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Capillary rise in partially saturated rigid porous
media
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We explore predictions of two models of one-dimensional capillary rise in rigid and
partially saturated porous media. One is an existing one from the literature and the
second is a free-boundary model based on Richards’ equation with two moving boundaries
of the evolving partially saturated region. Both models involve the specification of
saturation-dependent functions for local capillary pressure and permeability and connect
to classical models for saturated porous media. Existing capillary-rise experiments show
two notable regimes: (i) an early-time regime typically well-described by classical
capillary-rise theory in a fully saturated porous media, and (ii) a long-time regime that
has anomalous dynamics in which the capillary-rise height may scale with a non-classical
power law in time or have more complicated dynamics. We demonstrate that the
predictions of both models compare well with experimental capillary-rise data over early-
and long-time regimes gathered from three independent studies in the literature. The model
predictions also shed light on recent scaling laws that relate the capillary pressure and
permeability of the partially saturated media to the capillary-rise height. We use these
models to probe computationally observed permeability relationships to capillary-rise
height. We demonstrate that a recently proposed permeability scaling for the anomalous
capillary-rise regime is indeed realized and is particularly apparent in the lower portion
of the partially saturated media. For our free-boundary model we also compute capillary
pressure measures and show that these reveal the linear relation between the capillary
pressure and capillary-rise height expected for a capillarity–gravity balance in the upper
portion of the partially saturated porous media.
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1. Introduction

A fundamental problem in porous media is capillary-driven flow into a dry porous
material. Commonly observed in papers and soil, capillary phenomena are important
in many industrial applications, as well as other areas such as biomechanics and
environmental science. Experiments by Bell & Cameron (1906) well over a century
ago revealed an empirical relationship of the form hn ∼ t where h is the distance the
liquid has travelled through the porous media in time t with the exponent n ‘above 2 in
most cases’. These experiments focused on early times and/or horizontal flows in which
gravitational forces were negligible compared with capillary forces. Just over a century
ago, Washburn (1921) obtained what is now a classical result characterizing a quasisteady
one-dimensional fluid flow in a capillary tube driven by capillary pressure at the meniscus.
In Washburn’s model, the capillary-rise height follows a square-root in time behaviour at
early times before transitioning to an equilibrium height (Jurin’s height) in which capillary
forces at the meniscus and cylinder walls balance the opposing gravitational force. Under
the assumption that a porous material can be approximated as a bundle of capillary tubes,
a corresponding result was then extended to capillary dynamics in a porous material.

Ninety years after Bell & Cameron’s work, Delker, Pengra & Wong (1996) examined
the problem of capillary rise of water in a porous media composed of glass beads. Their
measurements of capillary rise spanned times scales of seconds to more than a day. The
early capillary-rise dynamics were well described by Washburn’s model. At later times,
however, there was a clear deviation from the classical dynamics as the capillary-rise
height continued to increase in what they called anomalous dynamics that appeared
in some cases to be represented by a power law, tβ , and in other cases showed more
complicated behaviour. Delker et al. (1996) posed a model that included interface pinning
and an interface velocity that depended algebraically on the amount by which the driving
force for motion exceeded a threshold value. Lago & Araujo (2001) followed this work
with a similar set of experiments on capillary rise of water into porous media composed
of glass beads and another set using Berea sandstone. For glass beads, their experiments
showed a transition from the classical t1/2 dynamics at early times to a different power law
at long times, tβ , where 1/20 < β < 1/4. Shikhmurzaev & Sprittles (2012) extended these
ideas and argued that the introduction of a dynamic contact angle model incorporating
different modes of meniscus motion related to dynamic wetting, a contact line pinning
and interface depinning allows a good fit with these data. Lunowa et al. (2022) have also
recently explored the influence of a dynamic contact angle, slip and inertia on capillary
rise of fluids in cylindrical containers. Configurations with variable cross-section porous
materials and/or radial (source type) flows (e.g. Reyssat et al. 2008; Xiao, Stone & Attinger
2012; Perez-Cruz, Stiharu & Dominguez-Gonzalez 2017) can also display departures from
the classical t1/2 capillary imbibition dynamics directly attributable to the macroscale
geometry.

A valuable approach to develop predictive tools that are able to capture in a single
framework both classical and anomalous dynamic regimes in capillary-rise problems
is based on the general ideas of mixture theory and continuum descriptions of the
porous media. Richards’ equation (Richards 1931), which accounts for partial saturation
of the porous media, is based on conservation of mass coupled to a Darcy-type flow
and requires the specification of closure relationships for the dependence of capillary
pressure and hydraulic conductivity on the variable level of saturation through the
media (e.g. see Pillai & Hooman 2013). With such closure relationships specified,
this approach leads to very powerful models from which detailed spatial and temporal
dynamics can be predicted computationally and/or analytically. Lockington & Parlange
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Capillary rise in partially saturated rigid porous media

(2004) used Richards’ equation as the starting point for their model along with closure
relationships in the form of exponential functions of capillary pressure for hydraulic
conductivity and saturation. In their subsequent analysis based on a travelling-wave
solution approximation they obtained closed-form expressions for capillary-rise height and
time linked parametrically via a volume flux variable. They demonstrated that their model
captured the early-time classical dynamics and that parameters related to their closure
relations allowed for a range of anomalous dynamics in the long-time regime. Along with
the predictions of our own related model, we shall revisit the Lockington & Parlange
(2004) model and explore its predictions more deeply in the context of the Lago & Araujo
(2001) and Delker et al. (1996) data and more recent developments.

Owing to the importance of porous media flows in a wide range of applications
(perhaps most notably in soil science) as well as the great utility of theory like
Richards’ equation, there exist a wealth of studies, measurements, data and models on
the relationships between capillary pressure, hydraulic conductivity or permeability and
media saturation. These are often expressed as soil water retention curves and relative
hydraulic conductivity relationships and include well-known works by Leverett (1941),
Brooks & Corey (1964), Mualem (1976) and van Genuchten (1980), as well as related ones
adopted by Lockington & Parlange (2004) (but see also Bear (1972) and Hornung (1997)).
More recent investigations include Kuang et al. (2020) who discuss a modification to the
classical van Genuchten model for relative hydraulic conductivity and the work by Soldi,
Guarracino & Jougnot (2017) which has a specific focus on hysteretic features. Another
recent study by Johnson, Zyvoloski & Stauffer (2019) incorporates an additional porosity
dependence of these functions to be used in problems in which the porosity evolves in
time (e.g. when the porous matrix itself freezes, melts/dissolves or otherwise deforms). In
general the pressure versus media saturation depends on whether imbibition or draining
(e.g. irrigation and fluid recovery in soil science terminology) occurs. This is known as
capillary hysteresis. Our focus is exclusively on imbibition (no hysteresis) and the key
features of the capillary pressure versus saturation curves in this case are (i) a sharp rise
in the capillary pressure at the low end of saturation (at a residual saturation which may
or may not be zero), and (ii) below a fixed pressure the porous media remains completely
saturated. We choose our closure relations from Brooks & Corey (1964), who document
such relationships for a wide variety of porous materials. The dependence of capillary
pressure on saturation is indeed an idealized version of a more general relationship that
accounts for non-equilibrium pore-scale dynamics. In particular, our model posed below
reflects an assumption that the time scales for equilibration of the local interfacial and
volume dynamics are rapid compared with the time scales associated with capillary rise
(e.g. see Gray & Miller 2014, § 11.7, pp. 459–460).

This capillary-rise problem, along with related investigations of capillary rise in soft
porous materials has seen much attention recently. Mirzajanzadeh, Deshpande & Fleck
(2019), for example, investigated the capillary-rise dynamics in cellulose sponges and
developed a model in which the fluid motion was diffusively controlled beyond the Jurin
height. They justified this model by pointing out an insensitivity of the dynamics to the
direction of gravity and that the water continued to rise after the water reservoir had
been removed. Mirzajanzadeh, Deshpande & Fleck (2020) examined the two-dimensional
deformation that accompanies capillary rise into an initially compressed sponge. Other
investigations include the work of Kim, Moon & Kim (2016) on hemiwicking, as well as
on capillary rise in cellulose sponges by Kim, Ha & Kim (2017) and Ha et al. (2018).
These and related studies on one-dimensional capillary rise in soft porous materials have
been reviewed recently by Ha & Kim (2020).
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In their review, Ha & Kim (2020) outlined scaling arguments that capture the
fundamental physics associated with various observed power law, tβ , dynamics. As we
are interested in exploring these relationships in our computational models, here we
outline two of their arguments that capture the essence of the t1/2 and t1/4 power laws
for partially saturated capillary rise in a porous media (see also Kim et al. 2017). The
essential ingredients in their arguments are Darcy’s equation and careful interpretation of
quantities such as capillary pressure and permeability in partially saturated porous media.
Darcy’s law expresses that the rate of change of capillary-rise height h(t) times liquid
fraction is related to the flux so that

dh
dt

∼ − k
μ

(
∂p
∂z

+ ρg
)

, (1.1)

where k is the permeability of the material, μ is the dynamic viscosity, p is the pressure,
ρ is the fluid density, g is the gravitational acceleration and z is the vertical coordinate.

Early-time dynamics: Kim et al. (2017) and Ha & Kim (2020) argued that at early times
the fluid fills the void space on the macroscale and the capillary pressure is inversely
proportional to the macroscale pore radius, r, so that pc ∼ σ/r, where σ is the surface
tension. Here, the permeability is dominated by the macroscale features and has k ∼ r2.
The pressure gradient then scales with −pc/h and, for sufficiently small h, dominates
gravitational effects. Then,

dh
dt

≈ k
μ

pc

h
∼ σ r

μh
, (1.2)

which leads to the scaling h ∼ (σ rt/μ)1/2 consistent with the classical Washburn t1/2

dynamics.
Long-time dynamics: Kim et al. (2017) and Ha & Kim (2020) argued that at later times,

as the fluid rises in the sponge, it fails to fill the void space on the macroscale. Darcy’s
equation (1.1) still applies, but gravity now plays a critical role, the driving capillary
pressure reflects imbibition processes in microscale pores, and the permeability scale must
reflect the partially saturated nature of the flow through the macropores. In particular,
beyond Jurin’s height, there is a balance between capillarity and gravity in partially filled
macropores in which σ/rg ∼ ρgh where rg is a representative length scale for the meniscus
in the macropore (Kim et al. (2017) refer to this length, λ in their notation, as the radius of
the meniscus curvature in the partially filled macropores – see their figure 4). This length
scale also sets the scale for the permeability so that k ∼ r2

g. These two relationships also
indicate that k ∼ (σ/(ρgh))2 so the permeability, apparently, is inversely proportional to
the capillary-rise height squared. That the capillary pressure and permeability, both space-
and time-dependent quantities in the partially saturated porous media, have a particular
scaling with respect to capillary-rise height, a purely time-dependent quantity, is a subtle
point that we shall explore more deeply in our present work. Continuing with Kim, Ha
and coworker’s arguments, further imbibition is driven by the capillary pressure operating
on the microscale pore size so that pc ∼ σ/rm where rm is a microscale pore where
rm � rg � r. These scalings together give

dh
dt

≈ k
μ

pc

h
∼ r2

g

μ

σ

rmh
∼ σ 3

μrmρ2g2
1
h3 , (1.3)
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from which the t1/4 scaling follows:

h ∼
(

σ 3t
μrmρ2g2

)1/4

. (1.4)

Recognizing these three disparate length scales in the scaling argument above indicates
that there are also three disparate scales for capillary pressure in which the capillary
pressure on the micropore-scale is much larger than that associated with the fully or
partially filled macropores. Ha et al. (2018) showed that a related scaling argument for
cases in which swelling occurs has a velocity-dependent micropore length scale rm, and
reveals a t1/5 scaling that appears consistent with experimental observations on capillary
rise of water in cellulose sponges (Siddique, Anderson & Bondarev 2009; Kim et al. 2017;
Ha et al. 2018; Ha & Kim 2020).

