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THE STABILITY THEOREMS FOR DISCRETE DYNAMICAL

SYSTEMS ON TWO-DIMENSIONAL MANIFOLDS

ATSURO SANNAMI

§ 1. Introduction

One of the basic problems in the theory of dynamical systems is the
characterization of stable systems.

Let M be a closed (i.e. compact without boundary) connected smooth
manifold with a smooth Riemannian metric and Diffr (M) (r > 1) denote
the space of Cr diffeomorphisms on M with the uniform Cr topology. Let
/eDifP(M) with s > r. Then / is called Cr structurally stable if and
only if there is a neighborhood ^(/) of / in Diffr (M) such that for any
ge ^(f) there exists a homeomorphism h: M-+ M satisfying gh = hf.

Another important notion of stability is the β-stability. Recall that
x e M is a non-wandering point of / if and only if for any neighborhood
U of x, there is a nonzero integer m such that fm(U) Π U Φ φ. The set
Ω(f) of all the non-wandering points of / is a closed invariant set. / is
called Cr β-stable if and only if there is a neighborhood ^(/) of / in
Diffr (M) such that for any ge ^(/) there exists a homeomorphism h: Ω(f)
-> Ω(g) satisfying gh = hf on Ω{f).

The essential condition to characterize these stabilities is "Axiom A"
introduced by S. Smale in [17]. Namely, / satisfies Axiom A if and only if

(a) Ω(f) is a hyperbolic set,
(b) ¥^ΐΓ

where Per (/) denotes the set of all the periodic points of /. Recall that
a compact /-invariant subset A C M is a hyperbolic set if and only if there
exist constants c > 0 , 0 < Λ < l and a 27-invariant splitting TM\Λ = Es

Θ Eu such that

\\τr\E;\\<cλn

\\Tf-n\E-\\<cλn

for all p e A and non-negative integers n.
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2 ATSURO SANNAMI

In [9], [18] and [8], the following is conjectured.

Structural stability conjecture, f is cr structurally stable if and only
if / satisfies Axiom A and Strong transversality condition.

Ω-stabίlity conjecture, f is cr β-stable if and only if / satisfies Axiom
A and No cycle property.

For the definitions of Strong transversality condition and No cycle
property, we refer to [9], [18].

The purpose of this paper is to give an affirmative answer to these
conjectures for / of class C2 in case of dim M = 2 and r = 1.

The sufficiency parts are known to be true for arbitrary dimension,
that is; if / satisfies Axiom A and Strong transversality condition, then
/ is C1 structurally stable (Robbin [13] for / of class C2 and Robinson [15]
for / of class C1), and if / satisfies Axiom A and No cycle property, then
/ is C1 β-stable (Smale [18]). Remark that if / is C1 structurally (resp.
Ω-) stable and of class Cs, then Cr structurally (resp. Ω-) stable for all
1 < r < s.

Concerning the converses, it is known that Cr structural stability
plus Axiom A implies Strong transversality condition [14], and Cr in-
stability plus Axiom A implies No cycle property [8], for all r > 1. Thus,
if we can verify that β-stability implies Axiom A, then the above con-
jectures are established.

In this paper, we investigate a certain class F(M) of C1 diffeomor-
phisms introduced by Mane [5], [6] which contains all C1 42-stable diffeo-
morphisms; namely, we put

F(M) = inti {geΌifίXM): any periodic point of g is hyperbolic},

where int! means "interior" with respect to C1 topology of Diff1 (M) and
a periodic point x of g with period m is hyperbolic if and only if
Txg

m: TXM-+ TXM has no eigenvalue of absolute value one.
Our result is the following;

THEOREM. Let dim M = 2 and fe F(M). If f is of class C\ then Ω(f)
is a hyperbolic set.

By the theorem of Kupka-Smale [14], it can be seen that if / is C1-
β-stable, then feF(M). Furthermore, by the "C1 Closing lemma", we
have Per(/) = Ω(f), namely Axiom A(b) holds for feF(M), (see Lemma
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DISCRETE DYNAMICAL SYSTEMS 3

3.1 in [6] for the proof).
Thus, as corollaries of our Theorem, we get;

Structural stability theorem. Let dim M = 2 and / e Diff2 (M). f is C1

structurally stable if and only if / satisfies Axiom A and strong trans-
versality condition.

Ω-stabίlίty theorem. Let dim M = 2 and / e Diff2 (M). f is C1 β-stable
if and only if / satisfies Axiom A and No cycle property.

In this paper, we investigate only C1 stability, namely F(M), because
the "C r Closing lemma" has not been established for r > 2. As we men-
tioned above, for the proof of Axiom A(b) for feF(M), we need the "C1

Closing lemma", and this is again our main tool for the proof of our
Theorem. As is pointed out by Robinson in [14], it seems to be an
interesting problem whether C2 structural (or Ω-) stability implies C1

structural (or Ω-) stability or not.
This paper consists of 15 sections. In Sections 2 — 9, we give technical

preliminaries. The essential part of the proof of our Theorem is given
in Sections 10—15.

For the understanding of the basic ideas of the proof, the reader is
recommended to look at the statements of (2.3), (4.1), (12.1), (12.2), (12.3)
and all of Section 13; "Proof of the Theorem". Then it will be understood
how easily the Theorem may be proved provided that (12.2) Lemma and
(12.3) Lemma have been verified. The essence is in (12.2) Lemma and it
is proved without much difficulty, once (11.1) Key lemma is established.
Therefore, we will expend our almost all efforts in proving this Key lemma.

The present work is motivated by Mane [5], Robinson [16] and Pliss
[10], [11], especially, Pliss's excellent idea of "cutting off the suborbits"
in [10]. We apply it to the proof of our (11.2) Main lemma in Section 15,
but in his argument, there are some points which are not clear and we
use this idea in a different way from his.

After I had finished this work, I was informed that in [Chin. Ann.
of Math. 1(1980), 9-29.] S. D. Liao also asserted that he proved the sta-
bility conjectures for C1 diffeomorphisms on 2-manifolds and for C1 flows
with isolated singularities on 3-manifolds. But his method is considerably
different from ours.

I would like to thank Haruo Suzuki, Kenichi Shiraiwa and Takashi
Sakai for helpful advices and supports. Especially, Masahiro Kurata
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must be thanked for his guidance and many valuable suggestions.

LIST OF SYMBOLS

[ ]: integer part of a number. i
d(x, y): distance from x to y. i
Z+ : non-negative integers. i
<V §5. i
Ao: (11.1). i
bp(v, au α2): §7. i
B(r), B(r',r"): §6. i
B,(r), Bp(r',r"): §6. j

c: (2.3), (2.4), (2.5). j

cx: (5.4) (vi).

<*P: §5.
§2.
(2.3) (ii).E\ E\ El, E,

F(M) §1
G: (10.1).
G,: (11.2).
m,: (2.7), §5.
m,: proof of (10.3).
Mo: (5.4) (ϋ).
M,: §5.
iV*: (11.2).
iV0: (10.1).

N,: (9.1).
iV2: (10.1).
iV3: (10.2).
iV4: (12.2).

(5.4).
(5.4).
(6.1).
(6.2).

(9.1).

(9.1).
(10.2).
(14.4).

T(r, r θ : (14.1).
Γ,(r, r ') : (14.3).
C7(r): (5.4) (i).
Φ,: (2.3) (i).
Φ 2 : (2.9).
W(ε,f): §2.
V,(r): §5.

j9 = Λ-I/2: § 14.

e0: (10.1).

η(p, ή): §6.
θ(p,ri): §6.
J: (2.3), (2.4), (2.5).
Λ = Λ1(f): §4.

Λtf): (2-1).
vo(N): (11.2).
ΨP §5.
Ct)\ D« 7ZJ. Q D.

§2. Some preliminary results

From now on, we assume that M i s a fixed closed 2-dimensional
smooth manifold with a smooth Riemannian metric. For / 6 F(M), p e
Per(/) is hyperbolic and we denote by E£(f) (E^,(f)) the unstable (stable)
subspace of TP(M). We put

(2.1) Λt{f) = closure {p e Per (/): dim E$

p(f) = i} for i = 0,1, 2 .
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DISCRETE DYNAMICAL SYSTEMS 5

Note that A0(f) and Λ2(f) are the sets of all the sources and the sinks

of / respectively. In [11], Pliss proved the following,

(2.2) LEMMA. For feF(M), A0(f) and A2(f) are finite sets.

From this lemma, we know that Λ0(f) and Λ2(f) are hyperbolic sets.

The following lemma proved by Mane [5] will play a key role in studying

the precise properties of feF(M).

(2.3) LEMMA. For fe F(M), there exist c > 0 and 0 < λ < 1 satisfying]

( i ) there exists a C]-neighborhood dί/ι of f such that

for all g e^i and p e Per (g), where π(p) denotes the period of p.

(ii) there exists a Tf-ίnυariant continuous splitting TM\ Ax(f) = E1 φ E2

such that

for all neZ+ and p e A,{f). Moreover if p e Ax(f) Π Per (/), then E\ = E£(f)

and El = Es

p(f), where E; (i = 1, 2) denotes the fiber of Eι over p.

Note that dim El = dim E2

P = 1 for all p e A,{f).

By changing 0 < λ < 1 if necessary, we may assume that the constant

c > 0 of (2.3) (i) equals 1 on saddles, that is;

(2.4) LEMMA.

for all ge^1 and p e Aλ{f) n Per (/).

To simplify the notations and calculations in the succeeding sections,

we also assume that,

(2.5) ( i ) 1/2 ^ λ < 1 and

(ii) c ^ l .

(i) will be used only to formulate (14.5). Throughout this paper, the

symbols c and λ denote the constants given by (2.3), (2.4), and (2.5).

The next lemma is a modification of Lemma 2.1 in [10].
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(2.6) LEMMA. Let n be a positive integer and h: {0,1, 2, , n}-+R

be a map. Take m <̂  mino^^..! {h(i + 1) — h(i)}, and σ > m. If h(ή) —

h(0) <; & for some £ e R with nσ — I ^ 0, then there exist v = [(nσ — £)\

(σ — m)] + 1 integers 0 < kx < k2 < < kv < n such that

h(k + kj) - h(kj) < kσ

for all 0 < k < n — kj and I <j <v.

Proof We shall select kj inductively as follows. Let kx be the largest

integer in {0,1, , ή] satisfying h(k^) — h(0) > kxa. Such an integer exists,

because zero satisfies this condition. kx has the property that

h(k + kx) - h(k,) <kσ for all 0 < k < n - kx ,

because if h(k + kt) — h{k^) > kσ for some 0 < k < n — ku then

h(k + kx) - h(0) = h(k + kd - h(h) + h{kx) - h(0) > (k, + k)σ

which contradicts the definition of kx.

Assume that kj is defined and ks < n. We select kJ+1 as the largest

integer in {kj + 1, k3 + 2, , n} satisfying

h(kj+1) - h(kj + 1) > (kj+1 - kj - ΐ)σ .

Such an integer exists because kj + 1 satisfies this condition. By the

same argument as above, we have,

h(k + kj+1) - h(kj+1) <kσ for all 0 < k < n - kj+ί .

Now we shall estimate how many {kj} we can select. Since

S > h(n) - h(0) = (h(ή) - h(kj)) + (h(k3) - h{k3.x + 1))

+ (/*(£,_! + 1) - h(kj^)) + + (h{kx + 1) - hikj)

+ (h(kd - h(0))

>(n — k3)m + (kj — kj_x — ί)σ + m + + m + kxσ

= nm — (j — 1)(<7 — m) + k3{σ — m) ,

and σ — m > 0, we have

kj < (j - 1) + (£ - nm)l(σ - m) .

Namely, if j < (nσ — £)l(σ — m), we can define kj+ί because

kj < (nσ - β)l(σ - m) - 1 + (£ - nm)j(σ - m)
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DISCRETE DYNAMICAL SYSTEMS 7

This completes the proof.

Applying (2.6) to our situation with h{k) — log \\Tp\El\\, we get the

following,

(2.7) LEMMA. Let feF(M), p e Λx(f) and n be a positive integer. Put

m^inϊpeΛΛf){\\Tf\Ell\\Tf\El\\l and take p > m0. Iflog \\Tfn\El\\< i for

some β e R with n (log p) > β, then there are

v = [(n (log p) — ^)/(log p — log m0)] + 1

integers 0 < kx < k2 < < kv < n such that

\\Tf«\E}kj(p)\\<Pk

for all 0 < k < n — kj and 1 < j < v.

Now we shall give here a (^-distance on a neighborhood of fe

Diff1 (M). The definition is a usual one.

