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Abstract. In this paper we describe a special class of self-adjoint operators
associated with the singular self-adjoint second-order differential expression �. This
class is defined by the requirement that the sesquilinear form q (u, v) obtained from � by
integration by parts once agrees with the inner product 〈�u, v〉. We call this class Type
I operators. The Friedrichs Extension is a special case of these operators. A complete
characterization of these operators is given, for the various values of the deficiency
index, in terms of their domains and the boundary conditions they satisfy (separated
or coupled).
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1. Introduction. In this paper we give a complete characterization of certain self-
adjoint operators associated with the differential expression

�u(x) = 1
w(x)

(−(p(x)u′(x))′ + g(x)u(x)) (1)

which is assumed to be defined for almost all x ∈ I = (a, b) , with −∞ ≤ a < b ≤ ∞.

The expression � gives rise to the formal sesquilinear form

q (u, v) =
∫

I
pu′v′ + guv

in addition to the form

〈�u, v〉 =
∫

I
(−(pu′)′ + gu)v.

The equality

q (u, v) = 〈�u, v〉 (2)

requires the vanishing of the boundary term

−pu′v]ba (3)
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which is the most general condition for (2) to hold. As we shall see in the following sec-
tions equality (2) gives rise to a class of self-adjoint operators, which we termed Type I
operators in [8]. The study of these operators was necessary to handle certain non-
linear equations and devise numerical methods associated with the formal expression
�. It is to be expected of course that boundary term (3) will vanish for all functions
in the domain of definition of any Type I operator. The vanishing of this boundary
term could occur because pu′v (a) = 0 = pu′v (b) or simply because pu′v (a) = pu′v (b).
The former case is referred to as separated boundary conditions and the latter case is
referred to as coupled boundary conditions. In this paper we give a full characterization
of Type I operators in terms of both kinds of boundary conditions. As we shall see,
Type I operators with the separated boundary conditions always exist while those with
coupled boundary conditions exist only under further restrictions on the data of the
problem. We should also point out that the Friedrichs Extension [3], which is similarly
defined, satisfies Dirichlet (i.e. separated) boundary conditions [5, 7] in the regular
case (see the next section). Since the Dirichlet boundary conditions are a special form
of the more general separated boundary conditions mentioned above, the Friedrichs
Extension is a special case of Type I operators. Our work in this paper will establish that
other separated boundary conditions such as u (a) = u′ (b) = 0 give rise to self-adjoint
operators which are essentially different from the Friedrichs Extension.

All self-adjoint operators associated with the expression � are realized through the
requirement

〈�u, v〉 = 〈u, �v〉
which, in turn, requires the vanishing of the more general boundary term

−pu′v + puv′]ba. (4)

Type I operators are a special class of these operators in that

〈�u, v〉 = q (u, v) = 〈u, �v〉
and (consequently)

−pu′v]ba = −puv′]ba = 0.

Of course not all self-adjoint extensions of L0 are Type I operators. For example,
the expression �u = −u′′ + u defined on (0, 1) and the boundary conditions u (0) +
u′ (0) = u (1) + u′ (1) = 0 give rise to a self-adjoint operator in L2 (I). The function
u (x) = −3x3 + 4x2 is in the domain of this operator but {u, u}1

0 	= 0.

The study of self-adjoint operators associated with � is not new (see [4, 6, 9, 10]
and the references therein), while the study of boundary conditions associated with
them can be found in refs. [1, 2, 4, 10]. The study of Type I operators appears to be
new and to the best of our knowledge, this is the first time that the study of boundary
conditions associated with Type I operators is carried out.

This paper consists of three sections in addition to the introduction. In Section 2 we
present some preliminary material that includes definitions, theorems and discussions
needed for the rest of the paper. It is designed to be, more or less, self-contained
and should help the reader to better follow the terminology used in connection with
singular operators. In Section 3 we show that Type I operators with separated boundary
conditions always exist while those with coupled boundary conditions exist only when
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the deficiency index (see next section) is 2. We also give a full characterization of the
domains of these operators.

