, T )]
det[−∇2 + U ′′(0, T )]

}−1/2

exp
(−S3

T

)
(13.40)

where S3 is the three-dimensional action associated with the formation
of a critical-sized bubble or droplet. This follows from the assumption
that the radius of the bubble is much larger than the inverse temperature
β. It is assumed that the bounce solution depends on three-dimensional
r instead of four-dimensional ρ, namely, φ̄(ρ) → φ̄(r). Integration over τ
in the action just produces an overall factor β = 1/T . The factor ω− is
the frequency of the unstable mode. The ratio of determinants is almost
never evaluated because it would have to be done numerically. Usually
dimensional analysis is invoked to approximate this pre-exponential factor
by T 4 or by T 4

c , so that

I ≈ T 4 e−S3/T or I = T 4
c e−S3/T (13.41)

The expression (13.40) is very similar to the nucleation rate given by
Langer for nonrelativistic systems, which itself is a generalization from the
classical nucleation rate. It is our goal here to derive an expression that is
fully relativistic, has Langer’s rate formula as a nonrelativistic limit, and
is expressed in terms of physically measurable observables such as surface
energy, latent heat, transport coefficients, and so on. This involves the
use of collective coordinates and coarse-graining.

The model of nucleation adopted here will be defined by the choice
of the statistical variables, ηi, and the corresponding coarse-grained free
energy F{η}. The conventional formulation of classical many-body sta-
tistical mechanics in terms of particle positions and momenta is not very
convenient for the present purpose. Nucleation is characterized by semi-
macroscopic fluctuations involving large numbers of particles. Therefore
hydrodynamic-type collective variables are more appropriate to describe
the formation of bubbles or droplets.

Hydrodynamics can be derived from microscopic kinetic theory by a
coarse-graining or cellular method. That is, one divides up the macro-
scopic system into semimacroscopic cells of a given volume and assigns
specific densities and flows to each of these cells. The free energy com-
puted by performing a partition sum subject to the cellular constraints
is the coarse-grained F that we are talking about. There is no problem,
in principle, in summing over the cellular densities and flows to obtain
the true equilibrium free energy. Moreover, as long as each cell comes to
local thermal equilibrium rapidly compared with the times required for
the hydrodynamic processes that one wants to consider, then one can
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use the coarse-grained F for computing nonequilibrium properties of the
system.

The question that arises at this point is, what is a suitable size for the
coarse-graining cells? In order for the hydrodynamic description to make
sense, the cell volume must be much larger than the average volume per
molecule. However, the cells cannot have linear dimensions appreciably
larger than a correlation length. If the cells are chosen to be too large,
phase separation will occur within single cells and the interesting details of
the condensation mechanism will be lost in the process of taking cellular
averages. To put this another way, we expect F as a function of the
average energy density ε to be a nonconvex function with distinct minima
corresponding to the two phases. But, if the cell size is large enough for
well-defined phase separation to occur within a cell then F must approach
its convex envelope and cannot possibly have the above property. We
conclude that the cell size can be neither much larger nor much smaller
than a correlation length.

13.4.1 Relativistic fluid dynamics

The equations of motion of relativistic fluid dynamics, ∂μT νμ = 0, can be
given in terms of E ≡ T 00 and M i = T 0i, that is, E = (ε + Pv2)γ2 and
M = (ε + P )γ2v, where ε is the energy density and P is the pressure; see
Section 6.9. The low-speed limit of relativistic fluid dynamics (γ2 ≈ 1 and
Pv2 � ε, but P not assumed small compared to ε) is given by

∂tε = −∇ · M (13.42)

and

∂tM = −∇ ·
(

1
w

M ⊗ M
)
−∇P (13.43)

Here w = ε + P is the enthalpy density, and we have assumed that the
relativistic energy density is E = (ε + Pv2)γ2 ≈ ε and that the relativistic
momentum density is M = wγ2v ≈ wv. The low-speed limit of relativis-
tic fluid dynamics finds applications not only in cosmology and astro-
physics but also in terrestrial environments dominated by radiation pro-
cesses, such as nuclear detonations, high-energy shock waves, and rocket
engines.