Let {Ui9ai}ieI and {Vj9 βj}jeJ be local coordinate systems on M with

finite index sets, and 7:I-+J be a map such that /(E7j C Vγ(i) for all

i e I. Let gl9 g2 e Diff1 (M) be sufficiently near / so that gk(Ui) c Vr(<) for

all ί e I (k = 1, 2). We define a (^-distance on a neighborhood of / by

, g2) = sup sup max {l^

With this distance we can define an ε-neighborhood of / for small

ε > 0, which is denoted by ^(ε, /).

Clearly we have the next lemma which guarantees simultaneous

perturbations with disjoint supports, that is;

(2.8) LEMMA. Let ε > 0 be small and gu g2 e W(ε,f). If supp (gj'1) Π

supp(^2/"1) = φ, then we have;

Next lemma is an easy modification of (1.1) Lemma in [1], and will

be used in Sections 3 and 8.

(2.9) LEMMA. Let /eDifF(M). There exists a C1-neighborhood °lί2 of

f satisfying the following: For any ε > 0, there exists δ > 0 such that, if

{Pi, - - - 9 Pm} is a finite set of points in M, g e^2 and At (i = 1, , m) are

linear automorphisms on Tg(Pi)M satisfying \\At — id|| < δ for all 1 < i < m9

then there exists a C1 map gr such that
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( i ) d1(g,g')<ε

(ii) (Tg%t = A, o (Tg)Pi for all 1 < i < m .

Moreover, for any neighborhood U of {pl9 , pm}, we can require that
g = gr outside U.

§ 3. Stability of sinks and sources

Throughout the rest of this paper, / denotes a fixed C2 diίfeomorphism

in F(M). In this section, we shall show that the sinks and sources of /

are stable under small perturbations.

(3.1) LEMMA. Given ε > 0, there is a C1-neighborhood % of f with the

following property; for any geW, there is a bίjection h: Λ0(f) U Λ2(f) ->

A(g) U Λ2(g) such that dQ(h, id) < ε, where d0 denotes the C° distance.

Remark that if / is structurally stable, this lemma is obvious by the

stability of hyperbolic sets [3], But for feF(M), it is not so easy, because

we must guarantee that there appear neither new sinks nor sources under

small perturbations. We may find an idea of our proof in [11]. Using

(2.3) and (2.9), we can modify Theorem 3.1 in [11] as follows.

(3.2) LEMMA. There exist a ^-neighborhood W of f and θ0 > 0 satisfy-

ing the following; for any integer θ > θ0, there is m(θ) > 0 such that for

geW and p e Λ2(g) with π(p) > m(θ), we have

i = l

where π(p) denotes the period of p.

Proof of (3.1). We only need to prove the lemma for Λ2, that is; for

any ε > 0 there is a (^-neighborhood t of / such that for any g e <2f,

there exists a bisection h: Λ2(f) -» Λ2(g) with do(h, id) < ε.

Suppose the contrary, i.e., there exist ε > 0 and sequences gn-*f,

Pn e Λ2(gn) such that d(pn, Λ2(f)) > ε.

If π(pn) are bounded as τι-»oo, by taking a subsequence we can

assume that there is a keZ+ with π(pn) = k for all n and pn->p for

some p. Clearly fk(p) = p. Since d(p, Λ2(f)) > ε, p is not a sink of /.

As p is hyperbolic, there is a non-zero vector i; e TPM such that the norm

of Tf\v) increase exponentially as £->oo. This is a contradiction be-

cause pn is a sink of gn and gn —> /.
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Next, we see that the period of pn are bounded as n-+ oo. We can
apply the same technique which Pliss used to prove the finiteness of
sinks and sources of feF(M) in [11]. He showed that the period of
sinks of the diffeomorphism in F(M) cannot be arbitrarily large. Using
(3.2), we can estimate the supremum of the period of the sinks uniformly
in a (^-neighborhood of /, and get the boundedness of {π(pn)}. This com-
pletes the proof.

§4. Preliminary lemmas about the spectrum of/*

In what follows, we put A — Ax{f). Let

Σb(E*) = {bounded sections Λ-+E1} i = 1, 2 ,

and let /*: ΣXE*) -> Σ\Eι) be defined by

is a Banach space with the natural sup. norm and /* is the auto-
morphism of ΣXE1) canonically induced by /.

In this section we shall prove two lemmas that will be used in Sec-
tions 5 and 13.

The next lemma is a modification of an argument in [5].

(4.1) LEMMA. Let μ>0. If

then there is a recurrent point p*e A such that

\\Tf*\El\\^μ-* for all neZ+,

where spec. rad. denotes the spectral radius.

Proof. Let S be the family of compact /-invariant subsets of A such
that

spec. rad. /*11Σ\EX\K)>μ KeS .

We define an order on S by inclusion. Then S is an inductively ordered
set, and by Zorn's lemma, we may find a minimal element KQ e S. By an
argument in [7], there is a sequence σn eΣb(Eι\K0) such that \\σn\\ = 1 and

IK/̂  — r7)σn||< 1/Λ,

where r = (spec. rad. f^\Σ\Eι \K0))-\ and I denotes the identity. Note
that r < μ'1.
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Choose pn e A such that \σn(pn)\ > n/(n + 1), pn ->p* for some p*eΛ

and σn{pn) -> v e E^. Clearly |u| = 1.

Now we shall prove

||TfmIEl\\ < rm for all meZ+ .

Put L = /* I Σh(Eγ I2ζ>) and w = max {supo<fc<m ||Lfc||, 1}, where m is now fixed.

Then we have

\\(Lm - r"I)σn\\ = \\(L™ - rLm> + rLml - rml)σn\\

<wjn + r\\{Lm-1 - r - Ύ K H ,

and therefore

_ r

mI)σn\\ < (w/ή)(l + r + r2 + + rm"2 + r771'1

Since dimE 1 = 1 and \v\ = 1, it suffices to show that

|7ym(ϊ;)| < rm .

In fact,

\TΓσn{Pn)\ = \Tfmσnf-™(Γ(Pn)) - r™σn(Πpn)) + rwσn(/»(pn))|

< ||(L»- rw/K|| + rm.

Since σre(pn) -> u and ||(Lm - rml)σn\\ -> 0 as n -> oo, we have |T/m(u)| < rm

as claimed.

We can also see that ω{p*) e S, where ω(p%) denotes the ω-limit set

of p*. Since KQ is a minimal element in S, ω(p*) = Ko. This implies that

p* is a recurrent point, and completes the proof.

The next lemma is necessary to prove that the pre-laminations {Wp}peΛ

and {Wp}peA are of class C2 in Section 5.

(4.2) LEMMA.

spec.rad. fix\Σ\Eι) < 1

spec.rad. /* | Σ\E2) < 1 .

Proof. We shall only prove the first case.

Suppose that there is a μ > 1 such that

spec.rad. f^\Σ\Eι)>μ.

Then from (4.1), there is a recurrent point p*e Λ such that
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\\Tfn\El\\<μ~n for all neZ+ .

From (2.3) (ii), we have

\\Tfn\El\\ < c(λμ-ψ for all neZ+ .

This implies that a neighborhood of p* contracts exponentially under the
iteration of /. Using the recurrence of p* with precise but straightforward
arguments, we can see that there is a sink sufficiently near p*. This
contradicts (2.2).

§5. Semi-invariant coordinate

In the succeeding sections, we study the behavior of the iterated
images of a neighborhood of a point in Λ. A certain local coordinate
system is indispensable for the precise estimates, and we shall define it
in this section.

The definition is not a peculiar but a natural one. This local co-
ordinate is defined on a neighborhood of each point p e Λ, and has the
laminae W*, Wp of the locally /-invariant C2 prelaminations {Wj,}peΛ, {Wl}peA

as the x-axis and the y-axis of R2 respectively. Thus, with respect to this
coordinate, / preserves x and y-axes.

The arguments in this section heavily depend on Section 5 (especially
(5.1) Theorem and (5.5) Theorem) in [4], so refer to it for details.

Recall that, from (2.3) (ii), we have,

\\Tfn\E2

p\\.\\Tf-n\E}n{p)\\ <cλn for all neZ+ and p e A .

Moreover, we have the following,

(5.1) LEMMA. There is an noeZ+ such that if n> n0,

for all pe A and k = 1, 2.

Proof For k = 1, this is just (2.3) (ii).
We shall show the case of k = 2. From (4.2), we have

l>spec.rad.

= lim||/ί |

Hence, there exists n0 e Z+ such that if n > n0,
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Since

\\f^\ΣW)\\>\\Tf-«\El\\ for allpeΛ,

we have

II Tf~* I E}Hp) || < (λ~T2 for all p e Λ .

Combining with (2.3) (ii), we get the lemma.

Put E = TM\Λ = JE1 Θ E2 and we regard E as a vector bundle over

JB1 by projecting each fiber onto Eι along E2. Let

Σ(E\ E) = {continuous sections E1 -> E} .

Define a metric on Σ(E\ E) by

Let

and

2X1/2) = {σ e Σo: σp(0) = 0, L(σp) < 1/2 for all peΛ}

where σv\E\-+ E\ is defined by

(σ I El)(x) = (x, σp(x)) e E\ Θ ̂  for Λ e ̂  ,

and L(σp) denotes the Lipschitz constant of σp. With the metric || H*, Σo

is a Banach space and 2X1/2) is a closed subset (ref. (5.2) in [4]).

We define /: TM\Λ-> TM\Λ by expjlP) f expp on a neighborhood of 0

in TPM for each p e Λ, and extend it to all over TM\Λ by combining with

Tf by a smooth bump function. Note that supp€^L((/— Tf)\TpM) can
be forced as small as desired by restricting / t o a smaller neighborhood
of 0 before averaging with Tf.

Let NeZ+ satisfy N > n0 and c(λί/2)N < 1, and put g = fN. Then from

(5.1), there is a 0 < p < 1 such that

for all p e Λ and k = 1, 2.
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For any σ e 2(1/2), we define

g$σ = gσh , h = (π.gσ)-1 ,

where g = fN and πλ\E-*Ex is the canonical projection. By the almost

same estimates as in [4], we can see that g% is well-defined and a con-

traction on 2(1/2). This gives a unique invariant section σ1 which satisfy

(5.2) For all peΛ,

( i ) L(σp)<l/2

(ii) oi(0) = 0
(iii) σ\:El^ E2

P is of class C2

(iv) Toσl = O

( v ) g (graph (σp)) = graph (σp)

(vi) a\\Έ\-*Έl depends continuously on p e A as C2 map.

Put Wl(r) = expp (graph (σ\) Π Vp(r)) for r > 0, where

Vp(r) - {(u,, υ2) eEl® E*p: [ Vi| < r, \v2\ < r} .

{Wp(r)}peΛ is called locally ^-invariant C2 pre-limination for small r > 0

(ref. (5.5) in [4]).

Now we shall show that by taking supPG/1 L((f - Tf)\TpM) and r > 0

small, {Wp-(r)}peΛ is /-invariant.

Recall that g = fN, and iVeZ+ satisfy iV>τi 0 and c(λ1/2)N < p < 1.

Consider & = fN, g2 = /^+1 and #3 = /^(^+1)# As above, they satisfy

for all p 6 Λ ife = 1, 2. Therefore,

* 2(1/2)

has a unique fixed point σf for £ = 1, 2, 3. Taking supp€/1 L((f — Tf)\ TPM}
sufficiently small, by induction, we can see that,

( i ) (gX+1 = gu = (g2*)N on 2(1/2)
(ii) /#: 2(1/2) -> Σo is well-defined by

f»σ = /(7/ι, where /ι = (πjσ)'1

and has the property that

&•=/•<>&• on 2(1/2).

From (i), we get ^ = <72 = σ3. Denoting this σ\ from (ii), we have
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14 ATSURO SANNAMI

This implies that

/(graph (σ1)) = graph (σ1) .

Similarly, there is a /-invariant section

σ2:E2 >Eί®E2 = E= TM\Λ ,

satisfying the similar property to (5.2).
Now we are ready to give the precise definition of the "Semi-invariant

coordinate for /". "Semi-invariant" means the invariance of x and y-axes
by/.

For each p e A, we define a C2 diffeomorphism ap: TPM —> TPM by

ap(vί9 v2) = (v, - σp(υ2\ v2 - σι

p(vj)

for v, e E*.

By the properties of σ\ we can see that ap satisfy

(5.3) For all peA,
( i ) αp is a C2 diffeomorphism
(ii) σp(0) = 0 and Toap = id
(iii) αp(graph(φ) = £2Θ{0}

αp (graph (dJ)) = {0}e^ .

Remark. The properties L(σp) < 1/2, L{σρ) < 1/2 are used to prove (i).
Let p e A and ep be a unit vector in E*. Define an isomorphism

dp:TpM=E}®E*-+lP by

dp(cxeγ + c2e2) = (c1? c2), c, e i? .

