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Abstract

Expectation values of one-particle and two-particle operators are evalu-
ated in the quasi-chemical equilibrium (pair correlation) approximation to
statistical mechanics. Earlier work was restricted to the case of extreme
Bose-Einstein condensation of the correlated pairs; the new formulas are
not so restricted, but are correspondingly more complicated to evaluate
practically. However, a simple result can be obtained for the expectation
value of the number of particles.

1. Introduction

Some time ago, an approximation to statistical mechanics was suggested,
based on the retention of dynamical pair correlations, retention of statistical
correlations of all orders, but omission of dynamical triplet and higher
correlations [1, 2]. Further work on this formalism, with particular applica-
tion to the theory of superconductivity, has been given in a number of papers
since [3—9].

The exploitation of any approximation in statistical mechanics requires a
method for evaluating the rather complex expressions which arise, in partic-
ular for expectation values of operators which enter into the Hamiltonian
of the system. Thus, one-particle and two-particle operators are of primary
interest. In reference [6], we were able to derive closed and explicit expres-
sions for such expectation values, but only by means of a drastic simplifica-
tion of the problem. The simplification was the assumption of an extreme
Bose-Einstein condensation of the correlated pairs, i.e., only one wave
function for the correlated pairs was permitted. Surprisingly enough, this
suffices to get a workable theory of superconductivity — there is actually
Bose-Einstein condensation, as shown in reference [4], and thus this appar-
ently extreme assumption is nonetheless physically reasonable.

However, in the proof of the existence of Bose-Einstein condensation, i.e.,
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in reference [4], no such assumption is possible, since it would amount to
assuming what we wish to prove. This proof has been criticized recently by
A. Katz [10], on the grounds that the formula for the number of pairs in a
given quantum state of the pairs, is not really justified within the paper.
Rather, this formula was taken from general statistical mechanics, whereas
the quasi-chemical equilibrium approximation is only an approximation to
statistical mechanics, not an exact equivalence. Thus, it is possible that the
formula used in reference [4] for the average number N, of pairs in pair
state a, is actually inconsistent with the basic Ansatz of the quasi-chemical
equilibrium approximation. If this were true, it would vitiate the proof of
condensation, i.e., the proof of the statement that N, is of order volume, N,
of much lower order, where 1 and 2 are the ground state and first excited
state of the pairs, respectively. Since the number operator is a typical one-
particle operator, we require expectation values of such operators.

Quite apart from this difficulty, it would of course be highly desirable to
have general expressions for expectation values in the quasi-chemical equili-
brium theory, in order to be able to attack the problem of self-consistency
without making the initial assumption of full Bose-Einstein condensation.
The discussion of the presence or absence of an energy gap depends on such
formulas. *

In the present paper, we use the Dyson formalism [11] to get fully general
expressions for expectation values. One-particle operators are discussed in
section 2, two-particle operators in section 3. Section 4 shows how the general
formulas reduce to the special expressions of reference [6], and also derives a
general result for the number operator, which justifies the formula used in
reference [4].

2. Expectation Values of Single-Particle Operators

The typical single-particle operator has the second-quantized form:

(2.1) J =k2,‘,',""'ata"'

and we are interested in the statistical average
Trace (J%

2.2) J = s U%)
Trace (%)

* The usual discussions are rather incomplete; an energy gap is proved for excitations in
which at least one pair is broken up, but there is difficulty with excitations in which one or
more pairs are moved out of the pair ground state, into a pair excited state, without actual
breakup of pairs. Such excitations are treated as ‘“‘collective excitations”, whereas they are
really not “collective’ at all.
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where % is the statistical matrix in the quasi-chemical equilibrium approxi-
mation, as defined i (Q, 2.12).