With the above-mentioned restrictions in mind we will try to find a
suitable form for the coarse-grained free energy F . This is not a trivial
problem. We choose as our basic variables the local energy density and
momentum density fields, ε(x, t) and M(x, t). The free energy F must
consist of a kinetic energy FK and an interaction term FI. The kinetic
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term is simply

FK(ε,M) =
1
2

∫
d3x wv 2 =

∫
d3x

M2

2w
(13.44)

We shall assume that FI is a functional of ε only and that it can be written
in the form

FI [ε(x)] =
∫

d3x

(
1
2
K(∇ε)2 + f(ε)

)
(13.45)

where f(ε) is the Helmholtz free energy density and 1
2K(∇ε)2 is the usual

gradient energy. The quantity K is a constant to be determined. Note
that in this discussion we assume that the temperature T is constant.

Using the above F with the mobility matrix

Mij = ∂j(Mi) + (Mi)∂j − Mj

2w
(∂iw)

Mi0 = −∂iε

M00 = 0

M0i = (∂iw) + w∂i

(13.46)

the equations of motion for ε and M are obtained as the low-speed limit
of relativistic fluid dynamics. The equation for energy conservation is

∂tε = −(∇w) · δFK

δM(x)
− w∇ · δFK

δM(x)
= −∇ · M(x) (13.47)

and the equation for momentum conservation, the Euler equation, is

∂tM = −
[
∇M + M ∇− M

2w
∇w

]
· δFK

δM(x)
+

δF

δε(x)
∇ε

= −∇ ·
(

1
w

M ⊗ M
)
−K(∇2ε)∇ε +

∂f

∂ε
∇ε (13.48)

In the limit where we have a uniform system in equilibrium it is clear, from
(13.43) and (13.48), that we must identify the last term on the right-hand
side with the gradient of the pressure,

∂f

∂ε
∇ε = ∇f −→ −∇P (13.49)

Note that when ε(x) is varying so slowly that the gradient energy can be
neglected, (13.45) is consistent with

f(ε) = ε− Ts = −P (13.50)
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13.4.2 Parametrization of the free energy

Imagine having two phases in equilibrium with each other at tempera-
ture T and, furthermore, that there is an interface separating them. This
interface cannot be perfectly sharp. It must have a finite thickness of
the order of a correlation length. In a local-density picture the energy
density ε should vary smoothly from one phase to the other. Since first-
order phase transitions have a latent heat, this means that we need to
know the free energy density f(ε) for values of the energy density ranging
between one phase and the other. To be specific, in what follows the low-
temperature low-energy-density phase will be denoted by the subscript
L, and the high-temperature high-energy-density phase will be denoted
by the subscript H. In addition to the need to know f(ε) for εL < ε < εH
we will also encounter situations where we need to know f(ε) for a range
of values about εL and εH. Statistical fluctuations about local thermal
equilibrium would require such knowledge, for example.

For a range of temperatures about Tc, f(ε) should have minima located
at εL(T ) and εH(T ). There should also be a barrier between these two
minima located at some ε0(T ). We require that

f(εL(T )) = −PL(T )

f(εH(T )) = −PH(T )
(13.51)

Therefore, at fixed T we shall parametrize f(ε) by a fourth-order polyno-
mial in ε. Owing to the pinning of the two local minima shown above, f(ε)
will have its global minimum at εH(T ) when T > Tc and its global mini-
mum at εL(T ) when T < Tc. At the critical temperature the two minima
of f(ε) are equal. Our parametrization is

f(ε) = f0 +
f ′′
0 (ε− ε0)2

2
− (εL + εH − 2ε0)f ′′

0

3(εL − ε0)(εH − ε0)
(ε− ε0)3

+
f ′′
0

4(εL − ε0)(εH − ε0)
(ε− ε0)4 (13.52)

where εL(T ), εH(T ), PL(T ) and PH(T ) are specified functions of T and f ′′
0

is the curvature of f at the top of the barrier located at ε0 (f ′′
0 < 0). Let us

define Δε ≡ εH − εL > 0 and ΔP ≡ PL − PH. In terms of these variables,

ε0 =
εL + εH

2
+

f ′′
0 (Δε)3

12ΔP
±
[(

f ′′
0 (Δε)3

12ΔP

)2

+
(Δε)2

4

]1/2

(13.53)

where + (−) corresponds to ΔP > 0 (ΔP < 0) and

f0 = −PH +
f ′′
0

12
(εH − ε0)2(εH − 2εL + ε0)

εL − ε0
(13.54)
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Fig. 13.2. Free-energy functional for extrapolating states away from equilib-
rium.