Remark that this definition of dp depends on the choice of the basis
of El®E2

p= TPM.
For small r > 0 and each p e A, we define a C2 local coordinate

Ψp:(W,p)-*(# 2 ,0) by

where Up(r) denotes the r-neighborhood of p.
ψp has the property that,

ψ,(WJ(rO) c {x-axis}

ψpdVJCr')) c {y-axis}

for small r' > 0 and p e A.
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Put fp = ψ / ( p ) o/o ψ;1 for p e A

From the above argument, we can see that,

(5.4) There exist rλ > 0 and r2 > 0 with the following properties .

( i ) ψ; 1: (Ufa), 0) -> (M,p) is a well-defined C2-diffeomorphism for all

p e A, where Ufa) is the ^-neighborhood of the origin in R2.

(ii) fp: (Ufa), 0) -> (7?2, 0) is well-defined and preserves x and j-axes,

for all p e ΛL

(iii) for p, q e A, if d(p, q) < r2 then ψpψq1: Ufa) -> I?2 is a well-defined

C2 diffeomorphism.

(iv) for any ε > 0, there exists 0 < δ < r2 such that if d(p, q) <C δ

then 1 — id||2 < ε on Z7(rj), where ψp and ψα are defined with the

bases which are near each other, and || ||2 denotes the C2-norm for func-

tions on R2.

(v) sup M*) =

where fv = (fp, β).

(vi) there is cγ > 0 such that, for any measurable subset A of Ufa),

c^A) < s(ψ

for all p e Λ, where s(A) denotes the measure (area) of A.

From the definition of ψp, we get

(5.5) for all p e A, and i = 1, 2 .

Regard fl(x,y) as a function of x. Applying the Taylor expansion

up to 2nd order around (0, y), we have,

fl(χ, y) = ftfβ, y) + x -ψ-Φ, y) + -ξ-Ψf( θ x> y> >
X Δ X

for some 0 < θ < 1. By the Mean value theorem,

ψ-(o,y) = -^-(0, 0) + y ^
d 3x

for some 0 < ^ < 1. Since fp preserves y-axis, fλ

p(0, y) = 0. Thus, we get

-M0(\x\ + \y\)}.

Similarly,
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16 ATSURO SANNAMI

\fl(χ,y)\<\y\ lUfiy 0) \y\)\ •
dy

Put

m0 = inf || T / | ^ | | and Λf, = Molmo .
pGΛ

l 2

Then, from (5.5), we have

+ \y\)}(5 6) \ft^y)\ < |*

\f%χ,y)\ < \y\ \\π\El\\ {i + m*] + \y\)}

for all p e A and (x, y) e U(r^).

§6. Tracing boxes

In this section, we shall define the box neighborhoods for each pe A

with respect to the semi-invariant coordinate, and see how the iterated

images of these boxes behave.

Put

B(r\ r") = {(x,y)eR*:\x\< r', |y| < r")

and

B(r) = B(r, r) .

For p e A and 0 < r, r', r" < rJ2, we define (p, r', r")-box Bp(r', r") by

Bp(r', r") = ψ;'(β(r', r'O)

and (p, r)-box Bp(r) by

Bp(r) = ψ-(B(r)) .

DEFINITION. Let pe A, ne Z+ and <5 > 0. Bp(r\ r") is (p, n, ^-tracing

box if and only if

f*(Bp(r', r'O) c BfHp)(δ) for all 0 < k < n .

Remark. While the definition of ψp depends on the choice of the

basis of Ep 0 E\, the set Bp(r', r ;/) does not, because B(r\ r") is symmetric

with respect to x and y- axes respectively.

Two near boxes are related in the following way.

(6.1) LEMMA. There exists r3 > 0 such that, if p, q e A and Bp(r) Π

Bq(r') Φφ for 0 < r, r' < r3, then

https://doi.org/10.1017/S0027763000020328 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020328


DISCRETE DYNAMICAL SYSTEMS 17

( i ) qeBp(r + 2r')

(ii) Bq(r') C B,(r + 4r') .

Proof. Assume that Bp(r) (Ί Bq(r') φ φ, that is;

B(r) Π ψPψ?B(r') ψ φ .

From the above remark, Bq(r') does not depend on the choice of the
basis with respect to which ψQ is defined. So, we can assume that ψp

and ψβ are defined by the bases which are near each other. Choose 0
< δ < r2 as in (5.4) (iv) with ε = 1/2. Take r3 < δ. Then for x e B(r')
with r' < r8, we have from (5.4) (iv),

- x\

<{sup
eB(')

<

So, for ί = 1, 2,

where x = (xl5 x2) and ( X denotes the ι-th coordinate.
Take a point xoeB(r) Π φ^Bir') and put * = (

Then, since q = ψqXQ) and ψpψ~(x) e B(r),

< 2r7 + r .

This implies (i). A similar argument gives (ii).
Let p e Λ, ne Z+ and N > 0 (possibly not integer). For the sake of

convenience, we put

= max

Remark that, since dim E1 = dim E2 = 1,

β(p, n + m) = θ(p, ή).θ(fn(p), m)

ω(p, n + m) = ω(p, n) ω(fn(p), m)

for any p e A and n,me Z+.
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The iterated images of the box neighborhoods behave as follows.

(6.2) LEMMA. Let p e Λ, N>1 (possibly not integer), KeZ+ and r4 =

min {rJ2c, l/M^l + c)}. If p > η(p, K) and 0 < r < r4, then

fKBp{rlpN)) c BfHp)(rθ(p, i)lP{N - ί\ rω(p, i)/P(N - ί))

for all integers 0 < i < min {K, N — 1}.

Proof. Since p > η(p9 K) > θ(p, ί) and N — ί > 1 for all integers 0 <

i < min {K, N - 1}, we have θ(p, ί)lp(N - i) < 1. From (2.3) (ii), ω{p, i)

< cθ(p9 i). Then since r < r4, we have

rθ(p, ί)/p(N -ί)< rJ2c

rω(p,ί)lp(N-i)<rj2.

This implies that Bfi{v)(rθ(p, ΐ)/p(N — ΐ), rω{p, i)/p(N — ΐ)) is well-defined

for all integers 0 < i < min {K, N — 1}.

We shall prove the lemma by induction. For i = 0, it is trivial. To

simplify notations, we put

B} = B/Hp)(rθ(p,j)lP(N - j), rω(p,j)l(N - j))

for all integers 0 < j < min {K, N — 1}.

Suppose that the lemma is true for i — 1. Then

p-*(Bv(rlpN)) C Bt.t .

It suffices to show that f(Bt.l) C Bt. Namely we shall see that for (x, y)

= ψft-nP)(z) and zeBi.lt we have

rω(p,i)lp(N-i)>\f2(x,y)\

where (/1;/2) = ψfHP)°f°ψji-nP). In fact, from (5.6),

rθ(p,i)lp(N-i)-\ttx,y)\

> {rθ(p, i)lp(N- ί)} - |x| | | Z J H ^ - . ω H l + M,(|*| + \y\)}

> {rθ(p, ί)lp(N - i)} - {rθ{p, ί)lP(N - i + 1)}

•{1 + Mir(θ(p, i - 1) + ω(p, i - 1 ) ) / ^ - i + 1)}

{1M^ - i + lf(N - ί)}

ί)(p - Mir(θ(p, i-ΐ) + ω(p, i - 1)))

, i - 1) + ω(p, Ϊ - 1))} .
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Thus, we only need to prove p — M^iθip, i — 1) + ω(p, i — 1)) > 0. In

fact, we get

p - Mxr{θ + ω) > p - Mxr(β + cθ)

> p{l - M1r(l + c)} > 0 ,

because ω(p, i — 1) < cθ(p, ί — 1), p > θ(p, i — 1) and r < l/M^l + c).

Similarly rω(p, i)/p(N — ΐ) — |/2(Λ;,y)| > 0. This completes the proof.

By this lemma and (2.3) (ii), the next lemma is easily proved.

(6.3) LEMMA. Under the same hypothesis as in (6.2),

f\Bp{rlpN)) c B/Hp)(crθ(p, ί)/p(N - ί))

for all integers 0 < ί < min {K, N — 1}.

This lemma says that the box Bp(rjpN) is a (p, min {K, N — 1}, cr)-

tracing box. A more useful modification of (6.2) is the following,

(6.4) LEMMA. Under the same hypothesis as in (6.2),

fJ(BfHp)(rθ(p, i)lp(N - ί))) c Bfί+Hp)(crθ(p, i + j)/p(N - i - j))

for all integers i, j satisfying 0 < i + j < min {K, N — 1}.

Proof

yifKp)) K — i) = max
0<w<isΓ-?

= max

< v(p, K)/Θ(p, i) < Plθ(p, i)

From (6.3), we have

0<n<K-i

= fj(BfHp)(r!(plθ(p,ί))(N-i)))

C Bfi+Hp)(crθ{Πp\j)l(plθ(p, Ϊ))(N - i - j))

= Bfί+Hp)(crθ(p, i + j)/p(N - ί - j)) .

This implies the lemma.

§7. The fundamental lemma for the closing lemma

In this and the next sections we shall formulate "the closing lemma

for F(M)" which plays an essential role in the proof of our theorem.
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In the general case, 'The C1 closing lemma" has been established by C.

Pugh and C. Robinson in [12], and here we just adapt their method to

our situation. In our case, dim M = 2 and we are given a T/-invariant

splitting TM\Λ = E1 0 E\ so we don't need the "Linear algebra" which

complicates the argument of [12]. On the other hand, we will need

delicate perturbations of / in the succeeding sections, so we must formulate

the closing lemma precisely for our purpose.

In this section, we shall prove the fundamental lemma by which we

can select a pair of points that are particularly well situated regarding

other points considered. The proof is a fairly easy analogy of (4.2)

Fundamental Lemma in [12] in terms of our semi-invariant coordinate.

To simplify computations, we use the following norm on TM\Λ.

\v\ = ( N 2 + |ι;2|
2)1/2

where v e TPM, p e A and υ = υx + v2 e Ep 0 Έ\. Clearly this norm is

equivalent to the norm defined by the Riemannian metric.

Before formulating the Fundamental lemma, we need the following

technical lemma.

(7.1) LEMMA. For any ε > 0, there exists δ > 0 such that

sup {|| Tx(ap - id) ||, || Γ , « - id)||} < e .
eΛev(δ)

The proof is straightforward by using (5.2) (vi), (5.3) (ii) and com-

pactness of A.

Let peM, ve TPM and A: TPM -* TPM be linear. We define a map

bp(v, A): {a neighborhood of 0 in TPM} -> M by

bp(v, A)(x) = expp (i; + Ax) for x e TPM.

Especially, for pe A and positive numbers al9 a2, we define

bp(v, au α2) = bp(υ, A(al9 α2))

where A(al9 α2)(^i + 2̂) = 0^1 + #2̂ 2 for υt e Ez

p.

Let 0̂ > 0 be given in (7.1) with ε = 1/8. Define a number, r5 =

min{rJ60, δ0l60}.

(7.2) LEMMA (Fundamental lemma). Let {pn} be a finite subset of M>

0 < r < r5 and pe A. If there exist two points pi9pj e {pn} satisfying pi9Pj

e Bp(r)9 then there exist two points pS9 pt e {pn}, υ e TPM and positive num-

bers aί9 a2 such that
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( i ) |u| + a, + α2 < 30r
(ii) (2VT)-1 < ax\a2 < 2VT
(iii) 6p(u, al9 a2)(Vp(l)) c Bp(30r)

(iv) p s , p , e &p(ϋ, α1? α2)( Vp(V3/4))

( v ) p f c 0 6p(u, a» a2)( Vp(ΐ)) for pk e {pn} with pk Φ p s , pt.

Proof. Suppose that pί9 Pj e Bp(r). For pn near p, we put pn =

exp~ι pn. Remark that we don't need to consider the points that are far

from p. Put x0 = pif y0 = pj and we shall select a sequence (xn, yn) of the

points of {pn} as follows. Define

ξ(x,y) - {ze TPM: \x - z\ < Λ / 3 / 4 > - y\ or \y - z\< V3/4|x - y\}

for x, y e TPM. If some point z e {pn} is contained in ξ(x0, yQ), let

z replace y0 if |2: — xo\ < \z — yo\

z r e p l a c e x0 if \z — yo\ <\z — xo\ .

Let (xl9yi) be the pair so formed. Proceed as with (xo,yo), generating a

sequence (xn, yn). This process ends at finite steps, because

( 1 ) \χ«-yn\<W3βy\χo-yo\

and {pn} is a finite set. Let (xk, yk) = (ps, pt) be the final pair. This has

the property that no other point of {pn} is contained in ξ(xk, yk). Also

we can see that

( 2 ) \xk - xo\ < Σ L i \χn - *«-il < {Σi

because either xn = xn.ι or yn — yn_u and

Now set

v - (1/2)(A + A )

and

α* = ((1/3) [ Ps - A I? + (1/16) I p. - AI2)1 / 2 for £ = 1,2

where 114 = |wj for u = u, + u2e El® E\ = ΓPM

By easy calculations, we have
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(2vr2")"1 < aja2 < 2VΊF .