A considerable 1eduction of this complicated expression was carried out
already in reference 16, leading eventually to equation (E, 2.8), which we
repeat here for ready reference:

ol exp (P) exp (P)[0 )

(2 3) J == 2 e 726|>exp (P) exp (P*)W)

where the symbols mean the following: 7, is the average number of unpaired
paiticles in single-particle state £ 1The operator J is the “quenched” form
of J, equation (2.1), the “quenching’” being duc to the Pauli exclusion prin-
ciple; the matrix elements J,,. in (2.1) are replaced by
(2.4) Juw = (1 ﬁk)é‘/hk'(l o ”'LL')%
The operator P in (2.3) is formed as follows: Let @,(%, ') be the wave
function of pair state number «; let v, be the associated eigenvalue of the
“quenched pair correlation matrix’’; the operator which destroys a pair of
type « 1s *
(2:5) bo = 278 47 (kK
Let A, be a set of formal ‘“‘counting” operators, obeying Bose-Einstein
commutation rules:

LAap 4;1} L 61/9

Then P in (2.8) is defined by:

(2.7) P =i, 4,
a

The problem before us is to find a method of reducing the (quite un-
manageable) second term of (2.3), the contribution of the paired particles,
to a form which can be evaluated, at least in special cases. Paper E did this
for vne special case, namely the one of cumplete Bose-Einstein condensation
of the pairs; mathematically, this means that all the v, vanish, except a
single one of them, so that the infinite sum (2.7) reduces to one term.

In this paper, we carry out a significant reduction in the general cuse,
where (2.7) is an infinite sum. To do this, we use the Dyson method [11] as
deseribed in (). The “physical boson” operators b, satisfy awkward commu-
tation rules, namely **

* dlas equation ditfers from {(, 8.24) by the complex cunjugate sign on the wave function
vl the pait. This correction was already made in E, and will be catiied thiough in the present
})Alil(?l d1§U<

*# ‘L he conunatation 1ule (2.8) differs from ((), 3.26) by complex conjugates of pair wave

tunctions. Defiuition (2.9) 1s identical with (C, 2.9), and reduces to (E, 3.12b) for a single
Ydautum state of the pair
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(2.8) lbay )] = 045 + 2 <kIGAIR ot ay

where

(2.9 klgplk' s = > @alk, k”)(pj(k”, k)
az

In the Dyson 1method, the “physical boson’ operators &, are replaced by
“1deal boson’” operatuis B, the latter satisfying the ordinary commutation
iuales

(2.10) | By, B}]. = 044

Ihe precise nature of the cortespondence is defined in section 4 of O, equa-
tions (43, 4 9) and (), 4 10). A useful method for finding the ideal operator
cottespondiilg tu svine physical operator is given in equations (Q), 4.13)- -
(0, 4 15), and this methivd will now be employed to find the Dyson image of
the uperator J Siiee J, acting on the vacuum state [0, gives zero, the coet-
ficieuts detined 1 (), 4.14a) vanish. Next, we require the conunutator of J
and b, Straightforward calculation yields:
(2 11) ) = 23 Tulgalm) - gulm D) ada,
al,m

We now apply closare to the defining equation (2 5), o1 rather to its

complex conjugate

(212) =28 gk B) — gu(¥, B)laja}
Ak

The explicit antisymmetrization of the wave function ¢, in (2.12) is not
ficeessaly fot thie validity of the tormula itself, since antisymmetry is assured
anyway by the tact that the cieation operators anti-commute. However,
1 utdet to apply closuie, we niust sum over a complete set vf wave functions
¥o, cdading the symmetncal functions The explicit anti symmetrization
111 (2.12) ensuies that the symmetric functions do not contribute after the
closure vperation has been peitormed.

We multiply (2.12) on both sides by ¢*(m, m’)  ¢X(m’, m) and sum over
all w We enipluy the closwe relation

(2.13) > px(m, m' )p,(k, k') = 6,,40mi

to obtain the identity

(2.14) afuy = 283 (gh (R, R) - @F(K, R)IDY

We now substitute this identity into (2.12), replacing the dummy index

« by p. Usiug the defiiition of g3, equation (2.9), and noting that the wave
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functions in (2.9) are meant to be antisymmetric, we obtain our final iden-
tity:
J, 051 = — ZkZ ;Jw K |g5lR> b

N3

(2.15)
=—2 ; tr, (]q;)b;’,’

where the symbol tr; denotes a trace over a one-particle operator in k-space.
The sums over § in (2.15) are restricted to values of g for which the pair
wave function ¢, is antisymmetric.