2. Preliminaries. In this section we introduce notation, definitions and
discussions that are necessary for this work. The main definitions and theorems can
be found in refs. [4, 6, 9, 10]. We work with the formally self-adjoint differential
expression

�u = 1
w

[(−pu′)′ + gu]

defined on the interval I = (a, b) , −∞ ≤ a < b ≤ ∞. We assume that

1/p, g, w ∈ Lloc (I)

and that w > 0 almost everywhere in I.
Let H = L2

w(I), be the Hilbert space of square integrable functions with respect
to the weight w. The inner product 〈·, ·〉 and norm ‖·‖ in this space are given by

〈f, h〉 =
∫

I
f (t) h (t) w (t) dt

and

‖f ‖2 =
∫

I
|f (t)|2 w (t) dt,

respectively. Also let u[1] := pu′. u[1] is called the first pseudo-derivative of u with respect
to the function p. The maximal operator L generated by the expression � in H is defined
by

D(L) = D = {
u ∈ H : u, u[1] ∈ AC(I) and �u ∈ H

}
,

Lu = �u, u ∈ D.

Since D is dense in H, L has a uniquely defined adjoint. Let L0 = L∗ (the adjoint of
L) and D0 = D (L0) . The operator L0 is called the minimal operator generated by � and
it is known [6] that D0 ⊆ D, D0 is dense in H and L∗

0 = L. In other words, L0 ⊂ L = L∗
0.

Therefore, L0 is a symmetric closed operator. Moreover, any self-adjoint extension S
of L0 is a self-adjoint restriction of L and vice versa, i.e. L0 ⊂ S = S∗ ⊂ L∗

0 = L.

For y, z ∈ D and x ∈ I define the Lagrange bracket

[y, z] (x) = −y[1](x)z(x) + z[1](x) y(x). (5)

Note that the limits of the terms in (5) as x → a+, b− both exist and are finite. Thus,
the notation

[y, z](a) = lim
x→a+

[y, z](x), [y, z](b) = lim
x→b−

[y, z](x)

is justified. We use [y, z]βα to denote [y, z](β) − [y, z](α).
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The endpoint a is regular if 1/p, g, w ∈ L (a, c) for some (and hence all) c ∈ I ; is
limit circle (LC) if all solutions of

�u = 0 (6)

are in L2
w (a, c) for some c ∈ I ; is limit point (LP) if it is not LC. Similar definitions hold

at b. An endpoint is singular if it is not regular. The deficiency index of the operator L0

is defined to be the number of linearly independent solutions of (6) which belong to H
(see [4, 10] for more details).

PROPOSITION 1.
(1) d = 0 ⇐⇒ a and b are LP.
(2) d = 1 ⇐⇒ one end point is LP and the other is LC.
(3) d = 2 ⇐⇒ a and b are LC.

Proof. See [6, p. 72]. �
Let c ∈ I and let θ, φ be the unique real solutions of the initial value problems

�u = 0, (7)

θ (c) = −φ[1](c) = 1, (8)

θ [1](c) = φ(c) = 0. (9)

Observe that [θ, φ] (x) = −1 = − [θ, φ] (x) for all x ∈ I. If a (b) is LC then θ, φ belong
to L2

w (a, c)
(
L2

w (c, b)
)
.

If X, Y are vector spaces and Y ⊂ X, the notation x1, x2, . . . , xm ∈ X mod Y
means that these elements are in X and are linearly independent modulo Y (see [6]). If

X = Y � span {x1, x2, . . . , xm} (10)

then it will be sufficient for our purposes to consider only the elements in X mod Y that
are linear combinations of x1, x2, . . . , xm. We also use the notation dim (X mod Y ) for
the number of elements that can be found in X mod Y such that (10) is valid.

The proofs of the following two lemmas can be found in ref. [10].

LEMMA 2. Suppose a (b) is LC, then there are real functions ψ1, ψ2 (ψ3, ψ4) ∈
D mod D0 such that

(1) [ψ1, ψ2] (x) = −1 near a ([ψ3, ψ4] (x) = −1 near b).
(2) ψ1 and ψ2 = 0 near b (ψ3 and ψ4 = 0 near a).

The functions ψ1, ψ2 (ψ3, ψ4) may be constructed by taking them equal to θ, φ,

respectively, near a (b) and equal to 0 near b (a) . We remark that in the above lemma,
if both a and b are LC, then ψ1, ψ2, ψ3, ψ4 ∈ D mod D0.

LEMMA 3. If a and b both are LP, then

D = D0.

If a is LC and b is LP, then

D = D0 � span{ψ1, ψ2}.
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If b is LC and a is LP, then

D = D0 � span{ψ3, ψ4}.