It remains to show (i) and (iii). Since ψp(Pi) e B(r), we have

Vp{r). Therefore

< /2"r/8

Similarly \pj\< (9\H2/8)r. By using (1), (2) and (7.1), we can show that

\υ\ + at + a2< 30r

and

v + A(al9 a2)(Vp(l)) c σ-^-^SOr) .

This completes the lemma.

To simplify notations in the succeeding sections, we introduce the

following definition.

(7.3) DEFINITION. Let pe Λ and r > 0. Let x,yeM, ve TPM and

au α2 be positive numbers. A quintuple (x, y, υ, au α2) is (p, r)-connectable

if and only if

( i ) \v\ + a, + a2 < r

(ii) (2VT)"1 < aja2 < 2^2

(iii) x,yebp{υ,aua2)(Vp{<JZβ))
(iv) bp(v,al9a2)(Vp(ϊ))ciBp(r).

With this definition, we can formulate (7.2) as follows.

(7.4) LEMMA. Let {pn} be a finite subset of M, 0 < r < r5 and pe Λ.

If there are two points pί9 pj e Bp(r), then there exist v e TPM, positive

numbers au a2 and two points ps, pt in {pn} such that (ps, pt, v, au a2) is

(p, 30r)-connectable and moreover pk Φ bp(v, au a2)(Vp(ΐ)) for pk e {pn} with

§8. Closing lemma for F(M)

In this section, we shall give a precise formulation of the "Closing

lemma for F(M)".

First, by an entire analogy with [12], using TM\Λ = E1 ® E2 and

(2.3) (ii) instead of V1 Θ V2 and hyp(7p: resp. V1 ® V2) in [12], and

perturbing / around the points {fn(p*)}-N<n<N-i> we get the following;
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(8.1) LEMMA. For any C1-neighborhood °lί of f, there exist r > 0 and

Ne Z+ with the following property. Let p* e A and p,qe M. If ve TVM

and positive numbers au a2 satisfy

( I ) \v\ + ax + a2<r

(II) (2VΎ)-1 <aJa2<2V~2

(III) fn(bp£v, al9 α2)( VJ1))) are disjoint for -N<n<N .

(IV) p^qebJv^

then there exists g e °U such that

( i ) g*"(f-»(q)) = f»(p)

(ii) sup̂ Λ1 c Uί-^i

When we apply the closing lemma in the succeeding sections, we

require that the perturbation g should preserve the T/-invariant subbundle

E\ E2 and the norm of differentials restricted to them (for precise mean-

ing, see (8.2) below). For that purpose, we must extend the splitting TM\Λ

= E1 Θ E2 to a neighborhood of A beforehand. Since both M and the

1-dimensional Grassmann bundle over M (whose fiber over x e M is the

Grassmann manifold of all 1-dimensional subspaces of TXM) are ANR,

we can extend E* continuously to a neighborhood U of A (see (4.4) Lemma

in [2] for the proof). We still call them E\ Although E1 and E2 are

not necessarily Γ/-invariant outside A, by restricting U to a neighborhood

sufficiently near A, we can assume that TM\ U = E1 φ E2.

The following is the version of the closing lemma which we shall use

afterwards.

(8.2) LEMMA. For any C1-neighborhood <% of f, there exist r > 0 and

Ne Z+ with the following property. Let p*e A and p, q e M. If v e TVM

and positive numbers aί9 a2 satisfy

( I ) \v\ + a, + a2<r

(II) (2/2")"1 < αx/α2 < 2VT

(III) fn(bp£v, al9 OίX Vp#(l))) are disjoint for -N+l<n<N

(IV) p,qe bPm(υ9 au a2)(Vp£V3H)) ,

then there exists ge°ll such that

( i ) g2N(f-N(q)) = fN(p)
(ii) supgf-1 C UL-N+ifn(bPXv, au a.XVPXD))

(ill) Tg(E%

gn{f-N{q))) — Egn + l(f-N(q))
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for all 0 < n < 2N - 1 and i = 1, 2

(iv) | | T ^ | ^ ( / . , ( g ) ) | |

for all 0 <n<N - 1 and i = 1, 2

/or all N<n<2N~l and ί = 1, 2.

Proo/. The basic idea of the proof is simple. We only have to
perturb the differentials of g in (8.1) around the points {gn(f~N(q))}o^n<2N
by using (2.9).

Take ε' > 0 so that Φ(ε', f) C °U Γ) ^ 2, where ^ 2 is given in (2.9). Let
r>0 and NeZ+ be given in (8.1) with ^(ε'/4,/) as a C'-neighborhood
of /. Let p,qeM, ve TvΊή and a1 > 0, α2 > 0, with the properties (I) ~
(IV). Then from (8.1), there exists g e ^(ε'/4, /) satisfying (i) and (ii). Take
r > 0 so small that for all -N<n<N, fn(bp£v, au α2)( V^(l))) are con-
tained in U on which extended E1 and E2 are defined. Define linear maps

GJ: 2>+/(/-*(β))M > 27

P (,)M for -N<j<0

and

G?: T^+ y ( /-. ( g ) )M > Tmv)M for 0 < j < N

so that they preserve E\ E2 and are isometry on them. Note that GίN

and G^ are identity maps on Ts-N{q)M and TfN(p)M respectively.

Now we shall apply (2.9) to g with {gn(f~N(q))}0<n<2N-i as a finite set.
As linear maps, we take

A3 = (Gj+1)

and

V+i+χ(/-^» for 0 < < iV - 1 .

By taking r > 0 smaller, the distance from fj(q), resp. /j(p), to
gN+i(f-N(q)) for -N<j<0, resp. 0<j<N, can be small enough to
satisfy HA, - id | |< <5' for all -N<j < N- 1, where <5' > 0 is given in
(2.9) with ε = ε'/4. Then from (2.9), we can find gf such that

( i )
(ii) Tg' = AfoTg on TgN+Hf-N{q))M for all -N < j < N - 1 .
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Moreover, the support of this perturbations can be arbitrarily small. This

proves the lemma.

To simplify notations in the succeeding sections, we introduce the

following definition.

(8.3) DEFINITION. Let p* e Λ, Ne Z+ and r > 0. Let (p, q, υ, au α2) be

(p*, r)-connectable, where p, q e M, v e TVJM and ax > 0, α2 > 0. Assume

that fn(bpχv, al9 a2)(VPXΐ))) are disjoint for —N<n<N and contained in

a neighborhood U of A on which extended E1 and E2 are defined. C1

diffeomorphism g is (p*, iV, p, q, υ, αl5 α2)-connector if and only if g satisfies

(i) ~ (iv) in (8.2).

With this definition, we can formulate (8.2) as follows.

(8.4) LEMMA. For any Cι-neighborhood °U of /, there exist r > 0 and

Ne Z+ with the following property; let p*e Λ, p, q e M, v e TVM. and ax >

0, α2 > 0. // (p, q, v, aί9 a2) is (p*, r)-connectable and fn(bpj,υ, au α2)( Vp,(l)))

are disjoint for —N+l<n<N, then there exists a (p*, N,p, q, v, au α2)-

connector g in %.

Remark that the definition of (p*, N,p, q, v, au α2)-connector depends

on the order of p and q, so generally (p„., N,p, q, v, au α2)-connector and

(p*, N, q,p, v, au α2)-connector are different. This difference plays a re-

markable role in the proof of our main lemma. Roughly speaking, if

q z= fn(p) for some positive integer n, (p*, N,p, q, v, au α2)-connector closes

up the orbit {fk(p)}0<k<n and (p*, N, q,p, v, au α2)-connector cuts off it.

§ 9. Existence of a saddle

In this section, we shall give the following technical lemma which

asserts that a sufficiently near recurrence with exponential expansion of

the norm of Tf on E1 and contraction on E2 implies the existence of a

saddle.

(9.1) LEMMA. There exist Nλ e Z+, r6 > 0 and r7 > 0 such that if p e A

and m e Z+ satisfy

( i ) m^N,

(ii)

(iii) d(p, fm(p)) < r6

(iv) Putting (x,y) = ψP(fm(p)) and r = max {|*|, |y|}, Bp(4r) is a

(p, m, retracing box,
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then, there is a saddle in Bp(4r). Moreover, the period of this saddle is

a divisor of m.

This kind of argument is used sometimes in the theory of hyperbolic

sets, but in our case, the condition on the norm of differentials of fk at

p are not given for 0 < k < m. Instead, we have a condition on the size

of the tracing box Bp(4r). While the basic idea of the proof is the same

as in the case of hyperbolic sets, the precise estimation is rather messy.

Firstly, for a vector υ = ί e R2 with Vι Φ 0, we define

slope (v) = s(v) = \v2\l\vt\ .

For A = \γ ^1 6 GL(2, R) with a Φ 0, δ Φ 0, define

h(A) = \δ\l\a\ .

Now we consider for A the following condition,

( 1 ) \β\, \ΐ\ < ε , a < |α|, |3 | for positive constants e, a .

Then, we have easily,

(9.2) LEMMA. If A satisfies (1) and 1 > εa~ιs(v), then

s(Av) < h(A)(l - εa-'siv))-^-1 + s(v)) .

Next, let us consider a sequence {Aί = !?* y satisfying (1)
I L'i °il)iez+

furthermore

( 2 ) Π U M-A«) < cC*9/10)J-'+1 /or αZ/ i, j e Z+ α iΛ i < .

We 5/ιαZZ estimate the slope of An A^. For ί/ie sake of simplicity, we

put

p = (l- Λ8/1V , μ = r1/10 , τ - εα"1 .

(9.3) LEMMA. Assume that s(v) < 8/?cτ and Zeί ε > 0 6e so small that

(1 - c^l + δc)^)"1 < /i. TΛen we have

/or aZ/ neZ+ .

Proof. We shall prove the lemma by induction.

For n — 1, by using s(u) < 8pcτ and (9.2), we get
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s(Aίϋ) < h{Ax){l - τSpcτ)-\τ + 8pcτ)

because, (1 - τ^pc)-1 < (1 - cp(l + 8c)τ2)~ί < μ.

Suppose the lemma is true for n — 1. Then from (2), we have

s(A

Namely,

( 4 )

This implies

and

that

(1-rf

AlV)

s(An

- ^ \Zji = l Vl 1

^ fyn-1 n-

< {V!° (fil

< {1 + 8c(λ

-i Aii;) <

i A&))-1

njZ\ μh(Aj)

8/10)'!-1}locr

: {i + 8c(.

< (1 - r2

) + δpc U

+ 8pCμn~1(

(1 + 8c)/)c:

•

rs(An M Axυ) < τ\l + 8c)pc

< 1 - μ-1 < 1 .

so, by (9.2), we get

s(An Axυ) < h(An)μτ{l + Σ?="ί (Π*-ϊ tMA,)) + 8pc Πy

which implies (3) for ^.

By the same calculation proving the above (4), we have

(9.4) LEMMA. Under the same hypothesis as (9.3),

s(An A,v) < {1 + 8c(λ8/ί0)n}pcτ for all neZ+ .

Proof of (9.1). For qeΛ and xe B(rΊ), we put

T f =\a« &1 and Tf - K °1
lχTq Vrq δq\

 i o A ~Lo ^1
where fq = ff(q)ofoψ~\

By taking r7 small, we can assume that

( 5) ( i ) there is a constant α > 0 such that

a < \aq\,\δq\ f o r a n y q e Λ

( i i ) t h e r e i s ε > 0 s u c h t h a t \βq\, \ϊq\ < ε for a n y qeΛ a n d

(1 - cp(l + δcXεα- 1 ) 2 ) " 1 < μ
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λ1/2O<\δq\l\δ°q\<λ -1/20 for any q e Λ .

We put τ = εα"1 as before, and ψp(fm(p)) = (x, y), r = max{[*|, \y\} as in

the assumption of the lemma.

Put q = fm(p) and let z be an arbitraly point in £(4r). Take v e TZR
2

such that s(υ) < 8pcτ. Let us consider Tz(ψp o/m oψ"1)^). To simplify

notation, put /£ = ψfHp) °/w o ψ-1, zn = f$(z) and p n = fn(p) for 0 < n < m.

Noting that Tz(ψpofmof-1) = T.Jψpψ-^oTJ^, first, we estimate the

slope and the norm of Tzf™{v).

