Some Properties of Parabolic Curves.

By George A. Gibson, M.A.

If the tangent at a point P on the parabolic curve $c y=x^{n}$ meet the axis of x at M, it is a well-known property that the area between the radius vector $O P$ and the arc $O P$ is n times that between the arc OP and the two tangents OM, MP, O being the origin and $n>1$. The converse is also true; for taking any point O on a curve as origin and the tangent at O as axis of x, let us seek for the locus of P if the area between OP and the arc OP be n times the area between the arc OP and the tangents OM, MP.

The area between the chord OP and the arc OP is

$$
1 x y-\int_{0}^{x} y d x
$$

and the area between arc and tangents is

$$
\int_{0}^{x} y d x-\frac{y^{2}}{2 p}
$$

where $p=d y / d x$. Hence

$$
\frac{1}{2} x y-\int_{0}^{x} y d x=n \int_{0}^{x} y d x-\frac{n y y^{2}}{2 p}
$$

Differentiating with respect to x, the differential equation of the curve will be

$$
\frac{n y^{2}}{\gamma^{2}} \quad \frac{d p}{d x}=x p-y
$$

This may be written

$$
\begin{aligned}
& n \frac{d}{d x}\left(\frac{1}{p}\right)=\frac{d}{d x}\left(\frac{x}{y}\right) \\
& \therefore \frac{n}{p}=\frac{x}{y}+\mathrm{C} \\
& \text { i.e. } \frac{d x}{d y}-\frac{1}{n y} x=\frac{\mathrm{C}}{n}
\end{aligned}
$$

the integral of which is
or

$$
\begin{aligned}
& x=\mathrm{D} y^{\frac{\mathrm{I}}{n}}+\frac{\mathrm{C}}{n-1} y \\
& y=(\mathrm{A} x+\mathrm{B} y)^{n}
\end{aligned}
$$

If $\mathbf{B}=0$, we have the form $c y=x^{n}$; and in general if $\mathbf{A} x+B y=0$ be taken as axis of y in a system of oblique coordinates, the equation takes the same form

$$
c y=x^{n} .
$$

If n were a positive proper fraction, the axes would simply be interchanged.

Consider more particularly the parabola $x^{2}=4 a y$. In this case the area between OP and the curve is $b^{3} / 24 a$ if b is the abscissa of P, while the area between the arc and the tangents is $b^{3} / 48 a$. It will be noticed that $b^{3} / 48 a$ is the area between the chord OP^{\prime} and the arc $O P^{\prime}$ of the parabola $x^{2}+a y=0$ where $b / 2$ is the abscissa of \mathbf{P}^{\prime}. But $b / 2$ is the abscissa of M while the ordinate of $x^{2}+a y=0$ for the abscissa $b / 2$ is $-b^{2} / 4 a$, that is, the intercept made by the tangent at \mathbf{P} on the axis of y. In fact $x^{2}+a y=0$ is the locus of a point which has for coordinates the intercepts made by the tangent at P on the axis of x and y. (Compare Forsyth's Diff. Equations, p. 41 ex. 9.) How far does this property hold for the general parabola? In other words what is the solution of the following problem :-A curve is referred to the tangent and normal at a point O as axis of x and y and the tangent at P cuts the axis of x at M and that of y at N; if the point P^{\prime} be taken having $O M, O N$ for coordinates what will be the equations of the loci of P and of P^{\prime} if the area between the chord $O P^{\prime}$ and the are OP^{\prime} be n times the area between the arc OP and the tangents OM, MP?

Let $(x, y)(\xi, \eta)$ be the coordinates of P and P^{\prime} and denote $d y / d x$ by p; then

$$
\xi=x-y / p, \eta=y-p x .
$$

The area between the arc OP and the tangents OM, PM is

$$
\int_{0}^{x} x y d-\frac{y^{2}}{2 p}
$$

The area cut off by the chord $O P^{\prime}$ from the locus of P is

$$
\int_{0}^{\xi} \eta d \xi+\frac{y^{2}}{2 p}+\frac{1}{2} p x^{2}-x y
$$

both areas being positive. Hence

$$
n \int_{0}^{x} y d x-\frac{n y^{2}}{2 p}=\int_{0}^{\xi} \eta d \xi+\frac{y^{2}}{2 p}+\frac{1}{2} p x^{2}-x y
$$

Differentiating with respect to x and noting that

$$
\frac{d \xi}{d x}=\frac{y}{p^{2}} \frac{d p}{d x}
$$

we get

$$
\left(\frac{n-1}{2} \quad \frac{y^{2}}{p^{2}}+\frac{x y}{p}-\frac{1}{2} x^{2}\right) \frac{d p}{d x}=0
$$

$d p / d x=0$ gives no solution. Hence the equation of the locus of \mathbf{P} is given by

$$
p^{2} x^{2}-2 x y y-(i x-1) y^{2}=0
$$

or

$$
x_{p}=y(1 \pm \sqrt{ } n)
$$

the integral of which is $c y=x^{1 \pm \sqrt{ } n}$, giving only one solution, $c y=x^{2}$ when $n=1$.

If n be not a square each curve is transcendental, but if $n=m^{2}$, we have $c y=x^{n+1}$ or $c y=x^{1-m}$. The solution $c y=x^{1-m}$ evidently does not satisfy the conditions of the problem, the axis of x not being the tangent at 0 , but obviously the other solution $c y=x^{n+1}$ does.

To find the locus of P^{\prime} we have

$$
\dot{\xi}=\frac{m}{m+1} x, \eta=-\frac{m}{c} x^{m+1}
$$

and therefore

$$
\xi^{m+1}+\frac{\mathrm{cm}^{m}}{(m+1)^{m+1}} \eta=0
$$

These are parabolic curves which for $m=1$ reduce to the ordinary parabola.

With regard to the solution $c y=x^{1-m}$, it may be noted that when m is greater than two the axes are asymptotes and a similar proposition holds for the two loci. Using the form $x^{m-1} y=k$ as the equation to the locus of P we find for the locus of P^{\prime} the equation

$$
\xi^{m-1} \eta=\frac{\mathrm{km}^{m}}{(m-1)^{m-1}}
$$

The area bounded by the tangent PM, the part of the axis of x from M to $+\infty$ and the arc from P to the same end of the axis of x is

$$
\frac{m+y}{2(m-1)(m-2)}
$$

On the other hand the area bounded by the line OP^{\prime}, the positive part of the axis of x and the arc of the locus of P^{\prime} from P^{\prime} to the positive end of the axis of x is

$$
\frac{m \xi \eta}{2(m-2)}=\frac{m^{3} x y}{2(m-1)(m-2)}
$$

and is therefore m^{2}, i.e., n times the former area.
When m is less than 1 the tangent at the origin to the curve $c y=x^{1-m}$ is the axis of y and a similar proposition to that given for the curve $c y=x^{m+1}$ holds if M and N be taken on the axes of y and x respectively, while if m be greater than 1 but less than 2 the same change in M, N gives a result analogous to that for the curve $x^{m-1} y=k$ when m is greater than 2 .