If a and b both are LC then

D = D0 � span{ψ1, ψ2, ψ3, ψ4}, (11)

where ψ1, ψ2, ψ3, ψ4 are as in Lemma 2.

In the case d = 1, to avoid a lot of repetitive statements, let us agree to take a as
LC and b as LP.

The domain of definition D1 of any self-adjoint extension of L0 is characterized
by the existence of d functions ϕ1, . . . , ϕd ∈ D mod D0 such that [ϕi, ϕj]ba = 0 and

D1 = D0 � span{ϕ1, . . . , ϕd}. (12)

The proof of the following lemma is an easy consequence of the results in [10].

LEMMA 4. Assume d = 2 and ψ1, ψ2, ψ3, ψ4 are as in Lemma 3. Let ϕ1, ϕ2 ∈
D modD0 and write

ϕ1 = η0 + α1ψ1 + α2ψ2 + α3ψ3 + α4ψ4,

ϕ2 = ξ0 + β1ψ1 + β2ψ2 + β3ψ3 + β4ψ4,

where η0, ξ0 ∈ D0, αi, βi ∈ �, i = 1, 2, 3, 4. Then

(1) ϕ1, ϕ2 characterize the domain of definition D1 of a self-adjoint extension L1 of
L0 if and only if ∣∣∣∣α1 α2

β1 β2

∣∣∣∣ = eiθ
∣∣∣∣α3 α4

β3 β4

∣∣∣∣ (13)

for some θ ∈ [0, 2π ) .

(2) If D1 is the domain of definition of a self-adjoint extension L1 of L0 then the
separated boundary condition

[u, v] (a) = [u, v] (b) = 0

is satisfied for all u, v ∈ D1 if and only if the determinants in (13) vanish. Then
we can write

ϕ1 = α1ψ1 + α2ψ2,

ϕ2 = β3ψ3 + β4ψ4.

(3) If D1 is the domain of definition of a self-adjoint extension L1 of L0 then the
coupled boundary condition

[u, v] (a) = [u, v] (b)
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is satisfied for all u, v ∈ D1 if and only if the determinants in (13) do not vanish.
Then we can write

ϕ1 = ψ1 + α3ψ3 + α4ψ4,

ϕ2 = ψ2 + β3ψ3 + β4ψ4.

Next we introduce the formal symmetric sesquilinear form

q (u, v) =
∫ b

a
pu′v′ + guv

and the associated boundary terms

{u, v}(x) = −u[1]v(x), x ∈ I,

{u, v}b
a = {u, v}(b+) − {u, v}(a−)

whenever the implied limits exist. Note that

[u, v] (x) = {u, v} (x) − {v, u} (x) .

Also, for u, v ∈ D, q (u, v) exists and is finite if and only if {u, v}b
a exists and is finite.

Then

q (u, v) = 〈Lu, v〉 + {u, v}b
a .

Our main assumption on q is the following:
(A) We assume that q is bounded below: q (u) := q (u, u) ≥ M ‖u‖2 for some M ∈ �.

REMARK 5. Without loss of generality, we may assume that M > 0 for, otherwise,
we may consider the form q + λ for some λ > M instead. Let V be the subspace of
functions u ∈ H for which q (u) < ∞. Note that V is dense in H since it contains the
dense subspace of functions in D with compact support in I. It can easily be checked
that V is a Hilbert space if equipped with the inner product induced by q.

REMARK 6. Assumption (A) excludes cases where the differential expression is in
limit point case at one end-point but not in strong limit point case (cf. e.g. [2]).

PROPOSITION 7.
(1) D0 ⊆ V and, for all u, v ∈ D0, q (u, v) = 〈L0u, v〉 .

(2) {u, v}b
a = 0 for all u, v ∈ D0.

Proof. See [8]. �
The equation q (u, v) = 〈L0u, v〉 for all u ∈ D0, v ∈ V means that, for a fixed u ∈

D0, q (u, ·) is continuous on D0 with respect to the norm in H. The maximal subspace
of V with this property will play a central role in this paper. Therefore, we define the
space D̃ by

D̃ = {u ∈ V : q (u, ·) is continuous on D0 with respect to the norm in H} . (14)

The next proposition gives some properties of D̃ and, in particular, the fact that D̃
is an essential extension of D0.
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PROPOSITION 8. Let D̃ be defined by (14). Then
(1) For u ∈ D̃ and v ∈ V both {u, v} (a) and {u, v} (b) exist and are finite.
(2) D̃ ⊂ D and, for all u ∈ D̃ and v ∈ D0, {u, v}b

a = {v, u}b
a = 0.