From (5) (i) ~ (iii), (9.1) (iv) and (2.3) (ii), a sequence {TJ^,..^

satisfies the hypothesis of (9.3). Therefore, if we take m large enough

so that 8c(^8/10)m < 1, then by (9.4), s(Tzf™(υ)) < 2pcτ. If d(p, fm(p)) is suf-

ficiently small (i.e. we take r6 small enough), then by (5.4) (iv), we get

Thus, TXψpO^oψ-1) preserves the sector

S,pcτ = {ve TXR
2: s(υ) < 4pcτ, x e B(rΊ)}

for z e S(4r).

Next, we investigate the norm of T2(ψpo/moψ~1)(ι;). Assume that

v = \Vί\ and Iî l = 1. Generally, if a matrix A = ^ \.\ satisfy the

assumption of (9.2), then

\πiAυ\ = {av, + βv2\ > {a^l - \β\\v2\
V 6 ) ^ , M X i Λ

where πt denotes the canonical projection to the first coordinate. From

this (6), (9.4), (5) (iii) and (9.1) (ii), we have

r m - 1

in . 2 7
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Namely, if we take m large enough to satisfy (χ-vχΰ)m > 5? then we have

\^Ttf™(v)\ > 5. If we take d(pjm(p)) sufficiently small (i.e. by lessening

rβ), using (5.4) (iv), we have \^T2(^pofm oψ^χv)] > 4.

Applying the same argument to f~\ we have that;

( i ) for z e ψpf
m(Bp(4r)) and υ = Γ^l e TZR

2 with \υ2\ = 1 and s(υ) =

l̂ iI/Î 21 < 8pcτ, ψp°f~
m°ψp1 preserves the sector

S4,c r = {ve TXR>: s(v) < 4Pcτ, x e B(rΊ)}

on ψp/-(Bp(4r)).

(ii) \π2Tt(ψpof-moψ-1)(v)\ > 4, where π2 denotes the canonical projec-

tion to the second coordinate.

Thus, we know that ψpo/^oψ-1 expands B(4r) with respect to the

first coordinate and contracts with respect to the second coordinate.

Then, by using the above properties, it can be seen that Γ\nezfmn(βp(^r))

consists of only one point which must be a saddle.

§ 10. Disjointness of tracing boxes

The purpose of this section is to prove the following (10.2) Lemma

which gives a precise estimate about the length of the positive orbit on

which the iterated box neighborhoods are pairwise disjoint. This (10.2)

plays two important roles in the arguments in Sections 12 and 15. One

is to guarantee the disjointness of the supports of perturbations when we

apply the closing lemma, and another is to guarantee that the length of

suborbits are not smaller than a given number. Refer to (15.1) and (15.2)

for details.

We need the following constants to formulate (10.2).

(10.1) CONSTANTS. NX e Z+ is given in (9.1). C1 neighborhood <%ι of

/ is given in (2.3) (i). Let C1 neighborhood ΰllz of / be given in (3.1) with

ε = (l/4)d(4, Λo U Λ) Let r0 > 0 and No e Z+ be given in (8.2) with °ll =

^fa» /)> where ε0 > 0 is chosen so that ^/(ε0, f) C ^ Π ^ 3 . Moreover, we

assume that No is so large that cλNo < 1 and r0 is small enough to satisfy

Bp(r0) c Up((l/8)d(Λu ΛQ U Λ2)) for any p e Λ, where Up(r) denotes the r-

neighborhood of p. Define N2 = max {2Nl9 4iV0} and G = 12 (log m^Wog λ"1).

(10.2) LEMMA. There exist r8 > 0 and N3 e Z+ with the following prop-

erty. Let p e A and 0 < r < r8. If integer N > iV3 satisfy log η{p, GN) <

-1), then Bt(r) ΓΊ B/r) = φ for any integers 0 <i <j < 2N9
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where Bt(r) = BfHp)(r<Kp, i)lv(p, GN)(GN - £))•

Main tools for the proof of (10.2) are (8.2) and (9.1). To apply them,

we need that length of the suborbit of the positive orbit of p e A is not

so small. So we must manage the case of short suborbits (i.e. j — £ is

small) before proving (10.2), namely;

(10.3) LEMMA. There exist r8' > 0 and NieZ+ with the following prop-

erty. Let peΛ and 0 < r < r8'. // integer N> Nζ satisfy logη(p9 GN) <

(GJV/10) (log λ-1), then B,(r) Π B/r) = φ for any integers 0<i<j<SN

with j — i < 2V2.

(10.4) Remark. Since G > 12 and θ(p, i)ly(p, GN) < 1 for i < 122V, we

have θ(p, ΐ)/η(p9 GN)(GN - i) < 1 for i < 112V. Therefore Bt(r) is well-

defined if i < 112V and r < rJ2 (ref. (5.4)).

For the proof of (10.3), we need the following;

(10.5) LEMMA. Let n* e Z+ be given. For any ε > 0, there exists δ > 0

such that for xeM and a positive integer k < n* with d(x9 f\x)) < δ, there

is a periodic point of f in the ε-neίghborhood of x. Moreover, the period

of this periodic point is a divisor of k.

The proof is straightforward and left to the reader.

Proof of (10.3). Suppose that Bt(r) Π B/r) Φ φ for some integers 0 <

i<j < 32V with j - ί< 2V2. From (10.4), θ(p, ί)/η(p, GN)(GN - i) < 1 for

ί < 112V. So, by taking r < r3, we can apply (6.1) and have;

( i ) if θ(p, i)l(GN -i)> θ(p9 j)l(GN - j)9 then f (p) e Btfr)

( i i ) if β(p9 i)l(GN -ί)< θ(p9 j)l(GN - j), t h e n f (p) 6 B/3r) .

Namely, we have

( 1) there exist q e A and integers 0 < t < 32V, 0 < m < 2V2 such that

q,f™(q)eBt(3r).

In fact, take m — j — ί, q — f\p) and t — i in case of (i), t — j in case

of (ii) accordingly.

Now we claim that;

( 2) Let K > 3. If Kr < min {r3, r4}, then

fm(Bt(Kr)) c 23,(10cmri£>) where ^i = sup{| |?y |^ | | , ||2y|£!J||} .
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In fact, from (6.4), we have fm(Bt(Kr)) c Bt+m(cKr), and from (1),

fm(q) e Bt(Kr) Π Bt + m(cKr). Putting θt = θ(p, i) and η - η(p, GN), we get

from (6.1) that;

Bt+m(cKr) c BJHv){KrθJη{GN-t) + 4cKrθt + Jv(GN - t - m)) .

By taking iV with 9iV > 2N2i we have l/(GiV - t - m) < 2/(GN - t) and

B/t(p)(Krθtlv(GN - t) + 4cKrθt+Jη(GN- t - m))

C B,Hp)(Krθt(l + 8em?)lτi(GN- t)) ,

b e c a u s e θ t + m = θ r θ i f ' i p ) , m), m < N2 a n d θ(fι(p), m) < m ? . S i n c e c > l

and 772J > 1, this proves (2).

From (1) and (2), we have that;

Taking r so that 3r(10c/nf2)7Vl-1 < min {r3j r4} and applying (2) N, — 1 times,

we get

( 3) g, fm(q), , Γ-fe) e MlOcmrr-^r) .

Choose ε! > 0 so that, for w,yeΛ with d(x, y) < ελ we have ^1/10 <

\\Tf\Ei\\l\\Tf\El\\ <λ~1/ι° f o r ί = 1 , 2 , a n d ε2 > 0 s o t h a t , f o r x , y e M w i t h

d(*,y) < e2, d(fn(x\fn(y)) < εx holds for all 0 < τi < iV.iV,.

Now let ^! be a positive number given in (10.5) with ε = ε2 and n*

Next, take r so small that Bt(Kor) is contained in <y2-neighborhood

off(p), where we put KQ = 3(10cmT)Nl-\ Then, since q,fmNί(q)eBt(KQr)

and Njn < N2NU there exists a periodic point 0 whose period is a divisor

of iVjm in ε2-neighborhood of q by (10.5). From the definition of ε2,

( 4) d(fn(q)9 fn(z)) < e, for all 0 < TZ <

By taking ε2 smaller than (1/4)^(^1!, Ao U A2), we know that z is a

saddle of /. Therefore, from (2.4),

ϋ ϊ y ^ ι ^ Ί i > ^ π ( 2 )

H2y*< >|ί?ll < r ( 2 )

where τr(-ε) denotes the period.

Since Njn is a multiple of ττ(̂ ), from (4), (5) and the definition of ε2,

we have
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From (3), q,fNim(q) e Bt(Kor). Applying (6.1), we have Bt(Kor) c

Bq(4K0rθJη(GN - t)). Therefore,

( 7) Γ*(q) e Bq(4Korθtlv(GN - t)) .

Since fι(p) e Bq(4K0rθJη(GN - t)\ from (6.1), we have

( 8 ) Bq(16KQrθt/η(GN - t)) c Bt(64K0r) .

Take r so small that 64K0r < r4. Then from (6.4),

( 9) Bt(64K0r) is a (/'(p), GN - t - 1, 64cii0r)-tracing box .

Since G > 12, t < 3iV and m < iV2, taking ΛΓ large, we can assume

that Nxm < GN - t - 1. So, from (6), (7), (8), q and m satisfy the hy-

pothesis of (9.1). Applying (9.1), we know that there exists a saddle z'

in Bq(16K0rθtιlη(GN — t)) and the period of z' is a divisor of Njn. So,

from (8), we get;

(10) there exists a saddle zf whose period is a divisor of Nxm in

Bt(64K0r) .

One can easily see that if N> N^ then;

(11) there exists k' e Z+ such that

5iV(log rrio'Wog λ-1) < KNjn < GN - t - 1 .

Take r so small that 64αK>-boxes are contained in εrneighborhood

for all points in A. Then from (9), (10), (11), we have that d(fn(z'\ft+n(p))

< εί for all 0 < n < k'Niin. From (2.4) and the definition of εl9

Now it remains only easy calculations to finish the proof. Using

dim Eι = 1 and (11), (12), we have,

log || T/'+™»|£5|| = log || Tfι I ^ | | + \og\\TP'N^\E}tw\\

> -tilognio1) + (9llO)k'N1m(logλ'1)

> (9iV/2) (log mo1) - 3N(log m^)

= (3iV/2)(logm0-
1).

From (11), t + k'N.m < GN - 1. Therefore,
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logIITf"*"*\El\\< log v (p, GN).

On the other hand, from the hypothesis of the lemma,

log v(p, GN) < (GiV/10) (log λ-1)

= (6iV/5) (log mo"1) ,

which is a contradiction. This completes the proof of (10.3).

Now we shall prove (10.2).

Assume that Bt(r) Π Bά(r) Φ φ for 0 < ί < j < 2N. By the same argu-

ment as in the proof of (10.3), we have

(13) there exist q e A and integers 0 < t < 22V, 0 < m < 22V such that

q,fm(q)eBt(3r).

Take r so that 3r < r5. Applying (7.4) with {fn(q)}0<n<m as a finite

subset of M, we have from (13) that there exist ve Tft(p)M, positive num-

bers al9 α2 and two points fkl(q), fk2(θ) with 0 < kx < k2 < m, such that

(fkl(Q), fk2(Q), v, au a2) is (f(p), 90rθt/η(GN - ί))-connectable and moreover,

(14) fn(q) t bfHp)(v, a» a2)(Vft(p)(ΐ)) for 0 < n < m with n Φ k» k2 .

We claim that;

(15) {fn(Bt(9Or))}.No^Nΰ are disjoint .

In fact, suppose that fni(Bt(90r)) Π fniBt(90r)) Φ φ for some -NoKn,

< n2 < No, namely,

Bt(90r) Π fn*-ni(Bt(90r)) Φφ and 0 < nz - n, < 2NQ .

From (6.4), we have that

/—(BX90r)) C Bt+n2.ni(90rc) .

Since c > 1,

(16) Bt(90cr) Π Bt+ϊl2_ni(90cr) Φ φ .

If we take N > 2N0, then t + n2 — n1<2N + 2N0 < 3ΛΓ. By taking r with

90cr < r8', (16) contradicts (10.3) and this proves (15).

With (15), we can apply the closing lemma to (fkl(q), fk2(q), *Λ #i> Ui)-

Take r so that 90r < r0. From (8.4) and (10.1), we have that there exists

a (Pip), N0,f
kiq)tf^(q), v, au α2)-connector g in *(e0,/).

From (14), fk2~N°(q) is a periodic point of g whose period is k2 — ku

Put q0 = fk*~Niq). From the definition of r0 (ref. (10.1)), q0 is a saddle of
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g. Since g preserves E1 and E2, by using (2.3) (ii), we see that E\o =

E?£g) and E2

qo = Es

qQ(g). Therefore, from (2.4),

So, from the properties of g (ref. (8.3) and (8.2) (iv)), we get;

Recall that fkl(q), fk2(q) e Bt(90r). From (6.1), we have

(18) f\q) e St(90r) c Bfkι(q)(S60rθtlv(GN - t)) ,

(19) J3/*i(ί)(16 90rθJη(GN - t)) C 5,(64 90r) .