In the present work, we focus on two models – the one by Lockington & Parlange (2004)
and one we derive here using a slightly more general free-boundary formulation – both
of which contain essentially the same physics outlined in the scaling arguments above.
Our first goal will be to explore the predictions of these models in direct comparison
with the capillary rise data of Lago & Araujo (2001) and Delker et al. (1996). As such,
we shall focus only on capillary imbibition and not address capillary-pressure hysteresis
(e.g. see Mitra et al. 2020). In addition to the capillary-rise experimental data, we also
use these model predictions to directly explore the clever but subtle scaling arguments
proposed by Kim et al. (2017) and Ha & Kim (2020) that connect the permeability
to capillary rise dynamics. Since both of these models have capillary pressure and
permeability that vary in both space and time through the partially saturated porous
media, we introduce different time-dependent measures (effectively integrals over space)
for the capillary pressure and permeability that, a posteriori, can be compared with the
capillary-rise dynamics. We believe that this is the first time such a comparison with these
scaling predictions, specifically with respect to the capillary pressure and permeability
of the partially saturated media, has been made. In making this comparison we shed
light on deeper interpretations of these scaling laws and their connection to the observed
anomalous capillary-rise dynamics.

Our paper is organized as follows. In the next section we derive our model. Included here
are the specific capillary pressure and permeability relationships from Brooks & Corey
(1964) that we employ. Section 3 provides a review of the Lockington & Parlange (2004)
model and a comparison of their related capillary pressure and permeability relationships
to those of Brooks & Corey (1964). In § 4 we compare both the Lockington–Parlange
model and our model predictions to the capillary-rise data of Lago & Araujo (2001)
and Delker et al. (1996). This section includes parameter estimations for both of these
models as well as connections to the classical Washburn model predictions. In § 5 we
turn to the permeability and capillary pressure measures and compare these predictions to
recently proposed scaling relations associated with the anomalous capillary-rise dynamics.
This section also includes a brief comparison with one of the capillary-rise experiments
reported in Kim et al. (2017). Section 6 contains the conclusions. A few additional
technical details are given in Appendix A for a similarity solution and in Appendix B
for an analysis of permeability measures.

2. Mathematical modelling

The model formulation we use here is based on continuum mechanics and mixture theory
where at each point in space and time in the porous material one can define phase
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z = ℎl

z = ℎl
s

z = 0

z = zR

z = zf

Partially saturated  

Fully saturated Reservoir

Figure 1. This figure shows the configuration under consideration for capillary rise in partially saturated
porous media.

volume fractions, along with field variables such as velocity and pressure. The model
invokes averaging in the sense that a single point in space represents a small elemental
volume in which all three phases – solid, liquid and gas – may be present in some
proportion. This approach has been used extensively, especially in the context of flows
in deformable porous materials, and builds on the pioneering work of Biot (1941a,b,c)
with applications in biomechanics (e.g. Holmes 1983, 1984, 1985; Holmes & Mow 1990;
Lai, Hou & Mow 1991; Barry & Aldis 1993, 1997) infiltration (e.g. Preziosi, Joseph
& Beavers 1996; Sommer & Mortensen 1996; Michaud, Sommer & Mortensen 1999;
Ambrosi & Preziosi 2000; Billi & Farina 2000) printing (e.g. Chen & Scriven 1990;
Fitt et al. 2002; Anderson 2005) and capillary-driven imbibition in various contexts (e.g.
Siddique et al. 2009; Siddique & Anderson 2011; Anderson & Siddique 2013; Mirnyy et al.
2013).

The configuration of interest is one-dimensional capillary rise in a rigid porous material
as outlined below. This is a common experimental configuration with available data and
theory with which we can compare our work (e.g. Delker et al. 1996; Lago & Araujo 2001;
Kim et al. 2017). In the configuration of interest shown in figure 1, a reservoir supplies fluid
at the bottom of the porous material, z = 0 at time t = 0, one interface position, z = hS

�(t),
marks the top of the fully saturated region which occupies 0 < z < hS

�(t), and a second
interface position, h�(t), defines the top of the wet region of the porous material, so that
the partially saturated porous region occupies hS

�(t) < z < h�(t). This formulation leads to
Richards’ equation as a description for the flow in the partially saturated region (Richards
1931). Although this type of model has been studied extensively in other configurations
and contexts (e.g. Witelski 2003; Lockington & Parlange 2004; Pillai & Hooman 2013;
Tafreshi & Bucher 2013; Perez-Cruz et al. 2017) we briefly outline its derivation and the
coupling to the saturated region here.

In the partially saturated region hS
�(t) < z < h�(t) the mass and momentum balances for

a one-dimensional configuration are

∂φ�

∂t
+ ∂

∂z
(w�φ�) = 0, (2.1)

∂φg

∂t
+ ∂

∂z

(
wgφg

) = 0, (2.2)
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−φ�

∂p�

∂z
− ρT

� φ�g − Ks�w� + Kg�(wg − w�) = 0, (2.3)

−φg
∂pg

∂z
− ρT

g φgg − Ksgwg + Kg�(w� − wg) = 0, (2.4)

where φ� and φg are the liquid and gas volume fractions, w� and wg are the vertical
components of the liquid and gas velocities, p� and pg are the liquid and gas pressures and
ρT

� and ρT
g are assumed constant bulk liquid and gas densities. We assume a known, fixed,

solid volume fraction φs so that the condition φ� + φg + φs = 1 effectively establishes
φg in terms of φ� and φs. The friction coefficients, Kij, are associated with relative
motion between phase i and phase j. We shall also assume that the gas phase density
is negligible and from here onward set ρT

g = 0. Further, we assume the gas phase viscosity
is sufficiently small to generate negligible friction with either liquid or solid phases
– that is, the Kg� and Ksg terms are assumed negligible. Therefore, the only relative
velocity of consequence is that between the liquid and (motionless) solid phase. This
leads to a hydrostatic pressure for the gas, assuming φg /= 0, so that (2.4) is replaced
with ∂pg/∂z = 0 or pg = pA where pA is atmospheric pressure at z = h�. Then, the liquid
momentum equation (2.3) is

Ks�(φ�)w� = φ�

∂pc

∂z
− φ�ρ

T
� g, (2.5)

where we have defined the capillary pressure pc as

p� − pg = −pc(φ�). (2.6)

Note that both Ks�(φ�) and capillary pressure pc(φ�) depend on the liquid fraction φ�.
Equation (2.6) expresses that because the pore space is partially saturated the pore-scale
liquid pressure and the gas pressure are different and in general vary with saturation (e.g.
Leverett 1941; Brooks & Corey 1964; Bear 1972; Mualem 1976; van Genuchten 1980;
Hornung 1997; Gray & Miller 2014; Soldi et al. 2017; Kuang et al. 2020). We outline
more details for the function pc below.

Inserting w� into the mass-conservation equation (2.1) gives an evolution equation for
φ�,

∂φ�

∂t
= − ∂

∂z

[
φ2

�

Ks�(φ�)

(
∂pc

∂z
− ρT

� g
)]

, (2.7)

on hS
�(t) < z < h�(t). Equation (2.2) determines the evolution of wg but is otherwise

decoupled from the dynamics. Identifying φ2
�/Ks�(φ�) = (ksat/μ)kr�(φ�) where ksat is the

permeability at full saturation, μ is the viscosity and kr�(φ�) is the relative permeability of
the (wetting) liquid phase (whose form will be specified below), and keeping in mind that
pc is a function of φ� we can identify this as Richards’ equation,

∂φ�

∂t
= − ∂

∂z

[
ksatkr�(φ�)

μ

(
∂pc

∂z
− ρT

� g
)]

. (2.8)

One boundary condition at z = h�(t) prescribes that the capillary pressure there is known;
pc = p1

c . In view of (2.6) note that a non-zero value of p1
c corresponds to a jump in liquid

and gas pressures at this boundary owing to capillary effects. In our formulation the
capillary pressure in the partially saturated media is assumed to be a monotonic function
of liquid fraction (or, in (2.23a,b) saturation). Therefore, we can express this condition on
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the capillary pressure as a boundary condition that fixes the liquid fraction at z = h�(t);
that is,

φ� = φ1
� at z = h�(t), (2.9)

where pc(φ
1
� ) = p1

c . A second boundary condition is w�(z = h�(t)) = dh�/dt which gives
the evolution of h�(t),

dh�

dt
= ksatkr�(φ

1
� )

μφ1
�

(
∂pc

∂z
− ρT

� g
)∣∣∣∣

z=h�

. (2.10)

Finally, at the bottom of the partially saturated region, z = hS
�(t), we assume that the

capillary pressure is that associated with full saturation, pc(φ� = 1 − φs). Again, in terms
of a boundary condition on the liquid fraction we express this as φ� = 1 − φs at z = hS

�(t).
In the fully saturated region, where the porosity φ� = 1 − φs is constant, we have

w� = − ksat

μ(1 − φs)

(
∂p�

∂z
+ ρT

� g
)

, (2.11)

∂w�

∂z
= 0. (2.12)

Boundary conditions correspond to

p� = pA + ρT
� gzR, at z = 0, (2.13)

p� = pA − pc(φ� = 1 − φs), at z = hS
�(t), (2.14)

w�(z = hS
�(t)) = dhS

�(t)
dt

, at z = hS
�(t), (2.15)

where (2.13) reflects that the fluid reservoir is maintained at height z = zR above the bottom
of the porous region and (2.14) reflects that fully saturated conditions apply at z = hS

� . The
third condition (2.15) prescribes that the interface z = hS

�(t) moves with the fully saturated
fluid velocity there. In this fully saturated region, we can solve for pressure by noting
that (2.11) and (2.12) imply ∂2p�/∂z2 = 0; that is, p� is a linear function of z. Applying
boundary conditions (2.13) and (2.14) on p� then gives

p� = pA + ρT
� gzR + z

hS
�(t)

(
−pc(φ� = 1 − φs) − ρT

� gzR

)
. (2.16)

Substituting this result for pressure into (2.11) and inserting the resulting expression for w�

into (2.15) gives an ordinary differential equation for hS
�(t), the dimensionless version of

which is listed in § 2.2, (2.21).

2.1. Equilibrium conditions
The model given above has a long-time, equilibrium solution, with interface positions

h�(t → ∞) = hS
�(t → ∞) + pc(φ� = φ1

� ) − pc(φ� = 1 − φs)

ρT
� g

= zR + p1
c

ρT
� g

, (2.17)

hS
�(t → ∞) = zR + pc(φ� = 1 − φs)

ρT
� g

= zR + he, (2.18)

where we have introduced the hydraulic equilibrium height defined by he = pc(φ� =
1 − φs)/(ρ

T
� g) which marks the height of the fully saturated region in equilibrium (see
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also Lago & Araujo 2001). Note that (2.17) follows from setting w� = 0 in (2.5), cancelling
a common factor φ� and integrating from z = hS

� to z = h�. Similarly, (2.18) follows
from setting w� = 0 in (2.11), integrating from z = 0 to z = hS

� and applying boundary
conditions (2.13) and (2.14). Note that if pc(φ� = φ1

� ) = p1
c is finite then h�(t → ∞) is

finite (this is the case in our model as explained further below). In the mathematical limit
p1

c → ∞, then h�(t → ∞) → ∞ (this is the limiting case associated with φ1
� → 0 for the

capillary-pressure in the Lockington–Parlange model as explained further below).