The first derivative of f is

f ′(ε) =
∂f

∂ε
=

f ′′
0 (ε− ε0)(ε− εL)(ε− εH)

(εL − ε0)(εH − ε0)
(13.55)

Thus, if the location of the two minima and their depths are given for
fixed T then only one free parameter, f ′′

0 , remains. In particular, this
parameter determines the barrier height, position, and curvature at all
energy densities:

f ′′(ε) =
f ′′
0

(εL − ε0)(εH − ε0)
× [(ε− ε0)(ε− εL) + (ε− ε0)(ε− εH) + (ε− εL)(ε− εH)] (13.56)

See Figure 13.2 for illustrations of f(ε) when T is greater than, equal to,
or less than Tc. Unless we can extract this free-energy function from the
Lagrangian in a more fundamental way we shall be content to use this
parametrization in the following analyses.

13.4.3 Surface profile

We restrict ourselves to the case of idealized bubbles or droplets. That is,
we consider only the limit in which the nucleating fluctuation described
by {η̄} is, indeed, a well-defined sphere of the L-phase with radius R
large compared with the interface thickness or the correlation length ξ (to
be defined below). In principle we need not make this restriction in the

https://doi.org/10.1017/9781009401968.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.014


304 Nucleation theory

present theory. As we shall see, however, it is the appropriate one in the
cases of interest here. By going to this limit we can do all our calculations
analytically instead of having to resort to numerical methods.

The stationary point {η̄} is given by v(x) = 0 and ε(x) = ε̄(x), where
ε̄ satisfies

δFI

δε̄(r)
= −K∇2ε̄ +

∂f

∂ε̄
= 0 (13.57)

Given a spherical bubble of L-phase surrounded by H-phase at T < Tc

the energy density ε̄ depends only on the distance r from the center of
the bubble. Deep inside the bubble the energy density will be εL; far away
from the bubble the energy density will be εH. The energy density profile
ε̄(r) then describes a smooth transition from one phase to the other. As
discussed above, we will assume that the surface is located at a distance
R from the center that is much greater than the surface thickness.

Using our parametrization of f(ε) the static profile equation becomes

−K

(
d2

dr2
+

2
r

d

dr

)
ε̄ + f ′′

0

(ε̄− ε0)(ε̄− εL)(ε̄− εH)
(εL − ε0)(εH − ε0)

= 0 (13.58)

We introduce a correlation length defined at the top of the barrier by
ξ2
0 ≡ −K/f ′′

0 . Then

d2ε̄

dr2
+

2
r

dε̄

dr
+

(ε̄− ε0)(ε̄− εL)(ε̄− εH)
ξ2
0(εL − ε0)(εH − ε0)

= 0 (13.59)

Let us find the behavior of the solution in each of three regions.

(i) In the interior of the bubble ε̄ = εL + g1(r); g1(r) is a small deviation
from the equilibrium L-phase energy density satisfying

d2g1

dr2
+

2
r

dg1

dr
− ξ−2

L g1 = 0 (13.60)

where

ξ2
L = ξ2

0

εH − ε0
Δε

(13.61)

defines the correlation length in the L-phase. The solution of this equation
is

g1(r) =
A1

r
sinh

(
r

ξL

)
+

B1

r
cosh

(
r

ξL

)
(13.62)

From the requirement that the solution be finite at the origin we get
B1 = 0. In order to match onto the interface region, A1 must be very
small, proportional to e−R/ξL . Then ε̄(r) ≈ εL throughout most of the
interior.
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(ii) Near R we can write ε̄ = ε0 + g2(r). Linearizing in g2 leads to

d2g2

dr2
+

2
r

dg2

dr
+ ξ−2

0 g2 = 0 (13.63)

The general solution is

g2(r) =
A2

r
sin
(

r

ξ0

)
+

B2

r
cos
(

r

ξ0

)
(13.64)

We require that g2(R) = 0, which is equivalent to defining the location
of the surface by the equation ε̄(R) = ε0. Thus the solution for ε̄ in the
vicinity of the bubble’s surface is

ε̄ = ε0 +
A2

r
sin
(
r −R

ξ0

)
(13.65)

and A2 > 0.

(iii) The exterior solution has the same functional form as in the interior
except that g3(r → ∞) = 0 is required by the boundary condition. The
exterior solution is therefore

ε̄ = εH − A3

r
e−r/ξH (13.66)

where

ξ2
H = ξ2

0

ε0 − εL
Δε

(13.67)

defines the correlation length in the H-phase and A3 > 0.