By taking r with 64 90r < r4, we have from (6.4) that

(20) βχ64 90r) is a ( f (p), GN - t - 1, 64 90cr)-tracing box .

By the same argument as in the proof of (15), it can be seen that

k2-kx> 2Nt. Since k2 - k, < 2N and GN-t> ION, GN-t-l>9N

> k2 - K Thus, from (17), (18), (19) and (20), taking r with 64 90cr < r7,

we can apply (9.1) and have a periodic point z in BfkHq)(16 - 90rθt/η(GN — t))

whose period is a divisor of k2 — kx. Therefore from (19), we get;

(21) there exists a saddle z in jBX64 90r) whose period is a divisor of

k2 K\.

The rest of the proof is the same as that of (10.3).

§11. Main lemma and Key lemma

In this section, we state (11.2) Main lemma and by using it, prove

(11.1) Key lemma which is literally the key to the proof of our theorem.

The proof of (11.2) will be given in Section 15.

(11.1) KEY LEMMA. There exists a constant Ao > 0 such that if for

meZ+ and I > 0,

holds at some p e A, then m> AQ £\

For the statement of our Main lemma, we put
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G 2 - (log J-0/8 (log mo"1),

and

vo(N) = [G.N/iNo] for an integer N.

In what follows, we use a terminology "Z + -interval" which means a

interval in Z+, and denote it by I = [M, ι;] for u,veZ+ with u < v, namely,

I = [u, v] = {n e Z+: u < n < v} .

We define length (I) = v — M.

(11.2) MAIN LEMMA. ΪTiere exίsfe an integer N* > 8iV0/Gi it /ίΛ zΛe

following property: Let p e A. If for an integer N > N* and me Z+,

holds, then there exist integers 0 < τ n / < m , 0 < ι ^ < vo(N), and v disjoint

Z'^intervals {It = [ui9 vjj]^^ in [0, m — m'] with the following properties',

( i ) \\Tfn\E}m,{v)\\ < 1 for all 0 < n < m - m! ,

(ii) Σi-Λvi-ui)>v0(N) N,

(iii) || Tfυ*-U* I ^«<+m' (p) II > (λ-T-Ui for all i = 1, ,v .

(11.3) Remark. Since ^ < 1/8, JV* > 64iV0 > 64.

Now we prove (11.1) assuming (11.2). For that purpose, we consider

the following proposition depending on two numbers Θ > 1 and A > 0.

PROP, [θ, A]. If for meZ+ and I > 0,

log || Tfm 12ί£|| <—t holds at some p e A ,

ZΛera m > A'SΘ.

If Prop. [̂ , A] is true for some θ > 4 and for some constant A > 0,

then clearly we get (11.1). In what follows, we shall investigate for what

values of θ and A, Prop, [θ, A] holds.

As the first step to see this, we give;

(11.4) LEMMA. Prop. [1, (log mi"1)-1] holds.

Recalling that m0 = infpe/1{||T/|£^||, ||T/|i?|||}, this lemma is obvious.

Now our strategy is to increase the value of θ by applying (11.2)

inductively, namely;

(11.5) LEMMA. Assume that Prop, [θ, A] is true and for me Z+ and

£ > 0, we have;
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( i ) £>(N

(ii) log| |T/m |£^| | <-ί for some p e A, then m > k(θ) A £^ι+θ)/lQ ,

where k(θ) = 2-^+ 1 1 ) / 1 0.(log^- 1) ( '" 9 ) / 1 0 G1/iVo.

Proof, We put

( 1 ) i\Γ=[(2^/αogr 1 )Π + l

Then, from the assumption on m, t, and N%, we have

( 2 ) iV^iV^^δiVo/G, and log \\Tf™\Έ\\\ < (N^/2) (logX) .

Therefore we can apply (11.2) and have that; there are integers 0 < m!

< m0, 0 < v < vo(N) and v disjoint Z+-intervals {I^<ι<v in [0, m — mf] with

the properties (i) — (iii) in (11.2). We put It = [ι^, uj. Without loss of

generality, we can assume that Ix < I2 < < Iv (i.e. υi^1<^ui for 2 < ί < v).

Define disjoint Z+-intervals {JJi^t^y in [0, uv] as follows.

Jj =r [0, wj and c/̂  = [υi_u u^\ for 2 < i < v .

We put q = fm'(p) and

- σ t = log| |2y"'-β <- ι |^-1 ( β ) | | for 2 < i < v .

From (11.2) (iii), (3) and dim E1 = 1, we have

log || TT» I E\\\ = log || Tf" I ^ | | + log || Tf™ \ E)UHq) \\

+ log || 7 7 — I E'fVx{q) || + . . . + log || Tf*-»» \ E%v(q) \\

> -a, + log (ί-1)^-*1 + (-ad + + (-av)+log(λ-iy>-u> .

On the other hand, from (11.2) (i),

So, we have

(4) (-Σϊ-iβi) + Qogλ

We select intervals in {Ji}ι<i<v with the property that άt > 0 and denote

them by Jx < J2 < < Jv>. Put Ji — [sί9 tt] and

( 5) - α 4 = log || Tf^ I £}Si(Q) || for 1 < i < vf .

Note that a, > 0 for all 1 < £ < x/. Clearly

(6) v'<v,
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( 7 ) ΣU δ« < Σ '-i α.

From (11.2) (ii) and (2),

Σ ί - . (ϋ4 - ««) > vΛ(.N).N= [GM4NJ-N

> (GSNo - l/iV) iV2 ̂  (GJ8N0)-N* ,

namely;

(8) Σ;-i(Wi-«4)

From (4), (7) and (8),

( 9 ) ΣUai Z{G1(\o

From hypothesis, we can apply Prop, [θ, A] to (5) and have

(10) tι - sf = length(J t) > A αf for all 1 < i < υ' .

First, we consider the case of θ — 1. From (9) and (10) with θ = 1,

one can easily see that

(11) Σί'-i l e n g t h W > CAG, (log A->)/8iV0) iV2 .

Next, we assume that θ > 1. From (10),

(12) A-1 Σf-i length (J4) > Σί-i of .

By the Holder's inequality, we have

(13) {Σί'-i «?Γ •(«^ι-<1/ ) > ΣlT-i α*

From (6), v' < G.N/iNo. Since 1 - (1/0) > 0,

(14) (vj-om < (G,N/4N0y-^ .

From (12), (13) and (14), we have

(15) Σϊ'-i β« < ί^"1 Σf-χ length W

From this (15) and (9),

{A"1 Σϊ'-i length (Jd}1

^(GΛlogλ-ySNJ-N2.

By an easy calculation, we have

(17) Σϋ-i length (Jt) > ((log λ'W (AGJ4N0)

Although we proved (17) for 0 > 1, if we put θ = 1 in (17), this coincides

with (11). Namely, (17) is valid for θ > 1.
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From (1), we have

By substituting it in (17), we have

Σ lilength(J,) > 2-^+11)/1

Since {JJ are disjoint intervals in [0, m — m!\

m>Σti length (Ji).

This completes the proof.
Now we remark that we can take away formally the hypothesis (i)

in (11.5). In fact, put £0 = N™/9 (log λ~ι)j2, and we shall consider the case
of 0 < £ < £0. Suppose that for meZ+ and 0 < £ < £0,

log\\Tfm\Eί

p\\<-£

holds at some p e l Then m > 1, because £ > 0. Putting ko(θ) = £όH1+θ)/1\
we get ko(θ)-£H1+θ)/1° < 1, namely,

m>ko(θ)'£H1+θ)/ίO .

Now define kQ{θ,A) = min{kψ)Ά, ko(θ)}. Then, from (11.5), we have;

(11.6) LEMMA. If Prop, [θ, A] holds, then Prop. [9(1 + 0)/lO, ko(θ, A)]
also holds.

Recall that Prop. [1, (log mo"1)"1] is true by (11.4). Starting from this,
by applying (11.6) repeatedly more than 5 times, we can get Prop, [θ, Ao]
for θ > 4 and for some constant Ao > 0. This implies (11.1) Key lemma.

Remark that applying (11.6) much more times, we can have Prop, [θ, A]
for θ arbitrarily close to 9. But we don't need such large θ.

§ 12. Expansive intervals

(12.1) DEFINITION. LetpeΛ and NeZ+. A Z+ -interval / = [u,υ] is
called a (p, iV)-expansive interval if and only if I satisfies

( i ) length (I) = v - u>N

(12.2) LEMMA. There exists iV4 e Z+ such that if

log || TΓI El || < (iV/2) (log X) for pe A, me Z+

and integer N > ΛΓ4, then there exists a (p, N)-expansίve interval in [0, m\.
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(12.3) LEMMA. For any peΛ and NeZ+, there exists a (p, N)-

expansίve interval.

The essence of the proof of our Theorem is in (12.2). (12.3) merely

asserts the existence of the expansive intervals and doesn't claim where

such intervals exist in Z+ . By a straightforward argument with rather

rough estimates, one can prove (12.3) using (10.5) and (8.2), so, the proof

is left to the reader. In the rest of this section, we shall prove (12.2).

Suppose for p e Λ, and m, Ne Z+9 it holds that;

( 1 )

Let 0 < k < m be the largest integer such that

log ||Tf*\El\\> (iV/4) (logλ) + (log m0) .

Then, we can see that;

( 2 ) log| |Γ/*|^ | |<(iV/4)(log;i),

(3) \\Tfn\EjHp)\\<l for all 0 < n<m- k,

( 4) log || I T ' * I #}*<*> II < W) (log λ) - (log ma) .

From (2), log| |TjP|i^| | < 0. Therefore, by applying (2.7) with p = exp (N-i/s),

we have v = [kN-i/3l(N'i/s - (log m0))] + 1 integers 0 < k, < k2 • • • < K < k

such that

for all 0 < n < k — ki and i = 1, 2, , v .

From (3), we can easily see that

, f i , log\\Tf*\Eι

f*iW\\£nN-φ

(6 )

for all 0 < n < m — kt and i — 1, 2, , υ .

From (4),

log || TΓ-« IE}Hp) || < -{(iV/4) (log λ~>) - (log m^)} .

Taking N so large that (N/4) (log λ'1) > log mo1, and applying (11.1), we

have
m - k > A0{(N/4) (log A"1) - (log mo"1)}4

= A0{(l/4) (log r 1 ) - (1/N) (log mo"1)}4-^ .

If we choose N so that
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(1/4) (log λ-1) - (1/N) (log mo"1) > (1/8) (log r 1 ) ,

then we have

( 7 ) m-k> AXN* , where Ax = A0{(l/8) (log λ'1)}' .

Now we fix a constant r > 0 such that

( 8 ) 270cr < r8 and 90r < r0 , where r8 is given in (10.2) .

We consider boxes jB/*1(p)(r/GiV) for each /fcί(p). From (5.4) (vi),

clS(B(rlGN))
9

= cX2r/GiV)2, where s( ) denotes the area .

Now let us estimate ι\ From (2),

log || Tf« I ^ | | < -{(iV/4) (log λ->)} .

From (11.1), k > A0{(Nl4) (log ^-')}4. Therefore,

(10) k > A,N* .

From this (10),

kN-v'KN-*'3 - log m0) > AtN'N-wKN-"1 + log mό1) .

Taking N with iV"4/3 < log m^, we have

v > kN-i/3/(N'i/3 - log ?n0)

Namely, putting At = AJ2 (log mo"1), we get;

(11) v > A2iV
β/3 .

We consider the sum of the area of BfkHp)(rlGN) (i = 1, , v). By (9)

and (11),

ΣU s(B,tiW(rlGN)) > Σϊ- i φ

which exceeds the surface area of M by taking sufficiently large N.

Therefore,

(12) there exist at least two points fki(p), fk'{p) such that

Bfttw(rlGN) Π B,*iW(rlGN) Φ φ .
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Assume that kt < k3 and put fki(p) = p0, fkj(p) = Qo and k5 — ̂  = &0.

By taking JV with r/GN < r8, where r3 is from (6.1), and applying (6.1),

we have;

(13) qoeBpβrlGN).

Then applying (7.4) with {fn(Po)}o<n<kQ

 a s a finite set, we have from

(13) that;

(14) there exist v e TPQM, positive numbers al9 a2 and two points fUl(p0),

fn2(Po) with 0 < nx < n2 < k0, such that (fni(p0), fn2(p0), v, au a2) is

(Po, 90r/GiV)-connectable and fn(p0) £ bPo(v, au ĉ X Vpo(l)) for all 0 < n

< k0 with n Φ nu n2 .

We want to close up this suborbit from fni(p0) to fn2(p0) using closing

lemma, but we need some preparations beforehand.