(3) D̃ = {
u ∈ D : {u, v}b

a = 0∀v ∈ D0
}
.

(4) For d ≥ 1, there are d real functions u1, . . . , ud ∈ D̃ mod D0 and
(5) {ui, uj}b

a = 0, i, j = 1,. . . , d.

Proof. See [8]. �
Let ψ1, ψ2 be as in Lemma 3 (for d = 1 or d = 2) and define the matrix Ca by

Ca =
[ {ψ1, ψ1} (a) 1

2 ({ψ1, ψ2} (a) + {ψ2, ψ1} (a))
1
2 ({ψ1, ψ2} (a) + {ψ2, ψ1} (a)) {ψ2, ψ2} (a)

]
,

if the implied limits exist. This matrix has eigenvalues

d ± √
d2 + c2

2
,

where

d = {ψ1, ψ1} (a) + {ψ2, ψ2} (a) ,

c = {ψ1, ψ2} (a) − {ψ2, ψ1} (a)

= [ψ1, ψ2] (a) = −1,

where, in order to arrive at the expression for c, we used the observation that

{ψ1, ψ1} {ψ2, ψ2} (a) = {ψ1, ψ2} {ψ2, ψ1} (a) .

It can be directly verified that the last equation is true for any x ∈ I. If the limits as
x → a+ exist we can then pass to the limit. Denote the positive and negative eigenvalues
of Ca by λa,− σa, respectively. Since Ca is symmetric, there exists an orthogonal
matrix Ba such that Bt

aCaBa := �a := diag [λa,−σa] . Introduce the change of base
transformation (

ψ̃1 (x)
ψ̃2 (x)

)
= Ba

(
ψ1 (x)
ψ2 (x)

)
.

Then ψ̃1, ψ̃2 are still linearly independent modulo D0 and still equal to zero near b.

The corresponding C̃a matrix is

C̃a =
[

Bt
1,aCaB1,a Bt

1,aCaB2,a

Bt
2,aCaB1,a Bt

2,aCaB2,a

]
= Bt

aCaBa = �a,

where B1,a, B2,a are the columns of Bt
a. From this we get{

ψ̃1, ψ̃1
}

(a) = λa,{
ψ̃1, ψ̃2

}
(a) + {

ψ̃2, ψ̃1
}

(a) = 0,{
ψ̃2, ψ̃2

}
(a) = −σa.
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Furthermore,[[
ψ̃1, ψ̃1

] [
ψ̃1, ψ̃2

][
ψ̃2, ψ̃1

] [
ψ̃2, ψ̃2

]] (x) =
[

Ba

(
ψ1

ψ2

)
Ba

(
ψ1

ψ2

)]
(x)

= Bt
a

[
[ψ1, ψ1] [ψ1, ψ2]
[ψ2, ψ1] [ψ2, ψ2]

]
(x) Ba

= Bt
a

[
0 −1
1 0

]
Ba =

[
0 −1
1 0

]
,

where the last equality holds because Ba and the matrix R := [0 −1
1 0 ] are rotations. Hence,

we still have [ψ̃1, ψ̃2](x) = −1 = −[ψ̃2, ψ̃1](x). For the case d = 2, similar remarks hold
for the end point b and the functions ψ3, ψ4. It is now in order to clarify our subsequent
use of the ψ-functions appearing in Lemma 3. If the limits at the end point(s) do not
exist or have not yet been established, then the ψ-functions are exactly the same as in
Lemma 3. If the aforementioned limits exist or have been established then we assume
that all expressions involving the ψ-functions have been rewritten, if necessary, in
terms of the ψ̃-functions given above. We do this without distinguishing between the
two sets of functions. Therefore, we will always assume that the ψ-functions produce
the diagonal matrix �a (�b) whenever it is possible to form the corresponding matrix
Ca (Cb). One further observation to be made here is that

λaσa = λbσb = 1
4
, (15)

as

λaσa = −
(

d + √
d2 + c2

2

) (
d − √

d2 + c2

2

)

= c2

4
= 1

4
.

DEFINITION 9. A self-adjoint extension L1of L0 with domain D1 such that {u, v}b
a =

0 for all u, v ∈ D1will be called a Type I operator and its domain D1 will be called a
Type I domain.