At the critical temperature f(εL) = f(εH). Then the free energy
becomes symmetric, ε0 = (εL + εH)/2, and ξ2

H = ξ2
L = ξ2

0/2. In this case
the interfacial profile has a nice analytical solution in the planar (R → ∞)
limit:

ε̄(x) =
1
2

[
εL + εH + Δε tanh

(
x

2ξH

)]
(13.68)

Here the surface is located at x = 0 with L-phase on the left and H-phase
on the right.

Suppose that an L-phase bubble has formed in the H-phase at T < Tc

because of statistical fluctuations. The change in free energy of the system
is

ΔF =
4π
3

(fL − fH)R3 + 4πR2σ (13.69)

where σ is the surface free energy. For baryon free matter,

ΔF =
4π
3

[PH(T ) − PL(T )]R3 + 4πR2σ (13.70)
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The hadronic droplet is stationary if ∂RΔF = 0, which leads to Laplace’s
formula

PL(T ) − PH(T ) =
2σ

R(T )
(13.71)

Thus the activation energy, in our approximation, is

ΔF =
4
3
πσR2 (13.72)

The surface free energy can be calculated from our parametrization of
FI. For a planar interface or for a sphere whose radius is much greater
than its surface thickness the formula was given by Cahn and Hilliard
[12]:

σ = K

∫ ∞

−∞
dx

(
dε̄

dx

)2

(13.73)

Inserting the solution for the planar interface at Tc, this integral takes
the form

σ = K

(
Δε

2

)2 1
2ξH

∫ ∞

−∞
dz

1
cosh4 z

=
K(Δε)2

6ξH
(13.74)

The correlation length and the surface free energy determine the param-
eters −f ′′

0 and K in the coarse-grained free energy. In principle these
parameters are temperature dependent. Their temperature dependence
is, however, generally difficult to obtain.

13.4.4 The prefactor

The prefactor is a product of two terms: the statistical prefactor and
the dynamical prefactor. The statistical prefactor, Ω0, is a measure of
both the available phase space as the system goes over the saddle and
of statistical fluctuations at the saddle relative to the equilibrium states.
The dynamical prefactor, κ, is the exponential growth rate of the bubble
or droplet at the saddle point. This is the more difficult to calculate. We
shall evaluate it using techniques exactly analogous to those employed by
Turski and Langer [9, 10].

The general expression for the statistical prefactor was given in (13.36).
To evaluate it, we first consider the eigenvalues of the matrix of second
derivatives of F , the λα. The λ

(0)
α are eigenvalues of the operator

δ2FI

δε(x)δε(x′)

∣∣∣∣
ε=εH

=
(
−K∇2 +

∂2f

∂ε2H

)
δ(x − x′) (13.75)
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Here by ∂2f/∂ε2H we mean the second derivative of f with respect to
ε at fixed temperature evaluated in the equilibrium H-phase. This is a
measure of the fluctuations in the system and cannot be determined from
knowledge of the equation of state alone. Since the right-hand side of
(13.75) depends on x only through ∇2, its eigenfunctions are plane waves,
with wave vectors q and eigenvalues

λ
(0)
q = Kq 2 +

∂2f

∂ε2H
(13.76)

There is also a set of eigenvalues, formally to be included among the
λ

(0)
α , which come from the kinetic term FK. In Langer and Turski [10]

it was concluded that these eigenvalues are spurious; that is, they do
not describe physically relevant fluctuations but only bulk motion of the
system. Hence they do not appear in the final formula for any nucleation
quantity.

At the saddle point, ε(x) = ε̄(r), the operator

δ2FI

δε(x)δε(x ′)

∣∣∣∣
ε=ε̄(r)

=
(
−K∇2 +

∂2f

∂ε̄2

)
δ(x − x′) (13.77)

is no longer translationally invariant because of the r-dependence of ε̄.
As was discussed by Langer [13], the resulting spherically symmetric
Schrödinger-like eigenvalue equation has an s-wave ground state with a
radial eigenfunction proportional to dε̄/dr and a negative eigenvalue

λ̄1 ≈ −2K
R2

(13.78)

This eigenstate is associated with the instability of the critical bubble
against uniform expansion or contraction. The next states are the three
p-waves, with eigenvalues λ̄ = 0, which occur because of the broken trans-
lational symmetry. Then there are higher-order partial waves with posi-
tive λ̄ corresponding to volume-conserving deformations of the shape of
the droplet. Finally, there is a continuum of nonlocalized eigenfunctions
starting at λ̄ = ∂2f/∂ε2H. These eigenfunctions are similar to the states
associated with the λ(0) in that they describe fluctuations in the bulk
plasma but here these fluctuations are perturbed by the presence of the
bubble. As before, the eigenvalues associated with the kinetic part of F
are spurious and can be disregarded.