By taking N so large that A,N" > 2GN and 2GN~1/3 < 1, we have

from (6), (7);

(15) log || Tfn I E}01| < nN-4/3 < 1 for all 0 < n < 2GN.

Thus, we have;

(16) log η(p0, GN) < 1 .

Next, take N with N > N, and (GiV/10) (log λ'1) > 1, then by (8) and

(10.2), we have;

(17) B,(270cr) Π BfflOcr) = φ for any integer 0 < i < j < 2N,

where

BtfΊOcr) = BfHPo)(270crθ(p0, i)/v(p0, GN)(GN - i)) .

We claim that;

(18) fn(BPo(9OrlGN)) are disjoint for -N0<n<N0.

In fact, assume that

Γ(BPo(90rlGN)) Π /«'(Bio(90r/GiV)) ^ ^ ,

for some —N0<n<nf< NOf namely,

BPo(9Or/GN) Π Γ'-n(BPo(9Or/GN)) Φ φ .

By (6.4) and (16),
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Γ-n(BPQ(90r/GN)) a Γ-%BPo(270r/v(p0> GN)GN))
C Bfn,-n(Po)(270crθ(p0, nf - ή)lv(p0, GN)(GN - n' + n)),

which contradicts (17).

By the same argument, we can see that;

(19) n2 - nx > N.

From (8), (14), (18) and (8.4), there exists a (p0, Nθ9 f
ni(p0), ΓKPol υ, al9 a2)-

connector g in W(eo,f). Therefore, fn2~No(p0) is a periodic point of g with

period n2 — n^ By the definition of ^(ε0, /) (ref. (10.1)), it can be seen

that fn2'No(p0) must be a saddle of g. From the properties of g (ref. (8.3)

and (8.2) (iii) (iv)) and (2.3) (ii), we can see that;

Therefore, from (2.4),

By the property of g (ref. (8.2) (iv)), we have;

(21)

(19) and this (21) imply [n19 n2] is a (p0J iV)-expansive interval in [0, k0].

Recall that p0 = /fcί(p), #0 = /Λy(p) a n d ^̂  — kj = k0. So, [kt + ΛZj, ^ + n2]

is a (p, iV)-expansive interval in [0, m]. This completes the proof.

§ 13. Proof of the Theorem

In this section, we shall prove our Theorem assuming (11.2) Main

lemma whose proof will be given in Section 15. Since we have already

finished the essential part, the proof of the Theorem itself is now easy.

Proof. From Lemma 3.1 in [6], we have

= A0(f) U At(f) U Λ2{f) .

From (2.2), Λ0(f) and Λ2{f) are finite sets and consequently they are hy-

perbolic sets. Therefore we have only to show that A(/) is a hyperbolic

set.

Let TM\Λι(f) = E'®E2 be the 77-invariant splitting given in (2.3) (ii).

Put A = Ax{f) as before. It is enough to show that

( 1 ) there exist c' > 0 and 0 < λ' < 1 such that
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( i ) \\τf-n\Ei\\<c'λ'n,

(ii) ||TfnIEl\\ < c'λ'n , for all neZ+ anάpeΛ.

We shall only prove (i). The same argument as (i) with /"' on E"~ gives

(ii).

Suppose that (i) does not hold, then it follows that

From (4.1), we have that

(2 ) there is a recurrent point p* e A such that

EIJKI for all keZ+ .

We fix a positive integer N>Nit From (12.3), there exists a (p*, N)-

expansive interval. Let I = [m, n] be the minimum element of the set of

all (p*, iV)-expansive intervals, where the order for intervals is given

lexicographically, that is; for It = [mu n^ and 72 = [m2, n2], Iλ < I2 iff mx

< m2 or, m1 = m2 and nx < n2.

From the definition of the expansive interval, we have

^ J = II ΊTn-n \E}m(pJ \\TnEl\

>(λ-vγ.\\Tf

From (2), we have

Then, by (12.2), it follows that there exists a (p*, iV)-expansive interval in

[0, m]. This contradicts the fact that I = [m, n] in the minimum among

all (p*, iV)-expansive intervals. This proves the Theorem.

§14. Taper neighborhoods

In this section, we shall introduce for each p 6 A a certain class of

neighborhoods with special shape which plays an essential role in the

proof of the Main lemma in Section 15.

For notational convenience, we put

a = λί/20 , β = λ~1/2 .

(14.1) DEFINITION. Let rf > r > 0. We define a subset of R1 by

T(r, r') — Uo<f<(iogr7r)/(iog/3) B{ra\ rβι) .
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In other words, (x, y) e T(r, r') iff there exists 0 < t < (log r'/r)l(log β) such

that |* | < ra\ \y\ < rβι.

By elementary computations, we can see that

s(T(r, r')) = (4/9)r11/10(10r/9/10 - r9/10) ,

where s( ) denotes the area. Since rr > r > 0, we have

(14.2) LEMMA.

r, r ' ))>4r 1 1 / 1 0 r'9/1°.

It is very important that s(T(r, r')) has order 11/10 with respect to

r (ref. (11) in Section 15).

(14.3) DEFINITION. Let rJ2 > rf > r > 0 and peΛ. We define Tp(r, r')

We call such a neighborhood Tp(r, r'), taper neighborhood. By draw-

ing the picture, one can see the reason of the name.

Remark that, since T(r, rf) is symmetric with respect to x and 3>-axes

in R\ Tp(r, rf) is independent of the choice of the basis of El ® El with

which ψ is defined.

The iterated images of Tp(r, r') under / are given as follows.

(14.4) LEMMA. Let r9 = min {rJ29 (λ'1/2° - l)/2Afxc}, r9 > r' > r > 0 and
peΛ. If

|| Tf* \EI\\<1 for all 0<n< [(log r'/r)/(log j8)] + 1 ,

then

f%Bv(ra\ rβ<)) C BfHp)(ΰ(p, ΐ)ra'-\ ω(p, i)r^%X^J)

for all 0<t< (log r'l r) I (\og β) and integers 0 < i < [t + 1].

Proof. We fix 0 < t < (log r;lr)l(log β) and prove this lemma by induc-

tion on i = 0? 1, , [t + 1].

When i = 0, it is trivial. Assuming that the lemma is true for i — 1,

we show that,

C B/Hp)(β(p, i)rcc<-\ ω(p, i)rβ''%λ-^γ) •

Let (/„ /2) = ψfHp) o/o Ψ7,?-1(J,); and (x, y) e ψ/i-Kpίί-B/ί-Kpίί ))• It is enough

to show that
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By using the fact that θ(p, i - 1) < 1, ω(p, i - 1) < cλ^'θip, i - 1) and

i<[t + 1] i.e. ί - i + 1 > 0, we have

\x\ + \y\< θ(p, i - l)ral-i+1 + ω(p, i - i ) ^ - * ^ - 1 1 / 2 0 ) * - 1

< r(l + cβ'-**1) < r + crβ1

<r + cr' < 2cr' .

So, by the hypothesis on r', we have

1

By (5.6),

= θ(p, ί)ra^ ,

< |y |«l^-κ,)l l {i + Mx(\x\ + \y\)}
< ω(p, i - l)rp-"\λ-"^

This completes the proof.

Let 0 < t < (log r'lr)l(\ogβ) and i = [t + 1]. Then, since - 1 < t - i

< 0, we have a1-' < or1 = λ~1/2° < λ~' and β'-* < 1, and since ω(p, ΐ) <

cλ'θip, i), ω(p, ΐ)(λ-n/20y < cθ(p, ϊ)(λ*/20y < cθ(p, i). So, from (14.4), we have

f\Bv{ra\ rβ1)) c BfHp)φ(P, i>λ~\ θ(p, ί)rc) .

Thus, recalling that λ1 <2 from (2.5), we get;

(14.5) LEMMA. Let r9 > rf > r > 0 and pe Λ. If

T» I El\\ < 1 /or αZZ 0 < n < [(log r'/r)/(Iog ]8)] + 1 ,

/or αn^ e e Γp(r, r7), there is an integer 0 < i < [(log r7r)/(log /3)] + 1

f%z) e Bfί(p)(2crθ(p, ί)) .

Remark. The assumption ^ > 1/2 (ref. (2.5)) is only used to simplify

the notation. The argument in Section 15 works similarly without it.
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§ 15. Proof of (11.2) Main lemma

In this section, we shall give a proof of (11.2) Main lemma. It is

rather hard but completes our whole work.

Let peΛ, meZ+ and NeZ+. Assume that

( 1 ) log || Tf» I £5|| < (iV10'9/2) (log λ) .

We want to show that, if N is sufficiently large, then we can select a

positive integer m! < m such that

\\Tfn\E}m,{v)\\ < 1 for all 0 < n < m - m!

and construct pairwise disjoint intervals in [0, m — mf] with the properties

given in the statement of (11.2).

As the first step, we choose a suborbit of the positive orbit of p e Λ

which is nearly recurrent and satisfies a good condition for norms of

differential of / restricted to E\

Let 0 < nλ < m be the largest integer with the property;

( 2) log || Tf«* I El || > (JV10/9/4) (log λ) + (log m0) .

If we take N large enough to satisfy

( 3 ) iV10/9> Gr1 ,

then by easy computations, it can be seen that

( 4 ) log | |7TM^II<(^ 1 0 / 9 /4)(log^),

( 5 ) log || 7 7 — I E)niw || < (2VW/8) (log λ) .

Kecalling (11.4), we have

( 6 ) J£ qeΛ, neZ+ and i > 0 satisfy

log || Tfn I E\ || < - 1 , then n > (log m;1)'' £ .

Then, from (5) and (6),

( 7) m-n^

By applying (2.7) to (4) with p = 1, we find v, = [Nw"(\.o%λ

+ 1 integers 0 < k^ < k2 < < kn < τiι with the property that;

( 8 ) | |2y"|^/*i(p)ll^l for all 0 < n < ra, - kt and 1 < i < v, .

From the definition of Πι and (8).
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( 9) || Tfn I E^ktw II < 1 for all 0 < n < m - kt .

We fix r > 0 such that

(10) 180cV < min {r0, r3, r4, r9} ,

and consider the taper neighborhoods 71

/fci(p)(r/GA/r, r) for each 1 < ί < vx.

Let us estimate the sum of the area of these taper neighborhoods. From

(14.2) and (5.4) (vi),

, r)) > ΣΓ=i cr8(T(rlGN9 r)) > ^ ^ .

which exceeds the surface area of M by taking N large enough. So, we

have

(11) there are at least two points fki(p), fkJ(p) such that;

Tf*«p)(rlGN, r) Π Tfkj(p)(rlGN, r) Φ φ .

We assume that k3 > kif and put;

(12) Πp) = p09 fkip) = q0 and ^ - k, = τ, so f (p0) - g0 .

From (7), (8), (9),

II Tfn I ^ o II < ! for all 0 < n < G.iV10/9 + r ,

1127*1̂ 7̂ 11 < 1 for all 0 < n < G,

From (11), we may take a point z e TPo(r/GN, r) Π TqJ[rlGN, r). We take

iV large enough to satisfy (log/3)"1 (log GN) + 1 < GiiV1079, then from (14.5),

we have

(14) ( i ) there is an integer 0 < i < (log/3) (log GN) + 1 such that

f%z)eBfί(Pΰ)(2crθ(Po,ί)IGN),

(ii) there is an integer 0<j<(log/3) (log GN) + 1 such that
F(z)eBfHqo)(2crθ(q0,j)IGN).

Take large N such that

(15) (log β)'1 (log GN) + 1 < [G.iV] < [GiV] < G.iV1^9 .

We put r, = [G.JV], then from (13) and (6.4),

sPΰ C β / n ( P o ) (2c 2 r^ o , r,)/(GW - r, + ί))

C B/ri(Po)(2c*rθ(po, τJKGN - τ,)) .
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So, from (14), we have

(16) /*(*) e Bfτi(PQ)(2c*rθ(p0, τx)l(GN - τλ)) .

Similarly,

(17) /*(*) e Bri(qo)(2c*rθ(qo, τdKGN - r,)) .

Let No e Z+ be given in (10.1), and take N so large that,

(18) N > 8N0 (log mό'Wog λ~') = GfW0 .

Put v0 = 0̂(ΛΓ) = [G^/ANQ] and for each integer 1 < β < y0, put

τu = τx + {k- ΐ)4N0 and f *(p0) = pk, f**(qQ) = gfc .

Note that, from (12), /Γ(pfc) = qk for all 1 < k < v0. Also clearly,

(19) τk < 2[G1iV] < 2G,N for all 1 < k < v0 .

From (16), (17),

flPi(2cV0(po, rMGiV - r,)) Π Bqi(2c*rθ(qQ, τi)l(GN - τ,)) Φ φ .