Equation (2.15) defines the coefficients in (Q, 4.14b); since all higher
commutators with the operators 4} vanish obviously, all higher coefficients
vanish. Substitution of these results into (Q, 4.15) yields the following Dyson
image for the operator J;

(2.16) J—» —23tr,(J¢3) B} B,
a, B

The Dyson images of the other operators in the second term of (2.3) have
been obtained already in earlier work, namely equations (Q, 4.19), (C: 2.1,
2.2, 2.3, 2.24). We repeat the final formulas here for easier reference. The
operators R and M are defined by

(2.17) R=Yv4,B,
(2.18) M =23 ¢ 4.B,
a8

It should be noted that M, unlike R, is also a (one-particle) operator in the
k-space, not merely an operator in the space of the formal occupation num-
bers A7 A, and Bj By.

The relevant Dyson images are then:

(2.19) exp (P) — exp (S) exp [§ tr; In (1 — M)]

where S is defined in (C, 2.3), but will not be needed in what follows since
(0Olexp(S) = (0]. The other Dyson image is:
(2.20) exp (P*) — exp (RY)

Substituting these Dyson images, and making use of the fact that vacuum
expectation values are preserved under the Dyson transformation, we obtain
the identity:

<0l exp (P)] exp (P+)[0>

2.21
(221 = —2(0]exp [} tr; In(1 — M)] %tn(]q;)B}Ba exp (R+)[0)

This formula, though correct, is highly awkward and, unless handled with
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considerable care, likely to give misleading results. The difficulty was
mentioned in C, at the end of section 2. If there are closure reductions still
possible in (2.21), then all these closure reductions should be carried out
first. The easiest way to ensure that no further closure reductions are possible,
is to see to it that all operators to the left of exp(R*) in (2.21) commute
with each other. This is not true in (2.21) as written, because Bj does not
commute with M, (2.16). However, there is the identity

(2.22) (01Bf = 0
which in turn implies
(2.23) (Ofexp [}tr;In (1 —M)]1Bf= (0| [exp [}tr, In (1 —M)], B}]_

The commutator on the right of (2.23) is easily evaluated by the general
rule (derivable from (2.10))
of

(2.24) [f(B1. By, +++), Byl = =

where the right side of (2.24) contains a formal derivative. Carrying out this
process on the right side of (2.21) yields the new identity
<0l exp (P)J exp (P+)[0)

(2.25) =42 ;j try (Jg3) (0l exp [} tr; In (1 — M) ] tr, [(1 — M)~1¢f]
. (v,)u,a, exp (R*)[0)

At this stage, we notice the possibility of a closure reduction on the index §.
Carrying out this reduction, with due régard for antisymmetry, leads to
replacing the two traces involving g-operators by the single trace tr(JA)
where 4 is given by the following complicated formula (for later convenience,
the initial factor 2 in (2.25) is included in this definition):

226 CHIBE = 33 [pa(b, m) — palom, )93 (8, ) — g5 ', £)]
' m'|(1 — M) 1m>(v,)¥ 4, B,

Although this definition appears very awkward, we show, in small print
below, that it is identical with the much simpler definition:

2.27) CRIBE'S = <k

M

To prove the identity of (2.25) and (2.26), we expand the operator (1—M)-! in a power
series, and compare term for term. As an example, consider the second term of the two series.
(2.27) gives, for this second term:

(2.28) CRl— MRS = —4<R|ghIR"> CR|g|A"> (vavy) A Bp Ay By
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where summation over all repeated indices is understood, The second term in the expansion of
(2.26) is (assuming now that g4, ¢, are properly antisymmetric)

220 204 (k. m)<p;(k’, m')2<m"q5|m‘, (vyvs)d A5 BgAy By
)
= — 4k, m)qz;(m’, R )pg(m’, m’ )(,, (m”, m) (vyvs)t Ag Bg Ay B,

where we have used the definitions of M, (2.18), uf ¢, (2.9), and the antisymmectiy of ¢
Using the antisymmetry of the other wave functions, this can be rewritten as

2 30) - dou(k, m)(p;(m, m)gp(m’, m )<py(m k') {v,ve)t.ds By Ay Bg
2
= -~ 4k m s o |ghlk vy va)t Ao Bad, By

Except for renaming of dummy indices, the last line of (2.30) agrees precisely with (2.28).
Direct inspectiun shows that this reduction is possible, in an analogous fashion, for every
term of the power series, thereby. proving the identity between (2.26) and (2.27)

Combining the formulas obtained so far, we obtain the result
(2.31) (vlexp(P)J exp(P+)|0, = (0lexp[} try In(1 M) |tr,(Jhjexp(£1)j0)

There 1s an obvious formal resemblance between (2 31) and (E, 4 23), 1ts
counterpart in the case of a single quantum state of the pair. The detailed
reduction of (2.31) to (E, 4.23) will be carried out in section 4 of this paper.