DEFINITION 10. Define the δ-deficiency by

δ = dim
(
D mod D̃

)
.

In the case d = 1, since dim(D̃ mod D0) ≥ 1 and dim(D mod D0) = 2,

dim(D mod D̃) ≥ 0. Therefore, δ ∈ {0, 1}. Similarly in the case d = 2, δ ∈ {0, 1, 2}. In
either case, if δ > 0 then D̃ is a proper subspace of D and if δ = 0 then D̃ = D.

Observe also that if D1 is a Type I domain then D1 ⊂ D̃. Various Type I
operators obviously correspond to the various ways of choosing the functions
u1,. . . , ud ∈ D̃modD0 in accordance with Proposition 8. This paper is, in a sense,
about the possible choices of such functions.

3. Description of Type I domains. We emphasize here that the discussion in this
section is valid under our basic assumption that the sesquilinear form q is bounded
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below. For any value of d, the domain D always contains a Type I domain. For d = 0
the only self-adjoint extension of L0 is L0 itself. In this case L0 is a Type I operator
as asserted by Part 2 of Proposition 7. For d ≥ 1 the statement follows from Parts 4
and 5 of Proposition 8. The general requirement for a domain D1 ⊂ D̃ to be a Type I
domain is that {u, v}b

a = 0 for all u, v ∈ D1. In this section we are going to describe all
Type I domains D1 for which the separated boundary condition

{u, v} (a) = {u, v} (b) = 0 (16)

for all u, v ∈ D1 is satisfied and those for which the coupled boundary condition

{u, v} (a) = {u, v} (b) ∀u, v ∈ D1

and {u, v} (a) 	= 0 for at least one pair u, v.
(17)

As we shall see, Type I domains with the separated boundary condition (16) always
exist. However, Type I domains with coupled boundary condition (17) exist only in the
case d = 2 and under the condition D̃ = D.

Again, for d = 0 the situation is very simple since, by Part 2 of Proposition 7 D0 is
a Type I domain with separated boundary condition (16).

3.1. The case d = 1. In this subsection we assume that the deficiency index d = 1
and that ψ1, ψ2 are as in Lemmas 2 and 3.

PROPOSITION 11. There exists a Type I domain D1with separated boundary condi-
tion (16).

Proof. For any u ∈ D,

u = u0 + αψ1 + βψ2,

where α, β ∈ � and u0 ∈ D0. Since ψ1, ψ2 vanish near b, it follows from this and
Proposition 7 that {u, v} (b) = 0 for any pair u, v ∈ D. Consequently, the same is true
for D̃. Since by Proposition 8 D̃ contains a Type I domain D1 and {u, v}b

a = 0 for all
u, v ∈ D1, separated boundary condition (16) is satisfied. �

COROLLARY 12. All Type I domains have separated boundary condition (16).

LEMMA 13. If δ = 1 then there is a real linear combination η1 of ψ1, ψ2 such that
η1 ∈ D̃ mod D0. Furthermore, if η1, ψ1 are linearly independent then η1 can be chosen
such that [η1, ψ1] (x) = 1 for x near a and if η1, ψ2 are linearly independent then η1 can
be chosen such that [η1, ψ2] (x) = −1 for x near a.

Proof. Since D̃ contains a Type I domain, a real linear combination η1 of ψ1, ψ2

belongs to D̃ mod D0. Suppose η1 = α1ψ1 + α2ψ2 and η1, ψ1 are linearly independent.
Then α2 	= 0, and we can assume that η1 = α1ψ1 + ψ2. For x near a,

[η1, ψ1] (x) =
∣∣∣∣ η1 ψ1

η
[1]
1 ψ

[1]
1

∣∣∣∣ (x) =
∣∣∣∣ α1ψ1 + ψ2 ψ1

α1ψ
[1]
1 + ψ

[1]
2 ψ

[1]
1

∣∣∣∣ (x)

=
∣∣∣∣ ψ2 ψ1

ψ
[1]
2 ψ

[1]
1

∣∣∣∣ (x) = [ψ2, ψ1] (x) = 1.

The other case is proven similarly. �
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Lemma 13 means that the functions ψ1, ψ2 in Lemmas 2 and 3 can be chosen such
that ψ1 ∈ D̃ mod D0. This choice will always be assumed in the sequel.

THEOREM 14. All Type I domains are characterized as follows:
(1) If δ = 1 then there is only one Type I domain, namely,

D1 = D0 � span{ψ1}.