By (6.1),

( i ) if θ(p09 rθ > θ(q0, τx\ then 9 l e BPi(6c*rθ(p0, rx)l(GN - τx)) ,

(ii) if θ(p09 τx) < θ(q0, τλ then p, e Bqi(6c2rθ(q0, TX)J(GN - τj) .

So, from (9), in either case, we have

(20) there exist p* e A such that

IITfnIEl\\ < 1 for all 0 < n < G,N^ and

Pu Qi € B/rKp^ίβc

In fact, we can take p 0 = P* (resp. g0 = p^) in case (i) (resp. (ii)). From

this (20) and (6.4), we get

(21) pk, qk e Brk{p^6c*rθ(p^ τk)l(GN - τk)) for all 1 < k < vQ .

Now, since kt in (11) and (12) satisfies the property (i) of the statement

of (11.2), we can take mf = kt in (11.2). In what follows, we shall con-

struct the disjoint intervals in [0, τ + τVQ] with the properties (ii), (iii) in

the statement of (11.2). Our strategy is the following. We identify the

Z+ -interval [0, τ + τ j with the positive orbit of p0 = fki(p), that is

{fn(Pθ)}θ<n<r+rUQ = {Pθ " ' Pi " P»0 " ' Qθ " Ql " ' Φ Ό } « F i l > S t > W θ S e l θ C t C O Π -

nectable subintervals inductively by using (21) and (7.4). These intervals
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are not necessarily disjoint. We regard the union of these intervals as

a disjoint union of wuo intervals, so wVQ is possibly less than vQ(N). We

will prove that these disjoint intervals are exactly the intervals wanted.

Concerning the above positive orbit of p0, remark that q0 can not be

contained in {fn(pQ)}o<n<rvo, namely, τ > rvo. In fact, as we will see later,

τ > N and τvo < JV/4.

Before proceedings to the main step of the proof, we shall make some

preparations.

From (10), (15), (20) and (10.2), we get

£/*(p*)(18OcV0(p*, ί)l(GN - 0)

are disjoint with each other for 0 < i < 2N.

By this, we have the following two lemmas.

(15.1) LEMMA. For τι <i < rυo and —N0<n< NQ, any two of

are disjoint when they have different i + n.

(15.2) LEMMA. Let xeM, se Z+ and 0 < nx < n2 < 2τί. If

x e BfnHpj(180czrθ(p*, n2)l(GN - n2))

and

f\x) e B/nχW(l80c*rθ(p*, n^KGN - n,)) ,

then s > N.

The proofs of (15.1) and (15.2) are straightforward by using (6.4), (18)

and (22). (15.1) will guarantee the disjointness of the supports of the

perturbations when we apply the closing lemma on several places sim-

ultaneously, and (15.2) guarantees the length of the suborbit with such

recurrence.

To complete the proof of the Main lemma, we first fix the following

notation.

For a set of pairs of integers {sk < ίji<fc<,o in [τl9 τ + τvo], we put Jk

= U?=i IsJ> tj\ a n d ô = Φ, where [sj9 tj] denotes the Z+-interval. Regard

Jk as a disjoint union of Z+-intervals and denote it by Jk = {J^If and

η = [u

kj, v% where i? < 1} < < I*t. Note that wk < k. Next we put

Pi = f fc(p*) for 1 < k < p0.

Then we give;
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(15.3) LEMMA. There exists a set of pairs of integers {sk < tk}i^k^vo in

[τu τ + τvo] with the following properties for all 1 < k < vo;

( i ) There exist vk e TpkM and positive numbers a*, a\ such that

(fSk(Po), ftk(Po), vk, αϊ, af) is (p%, 18Oc3r0(p*, τk)j(GN - τk))-connectable, namely;

( i a ) \υk\ + a\ + al< 18OcV0(p*, τk)l(GN - τk)

( ib) (2/¥)" 1 < a\\a\ < 2^

( ic ) fs iPol ΠPo) € bp£vk, αf, al)(VPΪWsβ))
( i d ) bpfa, αf, αj)(Vp5(l)) C Sp,(180c3^(P;iί, τfc)/(GiV - Γfc)) .

( i i i) If ne [τu τ + τvo] — J ^ αλicί n Φ sk, tk, then

( i v ) tk<τ + τk.

( v ) 5fc > 4[G1iV] = 4τ, .

( v i ) length (I*) = υ) - u)> N for all 1 < j < wk .
(vii) ΣRi length ( ! # > * # .

(viii) || 2ΓΪ-51 E}«*(Pβ) || > (λ-1)'*-* for all

If this (15.3) is verified and such integers sk, tk exist for all 1 < k < y0,

then the Main lemma will be established, because from (vii) and (viii),

{Ij°}ί<j<Wvo are exactly the intervals we want.

Proof of (15.3). We shall prove (15.3) by induction on k = 1, , v0.

First, let us select sl9 tx e [τu τ + rvo]. From (21), pγ = fτi(p0) and qλ —

fτi(Qo) = /T+T1(Po) are contained in Bpi(6c3r0(p*, τ^KGN - Tj)). SO, applying

(7.4) with {fn(p0): ne [τu τ + rvo]} as a finite set, we have integers sx,tx

iβ\ < î) in [ΓJ, τ + r,J, LΊ e TpiM and positive numbers αj, a\ satisfying (i)

and (iii) in the statement of (15.3). For k = 1, (ii) is not necessary. So,

let us prove that s1 and tx satisfy (iv) — (viii).

From (ic) and (id),

/Sl(Po),

Applying (15.2) with x = fSl(pQ), s = tx — sx and nx = n2 = τl9 we get;

(23) ^ - * > 2V .

So, (vi) and (vii) are satisfied.

Let us prove (iv), i.e. tx < τ + rlβ Suppose ^ > r + rlβ As we observed

above,
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On the other hand, from (21) and (6.4), we have

fh(Po) = ftχ-τ-τi{qd e Bftl-Hpj(6&rθ(p*, U - τ)/(GN - U + τ)) ,

which contradicts (22), because from (19),

U - τ < (τ + τj - τ = τvo < 2GXN < iV/4 .

Next, let us prove (viii). From (i), (fSl(p0), ftι{pd, vl9 a\, a\) is

(p1*, 18Oc3r0(p*, r,)/(GiV - τ^-connectable. By (10), (10.1), (15.1) and (8.4),

there exists a (p%, No, f
Sl(p0), f^ipo), vl9 a\, al)-connector g in ^(ε0,/). From

the definition of the connector g, ftx~No(p<) is a periodic point of g.

Moreover, its period is tx — sx and from (10) and (3.1), this periodic point

must be a saddle of g. From (8.3), (8.2) (iii) (iv) and (2.3) (ii), we can see

that

Therefore, from (2.4),

From (8.2) (iv), we get,

which implies (viii).

Finally, we shall prove (v). Suppose sί < 4τλ — 4\GJ$\. From (vi)

and (viii),

Namely, we have,

\og\\Tf^\ElQ\\ > NQogλ-1) - 4G1iV(logm0-
1) = (N/2) (log^ 1) ,

which contradicts (13), because from (15) and (19),

Next, assuming that (15.3) is valid for all 1 < i < k — 1, we prove

that there exist integers sk and tk in [τl9 τ + τVQ] with the properties (i) —

(viii).

Let Q = {fn(p0): n e [τu τ + τ j - Jk^}. Since s, > 4τ, and tt < τ + τt

for all 1 < i < k — 1, pk = fτk(Po) and qk = fτk+T(p0) are contained in Q.

Moreover, from (21),
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pk> qk e BPΪ(6c*rθ(p*9 τk)j{GN - τk)) .

So, applying (7.4) with Q as a finite set, we get vk e TpkM, positive num-

bers αί, a\ and integers sk, tk e [τί9 τ + τvo] — Jk_1 (sk < tk) satisfying (i), (ii)

and (iii).

By the same argument as in case of k = 1, we can see that tk < τ

+ τk, i.e. (iv). Let us prove that sk and tk satisfy (v) ~ (viii).

Consider {I*'1}^^^ Since (ii) holds for all 1 < i < k, we have;

(24) Each I)'1 satisfies If'1 C [sk9 tk] or I*?-1 Π [sk, tk] = φ .

(25) Each I1-'1 coincides with some of {[sί9 ί

Let ^ < L2 < < Lw be intervals in {I*"1}^.,^.! satisfying I1-'1 C

[sk, tk]. If there are no such intervals, that is; I1-'1 Π [sk, tk] — φ for all

1 <j < Wjc-u then by the same argument as in case of k = 1, it can be

seen that {sί9 }̂i<ί<fc satisfy the properties (i) — (viii). So, we assume that

From (25), for any 1 < n < w, we can put Ln = [sin, tin] with some

1 < in < k — 1. From the definition of {I/Ji^^, we have;

sk < stl .

Since (ic) and (id) hold for all 1 < ί < k9

fHPo) e Bpίl(l80c*rθ(p*, τJI(GN - τj)

and

f *(p0) e BPΪ(18Oc*rθ(p*, τk)l(GN - τk)) .

So, applying (15.2) with x = fSk(p0), s = sh — sk, nx = τix and n2 = τk, we

get

su - sk > N.

From this fact and the hypothesis of induction, one can easily see

that {sί9 ίji^i<fc satisfy (vi) and (vii).

If (viii) is proved, by the same argument as in case of k = 1 using

(vi) and (viii), we can verify (v). Thus, we shall finish the proof of (15.3)

(and so the Main lemma) by proving (viii).

Since 1 < in < k - 1, from (i), (/"-(Po), Λ"(p<λ vtΛ, αf , at) is

(p%% I8θc*rθ(p*, τin)l(GN - r J)-connectable. By (id), (10.1), (15.1) and (8.4),

(26) there exists a (p£, NQ, fHPo), fSίn(Po), υtn, a\% α|ra)-connector gn

in Φ(eo,/).
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And since (i) holds for k, (fSk(p0), f *(p0), υk, a
k

u at) is (p%, 18Oc3r0(p*, τk)l

(GN — rfc))-connectable, and similarly;

(27) there exists a (p%, No, f
Sk(p0), ftk(Po), vki σf, α2*)-connector #0 in «r(e0,/) .

It is important to remark that ftίn(p0) appears before fSin(p0) in (26)

and fSk(p0) appears before f *(p0) in (27). From (8.3) and (8.2), gn and g0

have the property that

= fSk+No(Po)

It means that gn cuts off the suborbit {fn(pQ): sίn < n < tin}. It seems that

g0 closes up the suborbit {fn(p0): sk < n < tk}. But, ftk~No(p0) is not neces-

sarily a periodic point of g0, because from (iii), the points {fn(p0): n e

{Jy«i Lj} may be contained in the support of gof~\ We construct a periodic

point by cutting off these intervals {Ln}i^n^w by ^n.

We put,

(28) ho = gof-1 and hn = ^ J " 1 for 1 < n < w ,

and

(29) g = hwo hw_λ o . . . o ̂  o h0of.

From (26), (27), (id), (8.2) (ii) and (15.1),

(30) {supp hn] are disjoint for 0 < n < w .

Since gn e ^(ε0, /) for all 0 < n < w, from (2.8), we have

(31) £€4f(e0 ,/).

Let us consider the positive orbit of ftk~No(p0) for g. We put

2 ) g ( f

gNo(f**-N°(po)) = x n (or I < n < w .

Then, from (26), (27), (30), (ic), (id) and (iii), we get;

£*U-**(XO) = Xl ,

(33) g"--"-1^.!) = xn for all 2 < n < w ,

^ίfc-^(xJ = #o .

Thus, £0 is a periodic point of g with period

fe - Sk) - ΣX-l (tin - Sύ
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Since g e <%(ε, /), from (10.1) and (3.1), x0 must be a saddle of g.

Now, it holds that E»(g) = Exo and Es

XQ(g) = E2

XQ. In fact, as g pre-

serves E1 and E2 on the orbit of the saddle xθ9 EXQ and EXo must be either

E£0(g) or Exo(g). From (33) and the properties of the connector (8.3) and

(8.2) (iii), (iv), we have;

(34) for j = 1, 2 ,

for all 2 < n < w, and

\\Tg^-^\EU\ = \\Tf^\E}tiw(PQ)\\ .

From the construction of sί? ίf, it is clear that

sin — tin > 4N0 for all 2 < n < w ,

and

4 - ^ > 4iV0 .

And as we observed above, stl — sk> N. If we take N large so that cλN

< 1, then from (2.3) (ii), (34) and the hypothesis of No in (10.1) (i.e. cλN»

< 1), we have,

where π(x0) denotes the period. So, from (2.4), we have that

EUg) = Exo , E*0(g) - El ,

and moreover,

(35) \\Tg°^\EX0\\>(λ-TX0) •

From the hypothesis of induction,

for all l<n<w. Therefore, from (34), (35) and the fact that dimE1 =

1, we get (viii) for k.

This completes the proof of (15.3) and so (11.2) Main lemma.
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