2.2. Non-dimensionalization
We summarize our model in terms of dimensionless variables, denoted by bars, and
introduce the saturation variable, S = φ�/(φg + φ�), representing the proportion of the
pore space occupied by liquid. Let z = H0z̄, h� = H0h̄�, hS

� = H0h̄S
� , t = T0 t̄ and pc = P0p̄c

where H0 is a length scale, T0 is a time scale, and P0 is a pressure scale. Inserting these
into the governing equations and choosing H0 = zR + he, T0 = ((1 − φs)μH2

0)/(k0P0)

and P0 = pc(S = 1) = ρT
� ghe (i.e. capillary pressure value at full saturation) gives

∂S
∂ t̄

= − ∂

∂ z̄

[
k̄r�

(
∂ p̄c

∂ z̄
− 1

1 − z̄R

)]
, on h̄S

� < z̄ < h̄�, (2.19)

dh̄�

dt̄
=
[

k̄r�

S

(
∂ p̄c

∂ z̄
− 1

1 − z̄R

)]∣∣∣∣
z̄=h̄�

, (2.20)

dh̄S
�

dt̄
= 1

1 − z̄R

(
1
h̄S
�

− 1

)
, (2.21)

where z̄R = zR/(zR + he). Since typical capillary-rise experiments have zR ≥ 0 and he > 0
we expect 0 ≤ z̄R < 1. These equations are subject to boundary conditions S = 1 at
z̄ = h̄S

� and S = S1 at z̄ = h̄�, where S1 = φ1
�/(1 − φs). The initial conditions for these

equations are h̄S
�(t̄ = 0) = 0 and h̄�(t̄ = 0) = 0. We establish the initial evolution for

t̄ ∈ [0, t̄∗] (where t̄∗ is some small but non-zero value of time) via a similarity solution
which describes the formation of the partially saturated medium. Then, this similarity
solution is used as a starting saturation profile S(z̄, t̄∗) for z̄ ∈ [h̄S

�(t̄
∗), h̄�(t̄∗)], where

h̄�(t̄∗) > h̄S
�(t̄

∗) > 0 to continue integration for t̄ > t̄∗. Details are given below after we
specify the capillary pressure and permeability functions, p̄c(S) and k̄r�(S). The dynamics
of h̄S

� are the classical Washburn dynamics whereas the dynamics represented by h̄�

account for partial saturation.
To connect these results to others of Lago & Araujo (2001) and Lockington & Parlange

(2004) we note that the time scale T0 can be expressed as

T0 = (1 − φs)μH2
0

ksatP0
= zR + he

vg

1
1 − z̄R

, (2.22)

where we introduce the velocity scale vg = Ksat/(1 − φs) where Ksat = ksatρ
T
� g/μ is the

saturated hydraulic conductivity (see also Lago & Araujo 2001, equation (3); Lockington
& Parlange 2004).
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2.3. Brooks–Corey expressions for capillary pressure and permeability
We use capillary pressure and relative permeability expressed as functions of saturation
based on Brooks & Corey (1964). Specifically, these are characterized by

p̄c(S) =
(

1 − Sr

S − Sr

)1/λBC

, k̄r�(S) =
(

S − Sr

1 − Sr

)3+2/λBC

, (2.23a,b)

where Sr is a residual saturation and λBC is a constant. We have chosen to use these forms
of capillary pressure and permeability as these have been established for a wide range of
porous media including the case of glass beads used in the experiments of Lago & Araujo
(2001) and Delker et al. (1996). We further demonstrate below that these forms match
closely to those used in the Lockington–Parlange model and this allows us to directly
compare the predictions of these two models.

If we define

M̄(S) = −∂ p̄c

∂S
= 1
λBC

1
1 − Sr

(
1 − Sr

S − Sr

)1+1/λBC

, (2.24)

the governing equations can be written as

∂S
∂ t̄

= ∂

∂ z̄

[
k̄r�(S)

(
M̄(S)

∂S
∂ z̄

+ 1
1 − z̄R

)]
, on h̄S

� < z̄ < h̄�, (2.25)

dh̄�

dt
= −

[
k̄r�(S)

S

(
M̄(S)

∂S
∂ z̄

+ 1
1 − z̄R

)]∣∣∣∣
z̄=h̄�

, (2.26)

dh̄S
�

dt̄
= 1

1 − z̄R

(
1
h̄S
�

− 1

)
, (2.27)

subject to boundary conditions S = 1 at z̄ = h̄S
� and S = S1 at z̄ = h̄�. The initial conditions

use a similarity solution formulation shown in the next subsection. In all of our calculations
we shall assume that Sr = 0.

2.4. Similarity solution
When h̄� � 1 and h̄S

� � 1, the governing equations can be solved by introducing a
similarity variable η = z̄/(2

√
t̄) along with h̄� = 2λ�

√
t̄ and h̄S

� = 2λS
�

√
t̄ and seeking

a solution of the form S(z̄, t̄) = S(η) with constants λ� and λS
� to be determined. In

particular, in this limit the terms 1/(1 − z̄R) in (2.25) and (2.26) along with the term −1
in parentheses on the right-hand side of (2.27) are absent (these are the original gravity
terms). Then, we find that (2.25) can be rewritten in terms of the similarity variable η as

−2η
dS
dη

= d
dη

[
k̄r�(S)M̄(S)

dS
dη

]
, (2.28)

for λS
� < η < λ� while (2.26) and (2.27) can be written as equations governing λ� and λS

�

2λ� = − k̄r�(S1)

S1
M̄(S1)

dS
dη

∣∣∣∣
η=λ�

, λS
� =

√
1

2(1 − z̄R)
. (2.29)

Note that in order for the partially saturated boundary to advance faster than the saturated
boundary we need λ� > λS

� . This condition is confirmed for the Brooks–Corey functions
if λBC > 0, as outlined in a solution of this problem in Appendix A.
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Capillary rise in partially saturated rigid porous media

3. Related Lockington–Parlange model

Before we present solutions for the free-boundary model outlined above, we give a brief
summary of the related model by Lockington & Parlange (2004) and its connection to ours
and the capillary pressure and permeability assumptions from Brooks & Corey (1964).
The Lockington–Parlange model begins with Richards’ equation and extracts a parametric
closed form prediction for the capillary-rise height based on a travelling-wave solution
approximation along with specific choices for the functional dependence of capillary
pressure and permeability (hydraulic conductivity) with respect to saturation.

In their notation, the Lockington–Parlange model (equations (34) and (35) in
Lockington & Parlange (2004)) is given by

Zf = 1
A

ln
(

Q0 + 1
Q0

)
+ 1

Q0 + 1
, (3.1)

T = ln
(

Q0 + 1
Q0

)
− 1

Q0 + 1
+ 1

A
√

1 + 3ε

[
1

Q0
− ln

(
Q0 + 1

Q0

)]
, (3.2)

where Zf and T represent the dimensionless capillary-rise height and time, respectively,
defined parametrically in terms of the dimensionless flux Q0 at the bottom of the porous
medium. These quantities are related to their dimensional counterparts, zf , t, and q0, by
the expressions

Zf = zf

zR + he
, T = tvg

zR + he
, Q0 = q0

Ksat
. (3.3a–c)

Two key dimensionless parameters, A and ε, appearing in this model are

A = α(zR + he), ε = β − α

α
. (3.4a,b)

The classic Washburn model is represented in the Lockington–Parlange model by
the limit A → ∞ (in which case the parameter ε drops out of the problem). The
Lockington–Parlange model assumes ε � 1. The parameters α and β are constants in
relationships between hydraulic conductivity, saturation and capillary pressure.

In an effort to avoid confusion about which capillary-rise height prediction we discuss,
we retain the use of Zf and T to indicate the predictions for the Lockington–Parlange model
but note these have interpretations as h̄� and t̄ in our model (and similarly for dimensional
variables). The parameter values such as vg, zR and he are the same across the two models
although we note that Lockington & Parlange (2004) refer to he as the air-entry pressure
head (ha in their notation). The parameters A and ε are unique to the Lockington–Parlange
model. Lockington & Parlange (2004) introduce ĥ ≤ 0 (in their notation this is h) to denote
their ‘matric potential head’ variable which can be interpreted as a measure of the negative
of our capillary pressure via ĥ = −pc/(ρ

T
� g). With this notation in mind, their expressions

for hydraulic conductivity and saturation are

K(ĥ) = Ksat

{
exp

[
β(ĥ + he)

]
ĥ ≤ −he,

1 ĥ > −he,
(3.5)

and

S(ĥ) =
{

exp
[
(β − α)(ĥ + he)

]
ĥ ≤ −he,

1 ĥ > −he.
(3.6)
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We note that for ĥ ≤ −he,

K
Ksat

= exp
[
β(ĥ + he)

]
=
(

exp
[
(β − α)(ĥ + he)

])β/(β−α) = Sβ/(β−α), (3.7)

indicating a power law relation between permeability and saturation. Also for ĥ ≤ −he the
hydraulic diffusivity (K dĥ/dS) in Lockington & Parlange (2004) is

K
dĥ
dS

= Ksat

(β − α)
Sα/(β−α), (3.8)

(see their equation (11) which is expressed in terms of volumetric water content), which is
also a power law in terms of saturation.

To put the Lockington–Parlange model and ours on similar footing, below we connect
these forms for permeability and hydraulic diffusivity to those using the Brooks & Corey
(1964) expressions in (2.23a,b). Matching the Lockington & Parlange (2004) result for
permeability in (3.7) with the Brooks & Corey (1964) result k̄r�(S) in (2.23a,b), requires
λBC = λP

BC where λP
BC is defined by the relation

3 + 2/λP
BC = β/(β − α) = 1

ε
+ 1. (3.9)

That is, ε = λP
BC/(2 + 2λP

BC), or λP
BC = 2ε/(1 − 2ε). On the other hand, note that the

Brooks & Corey (1964) expression for hydraulic conductivity, k̄rlM̄, is

k̄r�(S)M̄(S) = 1
λBC(1 − Sr)

(
S − Sr

1 − Sr

)3+2/λBC
(

1 − Sr

S − Sr

)1/λBC+1

= 1
λBC(1 − Sr)

(
S − Sr

1 − Sr

)2+1/λBC

. (3.10)

To match this exponent with the Lockington & Parlange (2004) result (3.8) requires that
λBC = λD

BC where λD
BC is defined by the relation

2 + 1/λD
BC = α/(β − α) = 1

ε
. (3.11)

That is, ε = λD
BC/(1 + 2λD

BC), or λD
BC = ε/(1 − 2ε), which is a relationship that differs

from that required to match the permeabilities (in particular λP
BC = 2λD

BC).
So, the Brooks & Corey (1964) forms differ slightly from those of Lockington &

Parlange (2004); technically either the permeability or hydraulic diffusivity, but not both
simultaneously, can be matched. That said, the forms are effectively very similar as can
be seen in a graphical comparison of the capillary pressure and permeability functions
in figure 2. These comparisons capture the general features that (i) the capillary pressure
builds from a unit reference pressure as the saturation drops away from one, and has a sharp
increase at low saturation, and (ii) the permeability grows monotonically with saturation.

Several other features of the Lockington–Parlange model are worth noting here. The
early-time asymptotic behaviour of the Lockington–Parlange model in (3.1) and (3.2)
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Figure 2. Panel (a) shows the dimensionless capillary pressure versus saturation curves for the Brooks–Corey
model with λBC = 7.3 and Sr = 0 (black curve) and the Lockington–Parlange model with ε = λBC/(2 +
2λBC) and α = 14 (red dashed curves and circles) and the Lockington–Parlange model with ε = λBC/(1 +
2λBC) and α = 14 (blue dotted curves and circles). Panel (b) shows the dimensionless permeability versus
saturation curves for the Brooks–Corey model and Lockington–Parlange model for the same parameters
and colour scheme as in (a). Note that the parameters for the red curves/circles were chosen to exactly
match the Brooks–Corey and Lockington–Parlange permeability functions while the parameters for the blue
curves/circles were chosen to match exponents of the Brooks–Corey and Lockington–Parlange hydraulic
diffusivity functions. The key observation is that the Brooks–Corey functions match very closely with those
employed in the Lockington–Parlange model.

corresponds to Q0 � 1. We find that

Zf =
(

1 + 1
A

)
1

Q0
−
(

1 + 1
2A

)
1

Q2
0

+ O(Q−3
0 ), (3.12)

T = 1
2

(
1 + 1

A
√

1 + 3ε

)
1

Q2
0

+ O(Q−3
0 ). (3.13)

This indicates that the early-time relationship between Zf and T is

Zf ∼
(

1 + 1
A

)√
2A

√
1 + 3ε T

1 + A
√

1 + 3ε
. (3.14)

As noted by Lockington & Parlange (2004), with A → ∞ the Washburn limit is recovered.
However, outside of this limit (1/A /= 0) both A and ε influence the early-time dynamics
and in general the details of the early-time Lockington & Parlange (2004) solution differ
from those of the Washburn solution, although both follow the square-root in time scaling.
The long-time asymptotic behaviour of the Lockington–Parlange model in (3.1) and (3.2)
corresponds to Q0 � 1. These two expressions can be expanded in this limit to reveal that

Zf = 1
A

ln
(

1
Q0

)
+ 1 + O(Q0), (3.15)

T = 1

A
√

1 + 3ε

1
Q0

+
(

1 − 1

A
√

1 + 3ε

)
ln
(

1
Q0

)
− 1 + O(Q0). (3.16)

With A → ∞ these give the expected Washburn limit Zf → 1. For finite A, these
expressions show that Zf grows logarithmically in the long-time limit.
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Our goals for revisiting the Lockington–Parlange model are three-fold. First, the
Lockington–Parlange model is a relatively simple model involving closed form expressions
and as such serves as a useful predictive tool and comparison for our free-boundary model.
Second, to our knowledge, no quantitative comparison of the Lockington–Parlange model
has been made to experimental data to the point where one can identify appropriate
parameters A and ε (Lockington & Parlange (2004) did demonstrate in their paper that
their model recovers qualitatively the features of the Lago & Araujo (2001) experiments).
Third, with reasonable comparison with both classical and anomalous dynamics in hand,
solutions to the Lockington–Parlange model (as well as our model solutions) will be used
to reveal detailed information about permeability dynamics. In particular, we shall directly
explore the recently proposed permeability versus capillary-rise dynamic scaling proposed
by Kim et al. (2017) and Ha & Kim (2020).