By substitution into (2.3), the final result for the statistical expectation
value of any single-particle operator J becomes:

(Olexp (Fu, In (1~ M)]t, (Jh) exp (RY)[0)

(2:82) ] = E Aot G T T (12 M enp (RO0)

This final result looks still fairly complicated. However, it 1s much siinpler
thau the original expression (2.3), since all the operators in (2.32) obey
sitnple Bose-Einstein commutation sules We shall reduce (2.32) to the spe-
clal case (of only one pair state) detived in B, and we shall obtain, fiom (2 32),
a particularly simple result tor the expectation value ot the number operator.
Both these things will be done in section 4

Just as in earlier work, it is sometimes convenient to shift factors (v,)?
from exp(R*) to the other factors in (2.32). This can be done by the following
simple replacements:

(2.33a) MM = zﬂqa v,v5) 4, B,
M
(2.33b) h »h = -
, 1 - M
(2.33¢) Rt — (R')* }_ A4} B}

Forinula (2.32) remains valid when M, %, R are replaced by A, 4, R’
respectively
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3. Expectation values of two-particle operators
We now consider a typical two particle operator
(3.1) K=3K,p naiaha,a,.

There is already a considerable reduction for its expectation value, which was
carried out in E and has led to equation (E, 2.12}, which we reproduce here
for easier reterence

(0] exp (P)KW exp (P+)0)

Yy o K I{ ) 7 e S0 SO A
(A /> L,Em( tm,lm Lm,ml)nlnm + <0| exp (P) exp (P+)|0}

0] exp (£)K exp (P1)]05

(0} exp"(P) éxp (PH))0> B

(3.2)

The first term in this equation is an ordinary Hartree-Fock expectation
value due to the unpaired particles. The second term arises from the inter-
action between unpaired particles and particles within pairs. The quantity
KW is defined by

(3.3a) R =% Rlata,
kK
(3.3b) Ry =(1-- ﬁk)t(l - "ik')é 2 A (K i+ Ky~ Ky, i — K i 1)
[

The last term in (3.2) is the contribution of particles within pairs. The
operator K has the same form as (3 1) except that the matrix elements are
uow quenched  That is

(34) Ktm, Vit |(I nl)(l - hm)(l _“ﬁ'l')(l — A JﬁK

m’ tm, Une' *

Since KW is a one particle uperutor, it needs no further discussion and we
shall concentrate entirely on the last term of (3.2). As a first step we require
the Dyson image of the vperator a! @} a,.a,. The Dyson transformation is
linear. Thus we may consider the factors ) af, and a,,.a, separately and
combine thenm at the end. We use (2.14) together with the fact that the
Dyson image of 4} is B} . This gives
(3.5) at ap > 283 (g3l m) — g (m, 1)1B]

a

The Dyson transformation, although linear, does not preserve Hermitean
conjugates, thus b does not map into By, but rather into (see equation
(©, 4.18))

(3.6) bg-> By -~ % > (?ﬁ{;'B;BYB,g
Bys
where®

* This equation differs from (Q, 4.3) by correction for complex conjugates of wave func-
tions.
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(3.6a) Cys = 4 EZk . @2 (k1 k)93 (Rak)py (Raka)ps (Reky)
t '}
Taking the Hermitean conjugates of (2.14) and using (3.6) we get the
following Dyson image

3.7) amway 2" *Z (pa(m', V) — @s(¥', m)][Bs — % 2 C}3 B} B, B,

In accordance with our general procedure, we make use of closure con-
tractions wherever possible and as soon as possible. There is clearly a closure
contraction on the index § in the last term of (3.7). We define the quantity