We can recognize the products over α in (13.36) as representing fluc-
tuation corrections to the mean field excess free energy of the bubble.
If we were to evaluate ΔF using measured values of the surface energy
and thermodynamic potential, it would be inconsistent to include fluc-
tuation corrections to ΔF in the prefactor Ω0. Strictly speaking, the
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nucleation formula used here requires that ΔF be first evaluated at the
stationary point obtained from (13.57), and then corrected by the fluc-
tuation terms in Ω0. But this procedure would imply that the radius
of the critical droplet is determined by the expression for σ given in
(13.73), which is not necessarily the same as the experimental surface
free energy because of the fluctuation corrections. What we shall do,
instead, is to delete the explicit fluctuation terms in Ω0 and interpret
σ everywhere as the true surface energy; we shall make a similar assump-
tion concerning other thermodynamic quantities that appear. Possibly
this procedure can be justified by going beyond the Gaussian approxima-
tions for η-space integrations which were used in deriving (13.36); that is,
by constructing a renormalized perturbation expansion in the neighbor-
hood of {η̄}. If this program can be carried out, we might also be able
to compute systematically curvature corrections to the surface energy.
These corrections will be omitted here, and we shall focus our attention
on other ingredients of the nucleation formula, particularly the dynamical
prefactor.

Note that there are α0 + 1 = 4 more terms in the product over the λ
(0)
β

than in the product over the λ̄α in (13.36). This means that the logarithm
of the combined products is not precisely a free-energy difference. To see
what is happening here, it is useful to think in terms of a one-to-one
pairing between the λ

(0)
β and the λ̄α. At the top of the spectra (large pos-

itive λ(0) and λ̄) both kinds of eigenvalue correspond to short-wavelength
fluctuations that extend throughout the volume of the system V . We can
pair these eigenvalues so that their contributions cancel each other to
the extent that the droplet volume is negligible compared with the total
volume of the system. At the bottom of the continuum a finite set of
λ̄ values, which correspond to localized deformations of the bubble, fall
appreciably below their associated λ(0) values. Thus, by pairing the λ’s as
described, the correction to ΔF remains of order R3 in the limit V → ∞,
as it must. This procedure leaves four unpaired λ(0)’s at the bottom of the
spectrum that are not accounted for by the revised ΔF . Specifically, we
have

lim
V→∞

4∏
β=1

⎛⎝ λ
(0)
β

2πT

⎞⎠1/2

=
(

1
2πT

∂2f

∂ε2H

)2

(13.79)

remaining as the sole explicit contribution from the complicated products
over the α.

Having written down the value for λ̄1, we need only evaluate the factor
V to complete the calculation of Ω0. The formula for V was given by
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Langer [2, 13]:

V = V

[
1
3

∫
dr(∇ε̄)2

]3/2

= V

[
4πR2σ

3K

]3/2

(13.80)

Here we have made use of the fact that dε̄/dr is appreciable only in a
narrow region near r = R, where R is the radius of the bubble.

The resulting expression for Ω0 is

Ω0 = V

(
4πR2σ

3K

)3/2 (
πTR2

K

)1/2 ( 1
2πT

∂2f

∂ε2H

)2

(13.81)

Identifying the correlation length ξH in the H-phase by

1
K

∂2f

∂ε2H
=

1
ξ2
H

(13.82)

we can write (13.81) in the form

Ω0 =
2

3
√

3

(σ
T

)3/2
(
R

ξH

)4

V (13.83)

If one considers the nucleation rate to be per unit volume then the volume
V should be divided out of the above expression. Usually we do mean the
rate per unit volume and so Ω0 will not include the factor V in subsequent
discussion.