4. Comparison with experimental data

Lago & Araujo (2001) and Delker et al. (1996) report capillary rise of water in a
vertical column of glass beads connected to a reservoir of fluid. We obtained the Lago
& Araujo (2001) capillary rise versus time experimental data from their figure 10(a) using
MATLAB’s grabit.m software. We collected points from each of the curves corresponding
to 150–180 µm, 180–212 µm, 212–250 µm and 250–300 µm glass bead sizes, and for
simplicity refer to these below in tables and graphs by labels 150 µm, 180 µm, 212 µm
and 250 µm, respectively. These represent time and height data denoted by (tiexp, hi

exp) for
i = 1, . . . , Ntotal where Ntotal is the number of data points. We used a similar procedure to
obtain the Delker et al. (1996) capillary-rise data from their figure 2(a). Four data sets were
obtained corresponding to their experiments for 180 µm, 253 µm, 359 µm and 510 µm
bead diameters.

A technical but important detail about the Lago & Araujo (2001) capillary-rise data is
that at their time zero the fluid height is at the reservoir height, zR (see figure 1). Figure 2(a)
of Delker et al. (1996) shows capillary-rise height relative to z = 0 with their starting time
also corresponding to when the capillary-rise height is equal to zR. To put the Delker et al.
(1996) data in the form of the Lago & Araujo (2001) data, we shift the Delker et al. (1996)
height values by zR (in their notation this is Z − zR). In contrast, our model (and that of the
Lockington–Parlange model) has time t = 0 corresponding to h� = 0. Therefore, in order
to compare our predictions with the experiments we plot h�(t) − zR versus t − tR where
tR is defined to be the time for which h�(tR) = zR (in the Lockington–Parlange model we
similarly plot zf − zR versus t − tR). Thus, ‘early time’ in the experimental plots means
t − tR � 1 in our model notation. A consequence of this is that the plotted capillary-rise
height h�(t) − zR for early time is linear in t − tR whenever zR /= 0. Further details of this
are explained below.

In addition to comparing the Lago & Araujo (2001) and Delker et al. (1996)
data with our model and the Lockington–Parlange model we briefly revisit the
Washburn model. From a parameter estimation point of view, the Washburn model,
as outlined below, involves three-dimensional parameters he, zR and vg. For the
Lockington–Parlange model five parameters appear: the dimensional ones he, zR
and vg, along with the dimensionless parameters A and ε. For our free-boundary
model there are five as well: he, zR, vg and the two dimensionless parameters S1
and λBC.
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Our optimization procedure to identify parameters involves minimizing the mean square
error of capillary-rise height at the available experimental time points. We have used
absolute errors in all cases described here but note that relative errors and/or other
weighting schemes could be implemented. Our numerical scheme uses MATLAB’s
fmincon to search the parameter space. We have explored both interior-point and sqp
algorithms with a variety of initial guesses to help find the best solution within our
search space. In each case we limit our parameter search space with upper and lower
bounds on each parameter. Some of these bounds are based on previous estimates in Lago
& Araujo (2001) and/or Delker et al. (1996), especially with respect to the parameters
he, vg and zR, and are explained in detail below. The models of primary interest – the
Lockington–Parlange model and our free-boundary model – have five-dimensional search
spaces and even with bounds on these parameters we cannot guarantee that our reported
solutions are global optimizers. Rather, we seek parameter values that are consistent
with prior information and also reasonably fit the capillary-rise versus time data. With
reasonable fits to the capillary-rise dynamics in both early- and long-time regimes we then
further explore our model predictions on capillary pressure and permeability dynamics,
which are not as easily accessible experimentally, and help shed further light on the
capillary-rise phenomena.

The first step of our parameter estimation procedure involves fitting a linear function
t − tR = P1(h� − zR) to early time data of Lago & Araujo (2001) and Delker et al.
(1996) where P1 has units of seconds per centimetre. That this early-time data has this
linear structure, rather than the celebrated t1/2 scaling, relates to the space and time shift of
the data, and will be demonstrated in the context of the models below. We report numerical
values of P1 in table 1 for each Lago & Araujo (2001) and Delker et al. (1996) data set
and note that these values of P1 are independent of the theoretical model (Washburn,
Lockington–Parlange, . . .). The value of N indicates the number of data points used in the
fits. We see that the value of P1 is relatively insensitive at small values of N but necessarily
drifts to larger values as more time points are included and the dynamics depart from the
early-time behaviour. We have listed estimates and standard deviations in each case on the
lines marked by ∗ in table 1.

As shown below, in the Washburn model we can identify P1 = PWash
1 = zR/(vghe)

which fixes a relationship between the three parameters he, vg and zR. In the
Lockington–Parlange model P1 = PLP

1 where PLP
1 depends on zR, he and vg as well as

on A and ε. Similarly, for our free-boundary model P1 = PSA
1 where PSA

1 depends on zR, he
and vg as well as on S1 and λBC. With these relationships, we choose to replace our search
variable vg with the search variable P1. The reported mean plus-or-minus the standard
deviation for each data set in table 1 then provides upper and lower bounds for the P1
search space.

Before reporting further details on the parameter estimation for the Washburn,
Lockington–Parlange and free-boundary models, we give an example solution from our
free-boundary model in figure 3 with dimensional heights of the wetting front (solid
curve), the saturated/unsaturated front (dashed curve – , i.e. Washburn solution) and the
early time linear relationship (dashed–dotted curve), along with the Lago & Araujo (2001)
150 µm data (open circles). This plot shows the relationship of the two interface positions,
hS
� and h�, along with the early-time linearization. The boundary hS

� (which is equivalent
to the Washburn model) reaches an equilibrium height while h� continues to increase in
good approximation to the experimental observations.
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Lago & Araujo (2001): P1 (s cm−1)

N 150 µm 180 µm 212 µm 250 µm

6 18.5544 18.5335 20.7490 25.9691
7 18.9871 18.6545 20.6618 26.1303
8 19.0550 18.6365 20.6322 27.6931
9 19.4404 18.6552 21.1704 28.7052
10 19.7691 18.8962 21.7981 29.1680
11 19.9374 19.1660 22.4212 29.6818
12 20.4036 19.7035 22.6496 30.0588

∗ 19.0 ± 0.4 18.6 ± 0.1 20.8 ± 0.2 27.1 ± 1.3

Delker et al. (1996): P1 (s cm−1)

N 180 µm 253 µm 359 µm 510 µm

3 12.6671 7.7515 12.2211 7.8430
4 11.8363 7.3447 12.0077 8.2947
5 11.8554 7.4744 12.2663 9.1453
6 12.0277 7.4762 13.0534 13.5033
7 12.1577 7.7809 14.0904 —
8 12.2782 7.8963 15.2218 —
9 12.5163 8.1870 16.0969 —
10 12.5556 8.4788 17.4636 —
11 12.6461 8.9070 20.0117 —
12 12.8673 9.1915 23.3510 —

∗ 12.1 ± 0.4 7.5 ± 0.2 12.4 ± 0.5 9.7 ± 2.6

Table 1. Fitted leading coefficient, P1, from the model independent relation t − tR = P1(h� − zR) using
capillary-rise data of Lago & Araujo (2001) and Delker et al. (1996). Here N is the number of early time
points used in the fit. Note that the case for Delker et al. (1996) 510 µm beads only has six data points that
appear to fall in the early-time regime. The mean and standard deviation for P1 using the first four points
(N = 6, 7, 8, 9 for Lago & Araujo (2001) and N = 3, 4, 5, 6 for Delker et al. (1996)) are listed on the lines
marked by the ∗.
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Figure 3. An example of our free-boundary model predictions: Lago & Araujo (2001) data for 150 µm spheres
(open circles); the linear approximation h� − zR ∼ (1/PSA

1 )(t − tR) (dash–dotted line); the prediction h� − zR

versus t − tR (solid curve); hS
� − hS

�(tR) versus t − tR (dotted line). Note that hS
� is equivalent to the Washburn

solution.
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Capillary rise in partially saturated rigid porous media

4.1. Washburn model predictions
The dimensional form of the classical Washburn model (e.g. using the Lockington–Parlange
equations (3.1) and (3.2) with A → ∞), is

tWash = he + zR

vg
ln
(

zR + he

zR + he − zf

)
− zf

vg
, (4.1)

where tWash is time and zf is the capillary-rise height relative to fixed position z = 0. This
form has zf = 0 when tWash = 0 and zf → zR + he as tWash → ∞. It is worth noting that
for early time zf and tWash have the classical relationship

zf ∼
√

2vg(zR + he)tWash ∼ t1/2
Wash. (4.2)

As previously noted, in order to compare equation (4.1) with the experiments of Lago
& Araujo (2001) we need a time- and space-shifted version. The capillary-rise height and
time variables used in Lago & Araujo (2001) (see their figure 10a) are the shifted versions
zf − zR and tWash − tR, where tR is defined as the time for which zf = zR. That is,

tR = he + zR

vg
ln
(

zR + he

he

)
− zR

vg
, (4.3)

and

tWash − tR = he + zR

vg
ln
(

he

he − (zf − zR)

)
− zf − zR

vg
. (4.4)

In this view the early-time dynamics are characterized by the relationship

tWash − tR = zR

vghe
(zf − zR) + zR + he

2vgh2
e

(zf − zR)2 + · · · . (4.5)

That is, unless the reservoir height zR = 0, the capillary-rise height in the Lago & Araujo
(2001) interpretation scales linearly with early times. The dynamics are still classical in the
sense that they are characterized by the Washburn equation but the capillary-rise height
does not display the commonly referred to t1/2 power law (e.g. see their figure 10a and/or
our figure 4). Here we define PWash

1 = zR/(vghe).
We note that if given capillary-rise data in the form (tWash, zf ) the model in (4.1) would

allow at most the determination of two independent parameters, vg and the combination
he + zR (that is, one cannot get zR and he individually without additional information). On
the other hand, given sufficient data in the form (tWash − tR, zf − zR) the model in (4.4)
does appear to allow the determination of three independent parameters, vg, he and zR.

We comment here on upper and lower bounds for the parameters P1, zR and he. First,
as already mentioned, the search space for the parameter P1 was limited for each data set
by the range listed in table 1. Second, bounds for the parameter zR were identified in two
different ways for the Lago & Araujo (2001) and Delker et al. (1996) data sets. Delker et al.
(1996) reported in their experiments that zR was approximately 4 cm and so for these cases
we have simply allowed a small departure (±0.1 cm) from this value. In most cases (with
the Washburn model, as well as the Lockington–Parlange model, and our free-boundary
model) we found that the upper bound zR = 4.1 cm was an active constraint. In general,
while extending the range of zR could allow small numerical reductions in our objective
function there were not significant graphical improvements that would seem to justify
allowing further departures from 4 cm estimate reported by Delker et al. (1996). Lago &
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Figure 4. Panel (a) shows capillary-rise height versus time predictions with the Lockington–Parlange model
using the parameter values listed in table 3 and the Lago & Araujo (2001) data. Panel (b) shows capillary-rise
height versus time predictions with the Lockington–Parlange model using the parameter values listed in table 3
and the Delker et al. (1996) data. The triangles indicate power-law slopes of 1 (left-hand triangle), 1/4 (upper
right-hand triangle) and 1/20 (lower right-hand triangle).