(2) If δ = 0 then there are two Type I domains given by

D1 = D0 � span

{
ψ1 +

√
λa

σa
ψ2

}
,

D2 = D0 � span

{
ψ1 −

√
λa

σa
ψ2

}
.

Proof. To prove Part 1 assume δ = 1. Then

D̃ = D0 � span{ψ1}

and D̃ is the only Type I domain.
To prove Part 2, let D1 be a Type I domain and select a function η ∈ D1 mod D0.

We can write

η = α1ψ1 + α2ψ2,

where we may take α1, α2 to be real since all self-adjoint extensions of L0 are real (see
[1]). The boundary condition {η, η} (a) = 0 then yields

αt�aα = 0.

where αt = [α1, α2] . This equation gives

α2 = ±
√

λa

σa
α1.

Thus,

η = α1

(
ψ1 ±

√
λa

σa
ψ2

)
.

This shows that there are two Type I domains, one defined by the function ψ1 +√
λa/σaψ2 and the other defined by the function ψ1 − √

λa/σaψ2. �

3.2. The Case d = 2. In this subsection we assume that the deficiency index d = 2
and that ψ1, ψ2, ψ3, ψ4 be as in Lemmas 2 and 3.

PROPOSITION 15. There exists a Type I domain with separated boundary condi-
tion (16).
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Proof. The result will be established if we can show that we can select two functions
ϕ1, ϕ2 ∈ D̃ mod D0 and

{ϕi, ϕj}(a) = {ϕi, ϕj}(b) = 0, i, j = 1, 2.

Let ϕ1, ϕ2 be as in Parts 4 and 5 of Proposition 8. Since {ϕi, ϕj}b
a = 0, i, j = 1, 2, the

domain D̂ defined by

D̂ = D0 � span{ϕ1, ϕ2}

is a Type I domain. We can write

ϕ1 = α1ψ1 + α2ψ2 + α3ψ3 + α4ψ4,

ϕ2 = β1ψ1 + β2ψ2 + β3ψ3 + β4ψ4.

Then by Lemma 4, equation (13) is satisfied. We have two cases to consider:
Case 1: The determinants in (13) vanish.
In this case, by Lemma 4, we may write

ϕ1 = α1ψ1 + α2ψ2,

ϕ2 = β3ψ3 + β4ψ4.

The above equations together with the conditions {ϕi, ϕj}b
a = 0, i, j = 1, 2 yield

{ϕi, ϕj}(a) = {ϕi, ϕj}(b) = 0. Therefore, the domain D̂ is a Type I domain with the
separated boundary condition (16).

Case 2: The determinants in (13) do not vanish.
In this case, by Lemma 4 we may write

ϕ1 = ψ1 + α3ψ3 + α4ψ4,

ϕ2 = ψ2 + β3ψ3 + β4ψ4.

The finiteness of {ϕi, ϕj}(a), i, j = 1, 2 then give that {ψi, ψj}(a), i, j = 1, 2 are finite. It
follows that ψ1, ψ2 ∈ V. Furthermore, for any u ∈ D0 (see Proposition 7),

{ψi, u}(a) = {ϕi, u}(a) = 0, i = 1, 2.

Hence,

q (ψi, u) = 〈Lψi, u〉 , i = 1, 2.

Consequently q (ψi, ·) is continuous on D0 and ψ1, ψ2 are actually in D̃. By
interchanging the roles of ψ3, ψ4 with that of ψ1, ψ2 we can similarly show that ψ3, ψ4 ∈
D̃. Therefore D̃ = D. We next proceed to show that D contains a Type I domain D1

with separated boundary condition (16). For this purpose, let ξ1 = ψ1 + αψ2, where α

is a real number to be determined so that {ξ1, ξ1} (a) = 0. Therefore, α must satisfy

{ψ1, ψ1} (a) + α ({ψ1, ψ2} (a) + {ψ2, ψ1} (a)) + α2 {ψ2, ψ2} (a) = 0

or

λa − σaα
2 = 0.
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Thus, we may take α = ±√
λa/σa. By a similar argument we can show that ψ3, ψ4 ∈ D̃

and obtain a linear combination ξ2 = ψ3 + βψ4 satisfying {ξ2, ξ2}(b) = 0. Using the
expressions of ξ1, ξ2 we can easily check that {ξi, ξj}(a) = {ξi, ξj}(b) = 0, i = 1, 2. Thus
the domain D1 defined by

D1 = D0 � span{ξ1, ξ2}

is a Type I domain with separated boundary condition (16). �
Next we establish the existence of Type I domains with coupled boundary

condition (17).