The dynamical prefactor κ should be obtained as the positive eigenvalue
of the matrix given in (13.38). Using the mobility matrix and the fact that
the bubble solution is spherically symmetric and satisfies (13.57), one finds
that κ = 0. This means that the bubble does not grow. The reason was
discussed by Langer and Turski [10]. In order for a bubble (or droplet) to
grow, latent heat must be transported away from the surface region: for
the nonrelativistic systems they were considering, they discovered that
heat conduction was necessary to allow for growth. This eventually led to
(13.39), which says that κ is proportional to the thermal conductivity λ.
It is clear that to get our bubble to grow we must include the effects of
dissipation in the dynamics.

We now want to determine the equations of motion of dissipative fluid
dynamics (Section 6.9) for small deviations about the stationary config-
uration ε(x, t) = ε̄(r),v(x, t) = 0. To that end we write ε = ε̄(r) + ν(x, t)
and v = v(x, t) and linearize the full equations of motion, including the
gradient term FK, in terms of ν and v:

∂tν = −∇ · M = −∇ · (w̄v) (13.84)
∂t(w̄v) = ∇ε̄

[−K∇2ν + f ′′ν
]
+ ∇ [(ζ + 4η/3)∇ · v] (13.85)
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Hereafter when we write f , f ′, or f ′′ we intend that they be evaluated at
the stationary configuration, so that they are complicated functions of r.

To determine κ we look for radial perturbations of the form

ν(x, t) = ν(r)eκt (13.86)
v(x, t) = v(r)r̂eκt (13.87)

These radial deviations are governed by the equations of motion

κν(r) = − 1
r2

d

dr

[
r2w̄v(r)

]
(13.88)

and

κw̄v(r) = − dε̄

dr

[
−K

(
d2

dr2
+

2
r

d

dr

)
+ f ′′

]
ν(r)

+
d

dr

{(
ζ +

4η
3

)
1
r2

d

dr

[
r2v(r)

]}
(13.89)

Eliminating ν(r) using the first equation we obtain a linear third-order
differential equation for the velocity profile:

κ2w̄v(r) = −dε̄

dr

[
K

(
d2

dr2
+

2
r

d

dr

)
− f ′′

]{
1
r2

d

dr

[
r2w̄v(r)

]}
+

d

dr

{
κ

(
ζ +

4η
3

)
1
r2

d

dr

[
r2v(r)

]}
(13.90)

Self-consistent solutions of this equation, together with the boundary con-
ditions, should provide us with the allowed values of κ. Unfortunately, it is
not a trivial equation to solve. Therefore we will first analyze the behavior
of the solution in three regions: the interior of the bubble, the exterior of
the bubble, and the surface region. We first note a constraint that follows
from (13.88) and the conditions that v(r) vanishes at the origin and at
infinity, namely ∫ ∞

0
dr 4πr2ν(r) = 0 (13.91)

In the interior region, from the origin to within a few correlation lengths
of the surface, recall that ε̄ ≈ constant. Then the first term on the right-
hand side of (13.90) vanishes, and the equation for v(r) reduces to

r2v′′ + 2rv′ − (a2
Lr

2 + 2)v = 0 (13.92)

where a2
L = κwL(ζL + 4ηL/3)−1. The general solution of this differential

equation is

v(r) = A

(
aL

r
− 1

r2

)
eaLr + B

(
aL

r
+

1
r2

)
e−aLr (13.93)
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where A and B are constants. We must require that v and v′ vanish at
r = 0. Consequently both A and B are zero, so that the velocity vanishes
in the interior of the bubble. This is true to the extent that ε̄ = constant
in this region.

In the exterior region, far outside the surface, the energy and enthalpy
densities approach their equilibrium values in the bulk H-phase, ε̄ → εH
and w̄ → wH. Then the first term on the right-hand side of (13.90) can
again be neglected as a first approximation. The solution with the correct
large-r behavior is

v(r) = C

(
aH

r
+

1
r2

)
e−aHr (13.94)

where C is a constant and a2
H = κwH(ζH + 4ηH/3)−1.

In the region of the surface, r ≈ R, the stationary configuration ε̄(r)
is varying rapidly and dε̄/dr is nonzero. Therefore, unlike in the deep
interior or the exterior of the bubble, the first term on the right-hand side
of (13.90) cannot be dropped. In fact, as we shall see, κ is proportional to
the viscosity, which we assume to be very small. Then the other two terms
in the equation are of second order in the viscosity, and we shall ignore
them. Thus, to good approximation, in the surface region ν(r) satisfies(−K∇2 + f ′′) ν(r) = 0 (13.95)

Given that ε̄(r) satisfies (13.57) and that ν(r) must go to zero at the
origin and at infinity, the solution to the above equation is

ν(r) ∼ dε̄

dr
(13.96)

Together with (13.88) this implies that in the surface region

v(r) =
D

r2w̄(r)

∫ r

0
dr′r′2

dε̄

dr′
(13.97)

where D is a constant. For distances r which exceed the bubble radius
R by more than a few correlation lengths but which are less than 2R,
(13.97) can be integrated to give

v(r) ≈ DΔε

wH

R2

r2
(13.98)

Remember that, as always, we are assuming weak to moderate supercool-
ing, so that R � ξ.