Araujo (2001) did not report values for their zR. However, they did report ranges for he and
for vg (see their figure 11a,b) and since they also report fits based on the Washburn model
we identified bounds for their zR using the Washburn relation P1 = zR/(hevg) and the P1
values reported in table 1. The zR values we found for the Lago & Araujo (2001) data were
in all cases within these bounds with no active constraints. Third, for the parameter he we
chose generous bounds that included the full range of he reported for the Lago & Araujo
(2001) data sets (see their figure 11a). We expect he ∼ σ/(ρgDb) (i.e. Jurin height) where
σ is surface tension, ρ is fluid density, g is gravity and Db is the bead diameter. Using
σ = 72 mN m−1, ρ = 103 kg m−3 and g = 9.8 m s−2 gives he ∼ [4.9, 4.1, 3.5, 2.9] cm for
the Lago & Araujo (2001) data and he ∼ [4.1, 2.9, 2.0, 1.4] cm for the Delker et al. (1996)
data.

The bounds for P1, zR and he are shown in table 2; these are also later used for the
Lockington–Parlange model and our free-boundary model. Our Washburn model estimates
for he, zR, P1 and vg are listed in table 2. It is important to note that for the Washburn model
one must also decide how much of the capillary rise data to fit (i.e. make a choice for N) as
the long-time behaviour of the data is not described by the Washburn model. Recall that the
Washburn model predictions have the form of the dotted curve shown in figure 3. Making
N too large and trying to fit the capillary-rise data in the anomalous regime will artificially
drive up the value of he. Making N too small and not including enough information
about the transition away from the early-time dynamics will not allow identification of
he and zR. That said, the parameter values in table 2 are generally consistent with various
earlier estimates reported by Lago & Araujo (2001) and Delker et al. (1996). Our primary
purpose in generating estimates for these parameters from the Washburn model is to have
a point of reference when we obtain estimates for these same parameter values for the
Lockington–Parlange model and our free-boundary model, both of which are better suited
to characterize the long-time dynamics.

4.2. Lockington–Parlange model predictions
The Lockington–Parlange model with dimensionless capillary-rise height Zf and time T
is given by (3.1) and (3.2). We note that Zf reaches the dimensionless reservoir height,
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Capillary rise in partially saturated rigid porous media

Data Set (N) Lago & Araujo (2001)

he zR P1 vg
(cm) (cm) (s cm−1) (cm s−1)

150 µm (26) 13.0855 13.1030 18.6 0.05384
[7 . . . 15] [3.0 . . . 17.1] [18.6 . . . 19.4]

180 µm (30) 11.0380 13.0064 18.5 0.06369
[5 . . . 12] [3.3 . . . 17.9] [18.5 . . . 18.7]

212 µm (26) 8.9125 12.0212 20.6 0.06548
[4 . . . 12] [3.1 . . . 24.7] [20.6 . . . 21.0]

250 µm (30) 7.6646 11.9985 25.8 0.06068
[3 . . . 9] [4.3 . . . 34.0] [25.8 . . . 28.4]

Data Set (N) Delker et al. (1996)

he zR P1 vg
(cm) (cm) (s cm−1) (cm s−1)

180 µm (30) 11.1140 4.1 11.7 0.03153
[5 . . . 12] [3.9 . . . 4.1] [11.7 . . . 12.5]

253 µm (22) 7.2529 4.1 7.3 0.07744
[3 . . . 9] [3.9 . . . 4.1] [7.3 . . . 7.7]

359 µm (14) 2.7849 4.1 11.9 0.1237
[2.5 . . . 6] [3.9 . . . 4.1] [11.9 . . . 12.9]

510 µm (10) 1.7185 4.1 7.1 0.3360
[1.5 . . . 4.5] [3.9 . . . 4.1] [7.1 . . . 12.3]

Table 2. Fitted Washburn model parameters he and zR for capillary-rise data of Lago & Araujo (2001) and
Delker et al. (1996) using values of P1 in the range specified in table 1, and the resultant value vg = zR/(P1he).
The range indicated by the brackets are those imposed as constraints during the optimization procedure. The
number of points, N, used for the fits is listed in parentheses and has been chosen in a range where the estimates
for he and zR are relatively insensitive to N.

ZR = zR/(zR + he), at a time TR for which Q0 = QR. That is,

ZR = 1
A

ln
(

QR + 1
QR

)
+ 1

QR + 1
, (4.6)

TR = ln
(

QR + 1
QR

)
− 1

QR + 1
+ 1

A
√

1 + 3ε

[
1

QR
− ln

(
QR + 1

QR

)]
, (4.7)

where (4.6) determines the value of QR for a given reservoir height ZR and the
corresponding time is given by (4.7).

The early time, 0 ≤ T − TR � 1, form of Zf − ZR is

Zf − ZR = QR

1 + 1
A

(
1 + 1

QR

)

1 + 1

A
√

1 + 3ε

(
1 + 1

QR

) (T − TR) + O (T − TR)2 . (4.8)
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The corresponding dimensional quantities are zf − zR = (Zf − ZR)(zR + he) and t − tR =
(T − TR)(zR + he)/vg. Then, the dimensional leading-term in (4.8) is

zf − zR ∼ vg

⎡
⎢⎢⎣QR

1 + 1
A

(
1 + 1

QR

)

1 + 1

A
√

1 + 3ε

(
1 + 1

QR

)
⎤
⎥⎥⎦ (t − tR) . (4.9)

That is, the early-time data is fit by taking PLP
1 = P1 where

PLP
1 = 1

vgQR

1 + 1

A
√

1 + 3ε

(
1 + 1

QR

)

1 + 1
A

(
1 + 1

QR

) , (4.10)

which is a non-trivial function of the ratio he/zR (through ZR and QR), A and ε. When
A → ∞, we find that QR → he/zR and PLP

1 → zR/(vghe) as in the leading behaviour of
the Washburn model analogue (4.5).

We fit the full Lockington–Parlange model zf − zR versus t − tR for all times available in
the Lago & Araujo (2001) and Delker et al. (1996) data sets. Our search space is over the
parameters he, zR, A, ε and P1 with ranges as listed in brackets in table 3. The bounds on
P1, zR, and he are the same as those already identified in the discussion of the Washburn
model. The search space for the parameter A was effectively left unconstrained although
for technical reasons we typically set bounds [0 . . . 100]. We used [0 . . . 1] as the search
space for the parameter ε with it in mind that the Lockington–Parlange model assumed
ε � 1. The value of vg was obtained through the condition PLP

1 = P1.
The parameter value estimates for the Lockington–Parlange model are listed in table 3.

In some of these cases the constraints on the parameter are active, which generally
indicates that one can find solutions with numerically smaller objective function values
if these bounds were extended. Two examples of note are the solutions for the Delker et al.
(1996) 359 µm and 510 µm cases which have active lower bounds on he. In these two
cases the Lockington–Parlange model predictions appear to fit the data only moderately
well (see figure 4). These graphical comparisons could be improved slightly by allowing
significantly smaller values of he. For example, for the 359 µm Delker et al. (1996) data the
parameter set [A = 9.32, ε = 0.0036, he = 0.39 cm, zR = 4.1 cm and P1 = 11.9 s cm−1]
has F = 3.6056 which is a graphical and numerical improvement over the case listed in
table 3 and shown in figure 4. However, the value he = 0.39 cm appears to be inconsistent
(approximately a factor of 10 too small) with what would be expected using the Jurin
scaling and the estimate for he for the 180 µm bead diameter; that is, ≈ 6.7/2 = 3.35 cm.

It appears from figure 4 that for the majority of these cases, except for largest two
bead diameter results of Delker et al. (1996), the Lockington–Parlange model is able to
capture essential features of the dynamics from the early-time, classical dynamics all the
way through the long-time, anomalous dynamics, evolution. Lago & Araujo (2001) have
already reported an estimated range of scaling exponents for their long-time power laws
between 1/20 and 1/4. For comparison purposes we have indicated these particular scaling
estimates on the graph. For both the Lago & Araujo (2001) data and the Delker et al.
(1996) data the anomalous scaling in the long-time dynamics seems to lie somewhere in
between these values. The speed and ease of use of the Lockington–Parlange model are
advantages over the free-boundary model discussed next, although we shall see that the
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Capillary rise in partially saturated rigid porous media

Data Set Lago & Araujo (2001)

A ε he zR P1 vg F
(cm) (cm) (s cm−1) (cm s−1)

150 µm 8.3130 0.000007034 7.0 10.4496 18.6 0.05651 9.6021
[0 . . . 100] [0 . . . 1] [7 . . . 15] [3.0 . . . 17.1] [18.6 . . . 19.4]

180 µm 17.1686 0.1289924 5.2682 17.6759 18.5 0.1231 2.9024
[0 . . . 100] [0 . . . 1] [5 . . . 12] [3.3 . . . 17.9] [18.5 . . . 18.7]

212 µm 12.968971 0.021310 4.0 14.1118 20.6 0.1067 1.5826
[0 . . . 100] [0 . . . 1] [4 . . . 12] [3.1 . . . 24.7] [20.6 . . . 21.0]

250 µm 42.0492 0.01526 3.0 33.9138 25.8 0.2577 1.5385
[0 . . . 100] [0 . . . 1] [3 . . . 9] [4.3 . . . 34.0] [25.8 . . . 28.4]

Data Set Delker et al. (1996)

A ε he zR P1 vg F
(cm) (cm) (s cm−1) (cm s−1)

180 µm 10.7973 0.003237 6.7435 4.1 11.7 0.04394 10.2666
[0 . . . 100] [0 . . . 1] [5 . . . 12] [3.9 . . . 4.1] [11.7 . . . 12.5]

253 µm 11.0313 0.006022 3.4550 4.1 7.3 0.1278 9.4471
[0 . . . 100] [0 . . . 1] [3 . . . 9] [3.9 . . . 4.1] [7.3 . . . 7.7]

359 µm 24.6763 0.00000003986 2.5 3.9 11.9 0.1136 9.1212
[0 . . . 100] [0 . . . 1] [2.5 . . . 6] [3.9 . . . 4.1] [11.9 . . . 12.9]

510 µm 48.9929 0.00002286 1.5 3.96 7.1 0.3299 1.8255
[0 . . . 100] [0 . . . 1] [1.5 . . . 4.5] [3.9 . . . 4.1] [7.1 . . . 12.3]

Table 3. Lockington–Parlange model parameters A, ε, he and zR for capillary-rise data of Lago & Araujo
(2001) and Delker et al. (1996) using P1 in the range indicated in table 1 with the resultant value vg obtained
from the relationship (4.10). The range indicated in the A, ε, he, zR and P1 columns correspond to the allowed
search space.

ability to characterize the Delker et al. (1996) large bead data, appears to be an advantage
of the free-boundary model.

4.3. Free-boundary model with Brooks–Corey function predictions
Here we compare our model with Brooks–Corey functions for capillary pressure and
permeability to the capillary-rise experiments of Lago & Araujo (2001) and Delker et al.
(1996) These solutions were obtained computationally as follows. An initial condition
for the partial differential equation for saturation on h̄S

� < z̄ < h̄� was obtained using
the similarity solution. In particular, the similarity solution starts with initial conditions
h̄S
�(t̄ = 0) = h̄�(t̄ = 0) = 0 and is used to advance forward in time to a small but non-zero

value t̄∗ where h̄S
�(t̄

∗) and h̄�(t̄∗) are non-zero and a saturation profile S(z̄, t̄∗) from the
similarity solution is also obtained. An example saturation curve from the similarity
solution used to start the numerical simulations is shown in figure 5(a). Note that this
example has dimensional time t∗ = 0.0081 s and has h�(t∗) > hS

�(t
∗) > 0. The partial

differential equation was discretized in space over the partially saturated region with
Npde + 1 evenly spaced points. We used a range of values of Npde up to Npde = 2048.
Several example solutions for S(z, t) are shown in figure 5(b). We observe that the
saturation decreases monotonically at higher positions in the partially saturated media with
the variation more pronounced at later times. This example corresponds to a base-case set
of parameters from which we explore the solution dependence on the parameters S1 and
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Figure 5. Panel (a) shows the similarity solution S(z, t) plotted against z − zR at the time value t = t∗ =
0.0081 s. This function S(z, t∗), along with the values h�(t∗) and hS

�(t
∗), from the similarity solution are used as

the initial conditions (at t = t∗) for the numerical integration of the free-boundary problem defined in (2.25),
(2.26) and (2.27). Note that the red ‘o’ in (a) at S = 1 corresponds to hS

�(t
∗) − zR (i.e. z = hS

�(t
∗)) while the red

‘x’ in this same plot near S = 0 corresponds to h�(t∗) − zR (i.e. z = h�(t∗)). Panel (b) shows the full numerical
solution S(z, t) – with initial condition indicated in panel (a) – at various times plotted against the shifted
coordinate z − zR. In this plot, the ‘o’ marks at S = 1 correspond to hS

�(t) − zR at the indicated times while the
‘x’ marks near S = 0 correspond to h�(t) − zR at those times. The parameter values used for this example are
λBC = 3.32, S1 = 0.01, he = 9.8 cm, P1 = 18.6 s cm−1 and zR = 7.5 cm, which correspond to the values used
for the solid curves in figure 6(a,b).