PROPOSITION 16. The domain D̃ contains a Type I domain with coupled boundary
condition (17) if and only if δ = 0.

Proof. Suppose D̃ contains a Type I domain D1 with coupled boundary condition
(17). Choose η1, η2 ∈ D1 mod D0. By Lemma 4 we may write

η1 = ψ1 + α1ψ3 + α2ψ4,

η2 = ψ2 + β1ψ3 + β2ψ4.

Since η1, η2 ∈ D̃, {ηi, ηi} (a) , i = 1, 2 are finite. Therefore, {ψi, ψi} (a) , i = 1, 2 are
finite. Also, for u ∈ D0 the equation {ηi,u}(a) = 0 yields {ψi, u} (a) = 0, i = 1, 2. It
follows that q (ψi, ·) is continuous on D0 and hence ψi ∈ D̃, i = 1, 2. By interchanging
the roles of ψ1, ψ2 with that of ψ3, ψ4 we can similarly show that ψ3, ψ4 ∈ D̃. Therefore,
δ = 0.

On the other hand suppose δ = 0. Then ψ1, ψ2, ψ3, ψ4 ∈ D̃. We are going to
demonstrate that D̃ contains a Type I domain with coupled boundary condition (17).
By Lemma 4 we try to construct functions ϕ1, ϕ2 of the form

ϕ1 = ψ1 + α1ψ3 + α2ψ4,

ϕ2 = ψ2 + β1ψ3 + β2ψ4,

where α1, α2, β1 and β2 are real parameters to be determined. The equations

{ϕi, ϕj}b
a = 0, i, j = 1, 2

give rise to the system

αt�bα = λa,

βt�bβ = −σa,

αtDβ = ρ3,

αtDtβ = ρ4,

where

αt = [α1, α2] , βt = [β1, β2] ,

D =
[{ψ3, ψ3} (b) {ψ3, ψ4} (b)
{ψ4, ψ3} (b) {ψ4, ψ4} (b)

]
,

ρ3 = {ψ1, ψ2} (a) , ρ4 = {ψ2, ψ1} (a) .
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By addition and subtraction of the third and fourth equations above, we get the
equivalent system

αt�bα = λa,

βt�bβ = −σa,

αt�bβ = 1
2

(ρ3 + ρ4) = 0,

αtRβ = −1,

where

R =
[

0 −1
1 0

]
.

Explicitly, we have

λbα
2
1 − σbα

2
2 = λa,

λbβ
2
1 − σbβ

2
2 = −σa,

λbα1β1 − σbα2β2 = 0,

α1β2 − α2β1 = 1.

We are going to demonstrate that one of these equations is deduced from the other
three. Specifically, we show that the second equation is deduced from the other three
equations. The third and fourth equations may be rewritten in matrix form as[

λbα1 −σbα2

−α2 α1

] [
β1

β2

]
=

[
0
1

]
.

Solving, we get [
β1

β2

]
= 1

λa

[
σbα2

λbα1

]
, (18)

where we used the first equation to write the determinant of the matrix in the left as
λa. Substituting for β1, β2 in the left-hand side of the second equation and using the
first equation and (15) we get

λb

(
σb

λa
α2

)2

− σb

(
λb

λa
α1

)2

= −λbσb

λ2
a

(
λbα

2
1 − σbα

2
2

)
= −λbσb

λa
= −λaσa

λa
= −σa.

Thus we only need to solve the system consisting of the first, third and fourth equations.
The set of all solutions of the first equation is given parametrically by

α1 =
√

λa

λb
cosh t, α2 =

√
λa

σb
sinh t.
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Substituting in (18) we get

β1 = 1√
λaσb

sinh t, β2 = 1√
λaλb

cosh t.