It is necessary to distinguish between the actual radius of the bubble, R,
and the radius of the bubble in the stationary or metastable configuration,
R∗, determined by Laplace’s formula. If the stationary bubble is perturbed
only slightly then the energy-density profile will change by only a minute
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amount. The transport of heat away from the surface will be a very slow
process because of the assumed smallness of the viscosity. As the bubble
slowly begins to expand, the energy-density profile will not change much,
but the profile moves out a small distance dR in a time dt. The energy flux
density (the energy per unit area per unit time) that must be transported
outwards is Δw dR/dt. Here we do not distinguish between the difference
in energy densities and the difference in enthalpy densities of the two bulk
phases because the pressure difference is small compared with the energy-
density differences; we shall refer to them interchangeably as the latent
heat. This energy flux must be balanced by that due to dissipation, which
is −(ζ + 4η/3)v dv/dr. We will evaluate the flow velocity just outside
the surface of the bubble. According to (13.98) the derivative is dv/dr ≈
−2v/R. Therefore energy balance gives us the relation

Δw
dR

dt
= 2

(
ζH +

4ηH

3

)
v2

R
(13.99)

The outward momentum flux density (the momentum per unit area
per unit time) is Δw v2. (This neglects a small contribution from viscous
terms that can be considered to be a higher-order effect.) The momentum
flux density must be equated to the force per unit area, which comes from
the Laplace formula

Δw v2 = 2σ
(

1
R∗

− 1
R

)
(13.100)

Again, the velocity is to be evaluated just outside the surface.
Using both energy and momentum conservation we can eliminate the

velocity and solve for dR/dt:

dR

dt
=

4(ζH + 4ηH/3)σ(R−R∗)
(Δw)2 R2 R∗

(13.101)

This is a differential equation for R(t), from which we can read off the
value of κ. It is

κ =
4σ(ζH + 4ηH/3)

(Δw)2 R3∗
(13.102)

This may be considered the principal result of this section.
Putting it all together gives the nucleation rate

I =
4
π

( σ

3T

)3/2 σ(ζH + 4ηH/3)R∗
ξ4
H(Δw)2

e−ΔF/T (13.103)

where ΔF = 4πσR2∗/3 and R∗ is given by the Laplace formula (13.71).
This is the probability per unit volume per unit time of nucleating an L-
phase bubble out of the H-phase. If one considers nucleating an H-phase
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droplet in the L-phase instead, one just needs to evaluate the correlation
length and the viscosities in the L-phase rather than the H-phase. At
the critical temperature, R∗ → ∞, and the rate vanishes because of the
exponential. The system must supercool a minute amount at least in order
that the rate attain a finite value. Note that at the critical temperature the
pre-exponential factor is linearly divergent in R∗, which is qualitatively
unlike the simple dimensionless estimate of a constant I0.

Venugopalan and Vischer [7] extended the calculation of κ to incorpo-
rate a net baryon number and therefore the effect of thermal conduction.
The result is

κ =
2σ[λHT + 2(ζH + 4ηH/3)]

(Δw)2 R3∗
(13.104)

This is proportional to a linear combination of the three dissipation coef-
ficients. It reduces to the expression derived above when thermal conduc-
tion can be neglected and to the expression of Langer and Turski in the
nonrelativistic limit and when shear and bulk viscosities are small.

This completes our calculation and analysis of the thermal nucleation
rate for systems with zero or negligibly small baryon number. In a sub-
sequent chapter we shall use it in a set of rate equations for the time
evolution of phase transitions in the early universe and in ultrarelativistic
nuclear collisions.