λBC further below. Parameter estimation for this model was performed in a similar manner
to that done for the Washburn model and the Lockington–Parlange model. Details specific
to this model involving the interpretation of parameter P1 and the search space used for
parameters S1 and λBC are outlined below.

As a first step in the parameter identification for this free-boundary model we identify
a parameter that we can associate with the experimentally identified values of P1 (see
table 1) which characterize capillary rise dynamics near the time t = tR for which h� = zR.
The local expansion of our dimensionless solution is

h̄� − z̄R ∼ dh̄�

dt̄

∣∣∣∣
t̄=t̄R

(t̄ − t̄R), (4.11)

where from (2.26) we have that

D ≡ dh̄�

dt̄

∣∣∣∣
t̄=t̄R

= − 1
λBC

S1+1/λBC
1

∂S
∂ z̄

∣∣∣∣
z̄=h̄�(t̄R)

− 1
1 − z̄R

S2+2/λBC
1 . (4.12)

We do not have an analytical expression for the saturation derivative appearing here but it
is computed as part of our solution. In dimensional form we have t − tR ∼ PSA

1 (h� − zR)

where

PSA
1 = he + zR

hevg

1
D . (4.13)

Before discussing additional details of our model comparison with the Lago & Araujo
(2001) and Delker et al. (1996) data we explore how the two model parameters S1 and
λBC influence the dynamics. Figure 6 shows capillary-rise height h�(t) − zR versus t − tR
as the two parameters S1 and λBC are individually varied. The long-time dynamics are
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Figure 6. Panel (a) shows four capillary-rise solutions as S1 varies with λBC = 3.32, he = 9.8 cm, P1 =
18.6 s cm−1 and zR = 7.5 cm. Panel (b) shows four capillary-rise solutions as λBC varies with S1 = 0.01,
he = 9.8 cm, P1 = 18.6 s cm−1 and zR = 7.5 cm. For reference we have also included the Lago & Araujo (2001)
150 µm data.

sensitive to both of these parameters. Note that using the equilibrium expressions in (2.17)
and (2.18) with the Brooks–Corey expression for capillary pressure in (2.23a,b) gives

h�(t → ∞) = zR + he

(
1
S1

)1/λBC

. (4.14)

This shows that h�(t → ∞) → ∞ as S1 → 0 while S1 = 1 recovers the Washburn
equilibrium. These trends can be observed in figure 6. The smaller S1 leads to a higher
capillary-rise height. All of our numerical simulations have used non-zero S1 and so all
of these predictions eventually reach an equilibrium height. In this particular example
in figure 6 the data of Lago & Araujo (2001) for the 150 µm bead diameter are shown
and their final experimental data point has a capillary-rise height of around 26 cm. For
sufficiently small S1 the theoretical equilibrium height h�(t → ∞) is well above this value.
In general, the Lago & Araujo (2001) data and the Delker et al. data provide capillary-rise
data out to times around 24 hours. We are not aware of experimental data for these systems
that could test the model predictions, such as the possibility of an eventual plateau in
capillary-rise height, beyond these times.

Our best parameter estimates in comparison with the Lago & Araujo (2001) and Delker
et al. (1996) data are listed in table 4 with the corresponding graphical results shown
in figure 7. The search space in each case is indicated and for parameters he, zR and P1
these bounds are the same as used previously for the Washburn and Lockington–Parlange
models. The upper and lower bounds for the parameters S1 and λBC are also listed and
were chosen to effectively keep these parameters unconstrained; none of these constraints
are active. Again we do not guarantee that the reported solutions are globally optimal in
the prescribed feasible set but in all of these cases the graphical comparison with the data
is excellent, especially in the long-time, anomalous, regime.

The solutions reported in tables 3 and 4 along with the graphical counterparts in
figures 4 and 7 show that both the Lockington–Parlange and free-boundary models can
capture many features of the capillary-rise dynamics for both early- and long-time regimes.
We note that there is some variation across models in terms of the predicted values of he,
vg and zR. As we have shown, the early-time fit establishes a value of the parameter P1
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Data Set Lago & Araujo (2001)

S1 λBC he zR P1 vg F
(cm) (cm) (s cm−1) (cm s−1)

150 µm 0.01 3.32 9.8 7.5 18.6 0.03486 9.6708
[0 . . . 0.3] [1 . . . 200] [7 . . . 15] [3.0 . . . 17.1] [18.6 . . . 19.4]

180 µm 0.01 4.3247 8.0 8.2911 18.5 0.04731 4.9252
[0 . . . 0.3] [1 . . . 200] [5 . . . 12] [3.3 . . . 17.9] [18.5 . . . 18.7]

212 µm 0.01 3.9236 7.2347 6.0743 20.6 0.03454 3.2661
[0 . . . 0.3] [1 . . . 200] [4 . . . 12] [3.1 . . . 24.7] [20.6 . . . 21.0]

250 µm 0.01 4.5 5.6 6.5 25.8 0.03791 3.5383
[0 . . . 0.3] [1 . . . 200] [3 . . . 9] [4.3 . . . 34.0] [25.8 . . . 28.4]

Data Set Delker et al. (1996)

S1 λBC he zR P1 vg F
(cm) (cm) (s cm−1) (cm s−1)

180 µm 0.01 5.05 7.5 4.1 11.7 0.04069 9.2922
[0 . . . 0.3] [1 . . . 200] [5 . . . 12] [3.9 . . . 4.1] [11.7 . . . 12.5]

253 µm 0.001 5.0 5.2 4.1 7.1 0.1103 4.5922
[0 . . . 0.3] [1 . . . 200] [3 . . . 9] [3.9 . . . 4.1] [7.3 . . . 7.7]

359 µm 0.0007 4.5 2.5 4.1 11.9 0.1370 0.8533
[0 . . . 0.3] [1 . . . 200] [2.5 . . . 6] [3.9 . . . 4.1] [11.9 . . . 12.9]

510 µm 0.001 1.1 1.65 4.1 7.1 0.3494 0.3418
[0 . . . 0.3] [1 . . . 200] [1.5 . . . 4.5] [3.9 . . . 4.1] [7.1 . . . 12.3]

Table 4. Parameter values for S1, λBC, he and zR for our free-boundary model with Brooks–Corey functions
for capillary rise data of Lago & Araujo (2001) and Delker et al. (1996) using the values of P1 indicated by the
range given in table 1 with the resultant value vg obtained from the expression (4.13). The range indicated in
the S1, λBC, he, zR and P1 columns correspond to ranges allowed for these parameters in our parameter search.
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Figure 7. Panel (a) shows capillary-rise height versus time predictions with our model using the parameter
values listed in table 4 and the Lago & Araujo (2001) data. Panel (b) shows capillary-rise height versus time
predictions with our model using the parameter values listed in table 4 and the Delker et al. (1996) data.

for a given data set, but depending on the model (Washburn, Lockington–Parlange or the
free-boundary formulation) the relationships that he, vg and zR have with the parameter
P1 differ. That is, other parameters (A and ε for Lockington–Parlange and λBC and S1
for the free-boundary model) also are involved in the corresponding expressions for P1
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and, consequently, the fit values of he, vg and zR (if not measured independently in an
experiment) are at least slightly model dependent. We have chosen to allow a range for
each of these parameters, as noted in the tables. The Lockington–Parlange model perhaps
does slightly better numerically for the Lago & Araujo (2001) data while the free-boundary
model appears to do better for the Delker et al. (1996) data. We note that the two cases
corresponding to the largest bead diameter for the Delker et al. (1996) data show that the
capillary-rise dynamics has positive concavity. The prediction of the free-boundary model
also has this characteristic for these two cases. The 359 µm and 510 µm predictions suggest
that the larger bead diameter prediction reaches a larger capillary-rise height (compare
S1 = 0.0007 for the 359 µm case with S1 = 0.001 for the 510 µm case) for times beyond
where the experimental data is available. We presume this particular observation may
change were further experimental data available for these cases beyond the reported final
time.

5. Permeability and capillary pressure measures and their dynamic scaling

In the introduction we reviewed scaling laws initially developed for capillary-rise
phenomena in partially saturated porous media by Kim et al. (2017) and Ha & Kim
(2020). Their arguments suggested that at early times both the capillary pressure and
the permeability scale independently of capillary-rise height. At later times there is a
capillarity–gravity balance in which capillary pressure scales linearly with height and the
permeability scales inversely proportional to capillary-rise height squared. We explore
these ideas further here.

In both of the capillary-rise models presented in this work – the Lockington–Parlange
model and our free-boundary model with Brooks–Corey functions – the capillary pressure
and permeability are defined throughout the partially saturated region (as well as the
completely saturated region) and therefore have both spatial and temporal variation. The
question then arises that if, for example, the scaling law k ∼ 1/h2 holds, where specifically
in the partially saturated region does it hold? Throughout the entire partially saturated
region, or in some specific region? By examining the computed permeability function
through the identification of representative permeability measures over different regions
in the partially saturated media we can address this question. For our free-boundary model
we discuss analogue capillary pressure measures as well.

We begin with the Lockington–Parlange model where integrals of the permeability
can be expressed in simple terms. Since those results were not part of the original work
presented in Lockington & Parlange (2004) we provide details in Appendix B. The four
permeability measures we use here correspond to mean permeabilities taken from the
bottom quarter to the top quarter of the partially saturated region. In particular, we define

K̄eff
I (t) = − 4

�Z

∫ −u∗
1

0

exp[A(1 + ε)u]
1 + Q0 exp[−Au]

du, (5.1)

K̄eff
II (t) = − 4

�Z

∫ −u∗
2

−u∗
1

exp[A(1 + ε)u]
1 + Q0 exp[−Au]

du, (5.2)

K̄eff
III (t) = − 4

�Z

∫ −u∗
3

−u∗
2

exp[A(1 + ε)u]
1 + Q0 exp[−Au]

du, (5.3)

K̄eff
IV (t) = − 4

�Z

∫ −∞

−u∗
3

exp[A(1 + ε)u]
1 + Q0 exp[−Au]

du, (5.4)
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where �Z = Zf − Ze, Ze = 1/(Q0 + 1) and Zf and Q0 are as in (3.1) and (3.2). For i =
1, 2, 3 we have

−ui = 1
A

ln
[−Q0 + (1 + Q0)eωi

]
, ωi = − i

4
A�Z, (5.5)

which define the integration limits. We also define an overall effective permeability for
the whole partially saturated region which has K̄eff (t) = (K̄eff

I (t) + K̄eff
II (t) + K̄eff

III (t) +
K̄eff

IV (t))/4. We discuss these results below in the context of similar permeability measures
from the free-boundary model.

For the free-boundary model we use the same choices for effective permeability. In
this approach, the saturation variable is computed numerically and the corresponding
permeability is defined by the Brooks–Corey model in (2.23a,b). In particular, dividing
the partially saturated porous material into four quarters leads to

K̄eff
I (t) = 4

h̄� − h̄S
�

∫ h̄S
�+(h̄�−h̄S

�)/4

h̄S
�

k̄r�(S(z, t)) dz, (5.6)

K̄eff
II (t) = 4

h̄� − h̄S
�

∫ h̄S
�+(h̄�−h̄S

�)/2

h̄S
�+(h̄�−h̄S

�)/4
k̄r�(S(z, t)) dz, (5.7)

K̄eff
III (t) = 4

h̄� − h̄S
�

∫ h̄S
�+3(h̄�−h̄S

�)/4

h̄S
�+(h̄�−h̄S

�)/2
k̄r�(S(z, t)) dz, (5.8)

K̄eff
IV (t) = 4

h̄� − h̄S
�

∫ h̄�

h̄S
�+3(h̄�−h̄S

�)/4
k̄r�(S(z, t)) dz. (5.9)

We also examine K̄eff (t) = (K̄eff
I (t) + K̄eff

II (t) + K̄eff
III (t) + K̄eff

IV (t))/4 which is the mean
over the whole partially saturated region. Analogue measures for capillary pressure with
k̄r� replaced by p̄c will also later be discussed.