(3.8) Praa(m', 1) = 3 @y (m k1) @5 (k1 Rs)@a (Ral')
18
and use closure on (3.7) to get

a2 3 [y, 1)l WIB= 2 3 (9o, 1) =gypa1 )
(3.9) x Bt B, B,

So far everything has been written in correct antisymmetric form. How-
every, since the formulas would become unreasonably long if we continued
this, we shall henceforth deliberately do it unsymmetrically; for example,
we shall replace gs(m’, I') — @4(l’, m’) by 2¢4(m’, l’), and so on. At the very
end of the derivation we shall recover the correct antisymmetric form by
antisymmetrizing in (}, m) and (m', 7).

We substitute (2.19), (2.20), (3.5) and (3.9) into the last term of (3.2).
In the resulting vacuum expectation value, we eliminate the operator B},
as before, by commutation through the left side. It is now possible to contract
with the wave function ¢? (/, m) according to

(3.10) g @2 (4, m)<RIgEIR> = 85 (m, R
This gives rise to the identity
1
B.1) 3 ot m) tn[(1—M)3g2) = Tetm ¥) K |77 -

Combining the result so far we obtain

(0l exp (P)af a}a,,-a, exp (P+)|0) = 2(0| exp [} tr, In (1 — M))]

1
x L§¢:(m, XL l——l — >ng,]
X [; @p(m', V') By + 2}% @yps(m', ') B} B, B,]

X exp (R*)|0) = I, + I,.

l

(3.12)
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This expression is still subject to antisymmetrization later on.
We now proceed to eliminate the factor B} by commuting it through
everything to the left of it. We use (2.24) and the identity

(3.13) 0 ( 1 _ 1 M 1

' 'aﬁ;l—M)"l—MaB,l—M

to get

M w
aB :exp (4tr, In (1 — M)] \k !1 —37
1 N\
. = 1—

(3.14) exp [# try In (1 — M)] { %tr(l—MaB, /
/ ’ 1 i u\ 1 aM /u\/ 1
\kll—Mk/<k aB,,k N

We observe that

oM
. — =2 t4

(3.15) 35, = 2 S 704,

At this stage it is possible to make a contraction on the index g according
to

m\kx 7E, k,><p,,.,(m V)B,By= =23 (ks> ey (', k)04, B, By

(3'16) = - <l’lMlk2> 2 (Py m » kl)By

k4

Using this result we get the following expression for the term I, the second
sum in (3.12) *

Iy = -4(01 exp (4 try In (1 — M)1gg (m, k) (ve) *Aa ‘@y(m', k) B, - U'|M kg

i Ve 01
U S e SR S P DY
(3.17) -exp (R%)]|0) = Iy, + I, ,.

We have again broken this into two separate parts. Remembering the
definition of A, equation (2.27), the first part becomes

(3.18) I, = 2(0|exp [} try In (1 — M))CV|AlE) <m'[hjm) exp (R+)|0)
At this stage we antisymmetrize. We define the two particle operator $ by
(3.19) ' |plim = KV [BIE) <m |kl — Cm B <V b

* We use the summation convention that all repeated indices are to be summed over, in
order to decrease the length of these formulas somewhat.
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to get as a properly antisymmetrized form of I, ,
(3.20) I,; = (0]exp[§tryIn (1 —M))<I'm'|plim) exp (R+)[0)

The term I, , is given by
M

o
I,,= 2(0lexp[itr,In(1 - )]/ l’! 4
-

(3.21) .
2on )b ] 0B, e (R0

It turns out to be useful to employ the identity

(3.22) Sl M
‘ e

. 1 .
k By == o (s , - 7 ‘ — e k h \
v o b l]--M 1o

We now combine this term with I, in (3.21) By judicious juggling of dommy
indices, we find that the 4,, in (8 22) gives rice to a term which exactly
cancels I,, if the wave function ¢, is antisymmetric. Tt tiinsont to he con
venient to define an operator wave function (operator in the 4 Bspace wave
function in the k&l space) hy

(3 23)
R A e L B e Lt )

In (3.23) we have already carried out the required antisymmetrization
Carrying out that same antisymmetrization on the result so far, we find that
the correctly antisymmetrized form becomes

1

T v Iyp == (Oiexp [ try In (1 — M)j -y, (I, w" )7L, m)

3.24
(3.24) ()5 AR, exp (R*)(0).