13.5 Black hole nucleation

In a beautiful and original work Gross, Perry, and Yaffe [14] calculated
the nucleation rate for black holes in a thermal bath of gravitons. Their
result is

I = 1.752T
(
M0

T

)212/45 (mP

4π

)3
exp

( −m2
P

16π2T 2

)
(13.105)

where mP ≡ G−1/2 is the Planck mass and G is Newton’s constant. The
quantity M0 is a regulator mass, undetermined in the pure Einstein theory
but supposed to be of the order of mP in a more complete quantum theory
of gravitation. Physically the reason for this instability of flat space is
that statistical fluctuations will produce small black holes. According to
Hawking [15] the effective temperature of a black hole is m2

P/8πM where
M is its mass. If the mass is too large then the black hole temperature
will be smaller than that of its surroundings and it will accrete matter. If
the mass is too small, the black hole temperature will be greater than its
surroundings and it will evaporate and eventually explode. The critical
mass for this unstable equilibrium is M∗ = m2

P/8πT .
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The calculation of the nucleation rate by Gross, Perry, and Yaffe is
based upon small fluctuations about a Schwarzschild instanton in a path-
integral formulation of Einstein’s theory. There is one negative eigenvalue,
which gives rise to the instability of flat space. The calculation is at the
same time elegant and lengthy. However, the main features of the result
can be obtained from the classical theory of nucleation [16].

Consider a volume V with gravitons at temperature T . The probability
that a fluctuation will produce a black hole of critical mass is exp(−ΔF ),
where ΔF is the change in free energy of the system with T and V held
fixed. Now ΔF = F∗ − Fg, where F∗ is the free energy of the black hole
and Fg is the free energy of the thermal gravitons displaced by the black
hole. The black hole free energy F∗ is related to M∗ by

M∗ = F∗ − T
dF∗
dT

(13.106)

or

F∗ =
M∗
2

=
m2

P

16πT
(13.107)

whereas Fg is given by

Fg = −π2

45
T 4 4π

3
r3 (13.108)

where r is of the order of or slightly greater than the Scharzschild radius.
Thus Fg/T is of the order of 10−2 to 10−3 and will be neglected.

Knowing the probability for one statistical fluctuation, we can esti-
mate the density for fluctuations to occur. Consider quantum density
fluctuations on the smallest scale possible, namely, the Planck wavelength
λP = 2π/mP. Imagine a cube with fluctuations spaced λP/2 apart. The
quantum density of fluctuations necessary to produce a black hole of crit-
ical mass is then estimated to be

n∗ =
(mP

π

)3
exp

( −m2
P

16πT 2

)
(13.109)

The rate of change of n∗ can be calculated as

dn∗
dt

=
1
T

∣∣∣∣dM∗
dt

∣∣∣∣n∗ =
m2

P

8πT 3
n∗ (13.110)

The rate of increase in the black hole mass may be estimated by the rate
at which gravitons cross the Schwarzschild radius RS:

dM∗
dt

= 2×4πR2
S

∫
hemisphere

d3p

(2π)3
p

exp(p/T ) − 1
=

π

120
T 2 (13.111)
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Putting everything together we get

I =
8π
15

T
(mP

4π

)3
exp

( −m2
P

16πT 2

)
(13.112)

Comparing (13.105) and (13.112) we see that in the former there still
remains a factor (M0/T )212/45 to interpret. The origin of this term is a
quantum correction to the free energy of the black hole [17]:

F quantum
∗
T

= −106
45

χ ln
(
M0

T

)
(13.113)

The factor χ is a topological invariant of the space, being 2 for the
Schwarzschild metric and 0 for flat space. The final formula derived heuris-
tically is

I =
8π
15

T

(
M0

T

)212/45 (mP

4π

)3
exp

( −m2
P

16πT 2

)
(13.114)

It is remarkable that not only the functional dependence on T and mP

is reproduced, but also the absolute normalization is very close. This is
more than could reasonably be expected.

13.6 Exercises

13.1 Show that the functions φμ = b∂μφ̄ are solutions to the equation of
motion given in Section 13.1 and that they have one node.

13.2 Write down the false vacuum decay rate including explicitly Planck’s
constant.

13.3 Make a numerical estimate of the nucleation rate for a critical-sized
water droplet in an atmosphere that is oversaturated by 10% at 10
degrees C.

13.4 Derive (13.40) along the same lines used to derive the vacuum decay
rate.

13.5 Derive (13.88)–(13.90) and from them patch together an approxi-
mate solution for v(r) valid from r = 0 to r = ∞.

13.6 Calculate the black hole formation rate with the inclusion of Nf

massless spin-1/2 fermions and Nb massless spin-0 bosons.
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