Figure 8 shows two plots of effective permeability versus capillary-rise height.
Figure 8(a) corresponds to the Lockington–Parlange model for the example based on the
Lago & Araujo (2001) 150 µm data. Figure 8(b) corresponds to the free-boundary model
for the example based on the Delker et al. (1996) 359 µm data. In both examples from
top to bottom are the permeability estimates K̄eff

I (cyan), K̄eff
II (blue), K̄eff

III (green) and K̄eff
IV

(red). The black dashed line shows the mean permeability, K̄eff , over the entire partially
saturated region. The left-hand vertical dashed line marks approximately the boundary
between the early-time classical dynamics and the transition region while the right-hand
vertical dashed line marks approximately the boundary between the transition region
and the long-time anomalous dynamics. Compare the Lago & Araujo (2001) 150 µm
capillary-rise data and theoretical solution in figure 4 for the Lockington–Parlange model
and the Delker et al. (1996) 359 µm data and theoretical solution in figure 7 for the
free-boundary model. A first observation in figure 8 is that for early times (capillary-rise
height to the left of the left-hand dashed line) each of the permeability measures is
approximately independent of capillary-rise height. This is consistent with the early-time
scaling predictions of Kim, Ha and coworkers. A second observation from figure 8 is that
for long times (capillary-rise height to the right of the right-hand vertical dashed, black,
line) there is a significant variation of each of the permeability measures with respect to
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Figure 8. Panel (a) shows different permeability measures for the Lockington–Parlange model versus
capillary-rise height for Lago & Araujo (2001) 150 µm data. Panel (b) shows different permeability measures
for the free-boundary model versus capillary-rise height for Delker et al. (1996) 359 µm data. In each plot,
the thin vertical dashed lines mark the approximate transition heights between the early-, intermediate- and
long-time regimes.

height. The overall mean permeability, K̄eff (black dashed curve), clearly varies strongly
with h. For the Lockington–Parlange model this overall mean appears to scale less strongly
with h than the Kim et al. (2017) scaling k ∼ 1/h2. For free-boundary model example
in figure 8(b) the k ∼ 1/h2 appears close to that observed in the lower quarter of the
partially saturated regime and also for overall mean permeability in the high range of
capillary-rise height. We see that this the overall mean is dominated by the behaviour of
the permeability in the lowest region of the partially saturated porous media (cyan curve,
K̄eff

I ). Higher up in the partially saturated region, as measured by K̄eff
II , K̄eff

III and K̄eff
IV ,

the permeability varies more strongly with capillary-rise height. That is, here k ∼ 1/hν

with ν > 2. Qualitatively similar results are found for the other Lago & Araujo (2001)
data as well as for the Delker et al. (1996) data. Additionally, we note that the choice of
sampling by quarter-regions is representative of other choices for partitioning the partially
saturated region, including pointwise sampling in space. These analyses show that the
permeability, as suggested in the scaling arguments of Kim et al. (2017) and Ha & Kim
(2020) does indeed change considerably from early time to late time and seems to be an
essential difference distinguishing the early-time classical capillary rise dynamics from
the long-time anomalous dynamics.

5.1. Comparison with Kim et al. (2017) data
As a final comparison of the model predictions we examine data from Kim et al. (2017) in
their figure 2(c) showing capillary rise dynamics of turpentine in a cellulose sponge. This
particular data set shows very clearly both the classical t1/2 power law at early times as
well as the t1/4 power law at later times. As such, it offers a good opportunity to test the
model predictions in terms of capillary-rise dynamics as well as scaling arguments related
to permeability and capillary pressure posed by Kim et al. (2017) and Ha & Kim (2020).

In figure 9(a) we show this Kim et al. (2017) data along with the predictions of the
Lockington–Parlange model (red curve) and our free boundary model (blue curve). For the
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Figure 9. Panel (a) shows two capillary-rise height predictions (Lockington–Parlange model, red;
free-boundary problem, blue) plotted against the data for capillary rise of turpentine in a cellulose sponge
from Kim et al. (2017) (open and solid squares; see also their figure 2c). Panels (b) and (c) show, for the
free-boundary model, various effective capillary pressure measures and permeability measures, respectively,
versus capillary-rise height taken over the same four quarters of the partially saturated media.

Lockington–Parlange model we used A = 1.2918, ε = 0.001425, he = 0.9015 cm, vg =
0.4309 cm s−1 and zR = 0.01031 cm. We note that the value of he falls approximately
where Kim et al. (2017) estimate the Jurin height marking the distinction between early
stages (solid squares) and late stages (open squares) while zR is approximately zero. The
free-boundary model uses S1 = 0.015, λBC = 1.5, he = 1.6 cm, vg = 0.5625 cm s−1 and
zR = 0.01 cm. Both models reasonably capture both early- and long-time dynamics.

We recall here two key components of the scaling arguments of Kim, Ha and coworkers
that lead to the long-time t1/4 power law prediction for capillary-rise height. First, in the
partially saturated media there is a balance between capillarity and gravity in partially
filled macropores so that p ∼ σ/rg ∼ ρgh where rg is a length scale for the meniscus
at the macropore-scale. In particular the capillary pressure is predicted to scale linearly
with capillary-rise height, h. Second, they argue that the permeability scales with this
macropore-scale which together with the capillary-pressure balance gives the prediction
that the permeability scales like k ∼ r2

g ∼ (σ/(ρgh))2. We can test these predictions with
our solutions.

For the free-boundary model solution shown in figure 9(a) we compute capillary
pressure measures of the same form as those in (5.6)–(5.9) except with k̄rl(S) replaced with
p̄c(S) (both using (2.23a,b)). Figure 9(b) shows mean capillary pressures over the lower
quarter (cyan), second quarter (blue), third quarter (green), top quarter (red) and entire
partially saturated region (black, dashed) versus capillary-rise height. In the early-time
regime all of the capillary pressure measures appear to be effectively independent of
capillary-rise height. In the long-time regime the overall mean capillary pressure as well
as any of the means in the upper three-quarters of the partially saturated region all
appear to closely follow a linear scaling with capillary-rise height, confirming a balance
between capillarity and gravity in the partially filled macropores. Both early- and long-time
observations are consistent with the scaling arguments put forward by Kim et al. (2017)
and Ha & Kim (2020). We note that in the lower quarter of the partially saturated media
the effective capillary pressure appears to scale more weakly with h (cyan curve); this
reflects the fact that at the very bottom of the partially saturated regime the pressure limits
to the constant reference pressure ρghe.
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Capillary rise in partially saturated rigid porous media

Also for the free-boundary model solution shown in figure 9(a) we compute mean
permeabilities as defined in (5.6)–(5.9): K̄eff

I (cyan), K̄eff
II (blue), K̄eff

III (green), K̄eff
IV (red)

and K̄eff (black, dashed). These are shown in figure 9(c). We observe that for early times
(on the left-hand side of the vertical dashed blue line) all permeability measures are
roughly independent of capillary-rise height, consistent with the scaling arguments of Kim
et al. (2017) and Ha & Kim (2020). We observe that for the long-time regime (on the
right-hand side of the vertical dashed black line) the permeability throughout the partially
saturated region decreases strongly with capillary-rise height. For reference, scaling trends
k ∼ 1/h2 and k ∼ 1/h are indicated by the upper and lower triangles. The overall mean
permeability, K̄eff , (black dashed curve) appears to be dominated by the trends in the lower
portion of the partially saturated regime (cyan curve), and both appear to scale with 1/hν

where 1 < ν < 2. The mean permeabilities in the upper portion of the partially saturated
regime scale more strongly with height suggesting that the Kim et al. (2017) and Ha &
Kim (2020) permeability scaling k ∼ 1/h2 is achieved over some intermediate region in
the lower portion of the partially saturated media.

Taken together, these observed relationships for the mean capillary pressure and mean
permeability with capillary-rise height in the partially saturated porous media, which we
compute directly from solutions to our model, appear to support the scaling arguments of
Kim et al. (2017) and Ha & Kim (2020).

6. Conclusions

We have explored predictions of two models of capillary-rise of a fluid in partially
saturated porous media. One model is the Lockington & Parlange (2004) model that
is based on a travelling-wave approximation in Richards’ equation. The second model,
which we refer to as the free-boundary model, also arrives at Richards’ equation with two
moving boundaries corresponding to the interface between fully saturated and partially
saturated regions in the porous material and the wet/dry interface at the top of the
partially saturated region. Both models use saturation-dependent functions for capillary
pressure and permeability. We compare the model predictions with three different sets
of experimental data from Delker et al. (1996), Lago & Araujo (2001) and Kim et al.
(2017). These experiments have documented both the classical, early-time, dynamics of
capillary rise as well as the long-time, anomalous, dynamics. We give parameter estimates
for each model in comparison with these experiments and find that these generally give
good graphical comparison with the data over the full range of dynamics.

We build on these results to give predictions for the relationship of effective permeability
and capillary pressure measures to the capillary-rise height. Such relationships have
recently been identified in scaling arguments by Kim et al. (2017) and Ha & Kim (2020). In
particular, for the anomalous regime, those authors predict a capillarity–gravity balance in
which the capillary pressure scales linearly with capillary-rise height and the permeability
scales inversely proportional to the square of the capillary-rise height. Together these give
anomalous capillary-rise behaviour of the form h ∼ t1/4. In both of the computational
models we explore in this work, we have been able to numerically compute different
permeability measures in the form of mean permeabilities taken over different regions of
the partially saturated media. Additionally, for our free-boundary model we have computed
analogous capillary pressure measures. The capillary–gravity balance is evident in our
observed linear relation between capillary-pressure and capillary-rise height throughout
the upper portion of the partially saturated media. We observe that the permeability scaling
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inversely proportional to capillary-rise height squared appears to be achieved in the lower
portion of the partially saturated porous media. All of these observations support the
scaling arguments of Kim et al. (2017) and Ha & Kim (2020).
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Appendix A. Similarity solution with Brooks–Corey formulae

Here we outline an early-time similarity solution for (2.28) and (2.29) with S = S(η) where
η = z̄/(2

√
t̄), h̄� = 2λ�

√
t̄ and h̄S

� = 2λS
�

√
t̄. We use the Brooks–Corey functions shown in

(2.23a,b), focusing only on the case Sr = 0, and note that the nonlinear factor appearing
in those equations has a power-law form in S given by

k̄r�(S)M̄(S) = 1
λBC

Sω, (A1)

where the constant exponent is ω = 2 + 1/λBC > 2. If we further introduce a shifted and
scaled variable η̄ = (η − λS

�)/(λ� − λS
�), (2.28) becomes

−2(λ� − λS
�)(λ

S
� + (λ� − λS

�)η̄)
dS
dη̄

= d
dη̄

[
(ω − 2)Sω dS

dη̄

]
, (A2)

for 0 < η̄ < 1 subject to the boundary conditions S(η̄ = 0) = 1 and S(η̄ = 1) = S1 and
the interface conditions

2λ�(λ� − λS
�) + (ω − 2)Sω−1

1
dS
dη̄

∣∣∣∣
η̄=1

= 0, (A3)

λS
� −

√
1

2(1 − z̄R)
= 0. (A4)

We integrate equation (A2) once to get

−2
(λ� − λS

�)

ω − 2

∫ η̄

0
(λS

� + (λ� − λS
�)η̄)

dS
dη̄

dη̄ = Sω dS
dη̄

+ C0, (A5)

where C0 is an arbitrary constant. Integrating by parts, applying S(η̄ = 0) = 1 and
rewriting the right-hand side derivative gives

−2
(λ� − λS

�)

ω − 2

[
λS

�(S − 1) + (λ� − λS
�)

(
η̄S −

∫ η̄

0
S( p) dp

)]
= d

dη̄

[
1

ω + 1
Sω+1

]
+ C0.

(A6)
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Capillary rise in partially saturated rigid porous media

Next, we multiply through by ω + 1 and define

Λ = (ω + 1)(λ� − λS
�)

ω − 2
, (A7)

so that

−2Λ

[
λS

�(S − 1) + (λ� − λS
�)η̄S − (λ� − λS

�)

∫ η̄

0
S( p) dp

]
= d

(
Sω+1)
dη̄

+ (ω + 1)C0.