At this state all that remains is to multiply by K ,,, ;-,, and sum over }, m, !’
and m’. We define the trace of a two particle operator in the usual way (see
E, 5.4) and we also define

(325) (% ’ K‘/’ﬂ) = z 'P: (l’ m)K lm,l'm’wﬁ(l’r ml)'

L,m, i, m
This gives us our final result
(0| exp (P)K exp (P+)[0> = (0] exp [} tr, In (1--M)]

3.26
(3:26) - {tr, (Bp) + % (er B ) (va)t A, B} - exp (R*)]0).

There is of course a very strong formal resemblance between (3.26) and
equation (E, 5.28). All other terms in equation (3.2) are already under
control.
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We close this section by remarking that we can again throw all factors
»¥ 1o the left-hand side. In addition to the replacements (2.33), all we require
is the additional replacement, in (3.26)

(3.27) ('u,)%AaA,, -> (wzzrﬂ)%AaBﬂ

Fquation (3 26) then remains a valid equation.

4. Discussion

We start hy showing how these formulas reduce to the results of paper E.
Thus we now assume that only one eigenvaliue of the quenched pair
correlation matrix differs from zero

(4]) ‘l’l ’/.*Zi ()’ '()2:?:'1)37 v == 0

By nsing the replacements (2 33), it is now obvious that only & = § = 1
makes any contribution whatever We therefore drop the subscripts o, §, - - -.
Furthermore, we note that B occurs only combined with 4, in the product
A B. Thus B has as its nnly function the supplying of a factor #! for a term of
order # We thus use the same reduction as in C, section 3, which led to
equation (C, 3.10). In effect, the operator A B wherever it occurs is replaced
by a c-number ¢ Thus, in particular, we get the correspondence

(4.2) . M' = 2qvAB > 2vig

o) o M
1-M 1 - 2ntq

This gives an exact correspondence with the results of paper E. Compare,

for example, (4.3) and (F. 421} The correspondence is equally exact for

the two particle operators, that is (3.26) reduces directly to (E, 5.26).
It turns out that there exists a useful identity for the expectation value of

the number operator in the case where all particles are paired, but the pairs

are not necessarily Bose condensed. The number operator is

(4.4) N =3 afa;
k

This is a special case of (2.1), with [, = 4. If there are no unpaired
particles (as we shall assume henceforth), then there is no quenching and
J=17.

Let us now consider the expression for the partition function taken from
(C, 2.25)

(4.5)  exp (— fQy) = (0]exp [} tr, In (1 — M")] exp [(R')*]|0)
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We operate on both sides of this equation with v,(d/dv,), sum over « and
multiply by 2

0
2 — (=
g v“ ava ( ﬂ'QM)
, —1 oM’
®8) = exp (+A)(Olexp htryIn (1 —M)] try (= S0, S
X exp (R+)|0)
Since M’, equation (2.33a) is homogeneous of first degree in the quantity
v, Euler’s theorem gives
MI
(4.7) >, aa =

a Ve

’

Thus the one particle trace in equation (4.6) is simply the trace of the opera-
tor 4’, equation (2.33b), which is just what is needed for the expectation
value of the number operator. We therefore obtain

(4.8) N=2§ vaéi—(—ﬂQM)=§Na.

If we interpret the individual terms of this sum as the number of particles
bound in pairs of type «, then these are exactly the expressions we used in
paper C to establish the existence of a Bose condensation. Furthermore, it is
easy to show that for other operators also, besides the number operator,
the second pair state contributes an amount of relative order 1/N, compared
to the lowest pair state, in the condensation region.

Although the identification of {N,> as the number of particles in pairs of
type « is quite natural, this analogy must not be pushed too far. In particular,
if J is an arbitrary one-particle operator, it is well to observe that

(4.9) > #2 WNo) (Pas JPa)

However, such an identity is by no means required to establish the existence

of a Bose condensation.
I am grateful to Dr. Amnon Katz for valuable correspondence on this

work.
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