(A8)

Then, we integrate once again to get

−2ΛλS
�

∫ η̄

0
S( p) dp + 2ΛλS

�η̄ − 2Λ(λ� − λS
�)

∫ η̄

0
pS( p) dp

+ 2Λ(λ� − λS
�)

∫ η̄

0

(∫ p

0
S(q) dq

)
dp

= Sω+1 + (ω + 1)C0η̄ + C1, (A9)

where C1 is an arbitrary constant. Now observe (e.g. via integration by parts) that

∫ η̄

0

(∫ p

0
S(q) dq

)
dp = η̄

∫ η̄

0
S(q) dq −

∫ η̄

0
pS( p) dp. (A10)

If we define the functions

F(x) ≡
∫ x

0
S( p) dp, G(x) ≡

∫ x

0
pS( p) dp, (A11a,b)

then, (A9) becomes

2ΛλS
� (η̄ − F(η̄)) + 2Λ(λ� − λS

�) (η̄F(η̄) − 2G(η̄)) = Sω+1 + (ω + 1)C0η̄ + C1. (A12)

The boundary conditions S(η̄ = 0) = 1 and S(η̄ = 1) = S1 imply that C1 = −1 and that

(ω + 1)C0 = 1 − Sω+1
1 + 2ΛλS

� [1 − F(1)] + 2Λ(λ� − λS
�) [F(1) − 2G(1)] . (A13)

It follows from (A12) that

Sω+1 = 1 − η̄
(

1 − Sω+1
1

)
+ 2ΛλS

� [η̄F(1) − F(η̄)]

+ 2Λ(λ� − λS
�) [η̄F(η̄) − 2G(η̄) − η̄ (F(1) − 2G(1))] , (A14)

which can be viewed as an integral equation for the saturation S.
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We can use this information to further examine boundary condition (A3). First note that
differentiating equation (A14) gives

(ω + 1)Sω dS
dη̄

= −
(

1 − Sω+1
1

)
+ 2ΛλS

�

[
F(1) − F′(η̄)

]
+ 2Λ(λ� − λS

�)
[
η̄F′(η̄) + F(η̄) − 2G′(η̄) − F(1) + 2G(1)

]
, (A15)

where F′, for example, denotes differentiation with respect to the function’s argument.
Evaluating this expression at η̄ = 1 where S = S1 and dividing by (ω + 1)S1 gives

Sω−1
1

dS
dη̄

∣∣∣∣
η̄=1

= 1
S1(ω + 1)

{
−
(

1 − Sω+1
1

)
+ 2ΛλS

�

[
F(1) − F′(1)

]
+2Λ(λ� − λS

�)
[
F′(1) + F(1) − 2G′(1) − F(1) + 2G(1)

]}
= 1

S1(ω + 1)

{
−
(

1 − Sω+1
1

)
+ 2ΛλS

� [F(1) − S1]

+2Λ(λ� − λS
�) [−S1 + 2G(1)]

}
, (A16)

and where the second equality follows by noting that F′(1) = S1 and G′(1) = S1. Then,
using (A16) in (A3) gives

0 = 2
λ�(λ� − λS

�)(ω + 1)

ω − 2
+ 1

S1

{
−
(

1 − Sω+1
1

)
+ 2ΛλS

� [F(1) − S1]

+2Λ(λ� − λS
�) [−S1 + 2G(1)]

}
. (A17)

Multiplying through by S1, using (A7), and cancelling terms reveals that

2ΛλS
�F(1) + 4Λ(λ� − λS

�)G(1) = 1 − Sω+1
1 , (A18)

or

Λ = 1 − Sω+1
1

2λS
�F(1) + 4(λ� − λS

�)G(1)
. (A19)

This equation, with Λ defined in (A7) provides a quadratic equation that can be solved to
find the difference λ� − λS

� . In particular, (A7) and (A19) imply that

[
4G(1)

ω + 1
ω − 2

]
(λ� − λS

�)
2 +

[
2λS

�F(1)
ω + 1
ω − 2

]
(λ� − λS

�) −
[
1 − Sω+1

1

]
= 0. (A20)

It is easy to verify that this has a solution with λ� − λS
� > 0 for relevant values of S1 and

ω. Thus, keeping in mind equation (A4), a desired similarity solution with λ� > λS
� > 0

(i.e. the partial saturation front, h̄�, advances faster than the fully saturated front, h̄S
�) is

guaranteed.
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Capillary rise in partially saturated rigid porous media

Using (A18) in (A14) implies that for η̄ ∈ (0, 1)

Sω+1 = 1 − 2ΛλS
�F(η̄) + 2Λ(λ� − λS

�) [η̄F(η̄) − 2G(η̄) − η̄F(1)] . (A21)

Rewriting this using (A19) gives

Sω+1 = 1 −
(

1 − Sω+1
1

)[2λS
�F(η̄) + 2(λ� − λS

�) (η̄(F(1) − F(η̄)) + 2G(η̄))

2λS
�F(1) + 4(λ� − λS

�)G(1)

]

= 1 −
(

1 − Sω+1
1

)
Q(η̄; λ�, λS

�), (A22)

where

Q(η̄; λ�, λS
�) = 2λS

�F(η̄) + 2(λ� − λS
�) (η̄(F(1) − F(η̄)) + 2G(η̄))

2λS
�F(1) + 4(λ� − λS

�)G(1)
. (A23)

Observe that Q(η̄ = 0) = 0 and Q(η̄ = 1) = 1. Also note that as long as λ� > λS
� > 0 then

Q(η̄; λ�, λS
�) > 0 for η̄ ∈ (0, 1). Furthermore, note that

dQ
dη̄

= 2λS
�F′(η̄) + 2(λ� − λS

�)
(
F(1) − F(η̄) − η̄F′(η̄) + 2G′(η̄)

)
2λS

�F(1) + 4(λ� − λS
�)G(1)

= 2λS
�S + 2(λ� − λS

�) (F(1) − F(η̄) + η̄S)

2λS
�F(1) + 4(λ� − λS

�)G(1)
, (A24)

which is positive for η̄ ∈ [0, 1] under the same conditions λ� > λS
� > 0. Therefore, Q is

a monotonically increasing function of for η̄ ∈ [0, 1] which guarantees that the saturation
S decreases monotonically from its maximum value of 1 at the bottom of the partially
saturated region to its minimum value S1 at the top of the partially saturated region. It
remains to solve for the function S(η̄) using the integral equation (A22).

Finally, we can also examine Q(η̄) for η̄ ≈ 1. Let η̄ = 1 − y with 0 ≤ y � 1. Note that

F(η̄) = F(1) − yF′(1) + O( y2) = F(1) − yS1 + O( y2), (A25)

G(η̄) = G(1) − yG′(1) + O( y2) = G(1) − yS1 + O( y2). (A26)

Then, for 0 ≤ 1 − η̄ � 1, after some manipulation we get

Q(η̄; λ�, λS
�) = 1 −

(
2λ�S1

2λS
�F(1) + 4(λ� − λS

�)G(1)

)
(1 − η̄) + O( y2). (A27)

Therefore, from (A22), when η̄ ≈ 1 the saturation satisfies

Sω+1 = Sω+1
1 +

(
1 − Sω+1

1

)[( 2λ�S1

2λS
�F(1) + 4(λ� − λS

�)G(1)

)
(1 − η̄) + O(1 − η̄)2

]
.

(A28)

Note that while F(1) and G(1) are constants, they depend on S over the whole domain
through the integrals

F(1) =
∫ 1

0
S( p) dp, G(1) =

∫ 1

0
pS( p) dp. (A29)
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Appendix B. Permeability estimates: Lockington–Parlange model

Lockington & Parlange (2004) take as a starting point (i.e. their equation (3)) the
relationship

z ≈ −
∫ ĥ

zR

[
K

q0S + K

]
dĥ, (B1)

where ĥ is their matric potential head (ĥ ≤ 0), z is the vertical spatial coordinate, zR is the
positive pressure head imposed at z = 0, K is the hydraulic conductivity, S is the saturation
and q0 is a time-dependent volume flux at z = 0. Both K and S, as posed by Lockington
& Parlange (2004), are functions of ĥ given by (3.5) and (3.6). The moving front position,
z = zf (t), corresponds to ĥ = hf → −∞, and consequently

zf = −
∫ −∞

zR

[
K

q0S + K

]
dĥ = 1

α
ln
(

Ksat

q0
+ 1

)
+ Ksat

(
zR + he

q0 + Ksat

)
, (B2)

where we have used the forms for K and S given by (3.5) and (3.6) (see also equation (14) in
Lockington & Parlange (2004)). Lockington & Parlange (2004) refer to he (denoted there
by ha) as the ‘air entry pressure’ above which the porous material is saturated (S = 1).
The height, ze, which marks the transition from fully saturated porous media to partially
saturated porous media is given by

ze = −
∫ −he

zR

[
K

q0S + K

]
dĥ = −

∫ −he

zR

[
Ksat

q0 + Ksat

]
dĥ = (he + zR)

Ksat

q0 + Ksat
. (B3)

Next, we define a time-dependent position in the partially saturated zone by z∗(t) ∈
[ze, zf ]. For example, z∗(t) = ze(t) + (zf (t) − ze(t))/4 would represent the position one
quarter of the way up through the partially saturated region of the porous material. Using
(B1) we define a corresponding value ĥ∗ by

z∗ = −
∫ ĥ∗

zR

[
K

q0S + K

]
dĥ. (B4)

Using (3.5) and (3.6) this integral can be evaluated and we find that

z∗ = Ksat

(
zR + he

q0 + Ksat

)
+ 1

α

{
ln
(

1 + Ksat

q0

)
− ln

(
1 + Ksat

q0
exp

[
α(−ĥ∗ + he)

])}
.

(B5)

This expression relates z∗ to ĥ∗ and can also be inverted as

−ĥ∗ + he = 1
α

ln Ω∗, (B6)

where Ω∗ is defined as

Ω∗ = − q0

Ksat
+
(

1 + q0

Ksat

)
eω∗

, (B7)

and where

ω∗ = −α

(
z∗ − Ksat

zR + he

q0 + Ksat

)
. (B8)
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Capillary rise in partially saturated rigid porous media

Next, for a region of partially saturated porous media z ∈ [z∗
low, z∗

up], where ze ≤ z∗
low <

z∗
up ≤ zf ], we define an effective hydraulic conductivity

Keff
low→up = 1

z∗
up − z∗

low

∫ z∗up

z∗low

K(z, t) dz. (B9)

Since K is expressed in terms of the matric potential ĥ we introduce a change of variables
z = f (ĥ) where

dz

dĥ
= f ′(ĥ) = − K(ĥ)

q0S(ĥ) + K(ĥ)
, (B10)

from (B1). With z∗
low = f (−ĥ∗

low) and z∗
up = f (−ĥ∗

up) and noting that the case ĥ ≤ −he
applies in (3.5) and (3.6), it follows that

Keff
low→up = 1

z∗
up − z∗

low

∫ −ĥ∗
up

−ĥ∗
low

K(ĥ)

[
− K(ĥ)

q0S(ĥ) + K(ĥ)

]
dĥ

= − 1
z∗

up − z∗
low

∫ −ĥ∗
up

−ĥ∗
low

[
K2

sat exp[β(ĥ + he)]

q0 exp[−α(ĥ + he)] + Ksat

]
dĥ. (B11)

Next, let u = (ĥ + he)/(zR + he) and define −u∗
low = (−ĥ∗

low + he)/(zR + he) and −u∗
up =

(−ĥ∗
up + he)/(zR + he). Then,

K̄eff
low→up =

Keff
low→up

Ksat
= − 1

Z∗
up − Z∗

low

∫ −u∗
up

−u∗
low

exp[A(1 + ε)u]
1 + Q0 exp[−Au]

du, (B12)

where Z∗
low = z∗

low/(zR + he), Z∗
up = z∗

up/(zR + he) and Q0 = q0/Ksat, along with A =
α(zR + he) and A(1 + ε) = β(zR + he) as defined in (3.4a,b). We consider four different
permeability measures corresponding to the four different regions in the partially
saturated media from the bottom quarter to the top quarter as outlined in the main text
in (5.1)–(5.4).
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