For the particular choice t = 0, we obtain that the functions

ϕ1 = ψ1 +
√

λa

λb
ψ3,

ϕ2 = ψ2 + 1√
λaλb

ψ4

define a Type I domain with coupled boundary condition (17). �

LEMMA 17. We have

(1) If δ = 1 then either there is a real linear combination η1 of ψ1, ψ2 such that
η1, ψ3, ψ4 ∈ D̃ mod D0 or there is a real linear combination η2 of ψ3, ψ4 such that
η2, ψ1, ψ2 ∈ D̃ mod D0. In the first case, if η1, ψ1 are linearly independent then
η1 can be chosen such that [η1, ψ1] (x) = 1, for x near a and if η1, ψ2 are linearly
independent then η1 can be chosen such that [η1, ψ2] (x) = −1, for x near a.

A similar conclusion holds in the second case.
(2) If δ = 2 then there is a real linear combination η1 of ψ1, ψ2 and a real linear

combination η2 of ψ3, ψ4 such that η1, η2 ∈ D̃ mod D0. Furthermore, if η1, ψ1 are
linearly independent then [η1, ψ1] (x) = 1, for x near a and if η1, ψ2 are linearly
independent then [η1, ψ2] (x) = −1, for x near a. A similar conclusion holds
for η2.

Proof. To show Part 1 suppose δ = 1. Then, since D̃ contains a Type I domain
(with separated boundary conditions) we can find real functions η1, η2 ∈ D̃ mod D0

such that

η1 = α1ψ1 + α2ψ2,

η2 = β3ψ3 + β4ψ4.

Since dim(D̃ mod D0) = 3, one more linear combination η3 of the ψ-functions must
belong to D̃. Write

η3 = α̂1ψ1 + α̂2ψ2 + β̂3ψ3 + β̂4ψ4

= ζ1 + ζ2,

where ζ1 = α̂1ψ1 + α̂2ψ2 and ζ2 = β̂3ψ3 + β̂4ψ4. Since {η3, η3} (a) and {η3, η3} (b) are
finite, ζ1, ζ2 ∈ D̃. Again, since dim(D̃ mod D0) = 3, the functions η1, η2, ζ1, ζ2 cannot
all be linearly independent modulo D0. Thus, a non-trivial linear combination

θ1η1 + θ2η2 + θ3ζ1 + θ4ζ2 = ζ0 ∈ D0.

https://doi.org/10.1017/S0017089509005060 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509005060


CHARACTERIZATION OF TYPE I OPERATORS 399

Since the functions ψ1, ψ2, ψ3, ψ4 are linearly independent modulo D0, we must have
ζ0 = 0 and

θ1α1 + θ3α̂1 = 0,

θ1α2 + θ3α̂2 = 0,

θ2β3 + θ4β̂3 = 0,

θ2β4 + θ4β̂4 = 0.

This system can be written as[
α1 α̂1

α2 α̂2

] [
θ1

θ3

]
= 0 and

[
β3 β̂4

β4 β̂4

] [
θ2

θ4

]
= 0.

For a non-trivial solution, at least one of the coefficient matrices must be singular.
Observe that if both matrices are singular, then ζ1 = γ1η1 and ζ2 = γ2η2. In this case
η3 = γ1η1 + γ2η2, which is a contradiction. Therefore, exactly one of the two coefficient
matrices given above must be singular. If [α1 α̂1

α2 α̂2
] is singular then η1, ψ3, ψ4 ∈ D̃ mod D0

and if [β3 β̂4

β4 β̂4
] is singular then η2, ψ1, ψ2 ∈ D̃ mod D0. The rest of Part 1 can be proven

in the same way as in Lemma 13.
To show Part 2, suppose δ = 2. Then, since D̃ contains a Type I domain (with

separated boundary conditions) we can find real functions η1, η2 ∈ D̃ mod D0 such
that

η1 = α1ψ1 + α2ψ2,

η2 = β3ψ3 + β4ψ4.

The rest of Part 2 can be proven in the same way as in Lemma 13. �
Lemma 17 means that the functions ψ1, ψ2, ψ3, ψ4 in Lemmas 2 and 3 can

be chosen such that (a) in the case δ = 1, ψ1, ψ2, ψ3 ∈ D̃ mod D0 or ψ2, ψ3, ψ4 ∈
D̃ mod D0 and (b) in the case δ = 2, ψ1, ψ3 ∈ D̃ mod D0. These choices will always be
assumed in the sequel.

THEOREM 18. All Type I domains are characterized as follows.
(1) If δ = 2 then there is only one Type I domain, namely

D1 = D0 � span{ψ1, ψ3}.
(2) If δ = 1 then Type I domains (necessarily with separated boundary condition

(16)) form a one-parameter family given by

D1 (θ ) = D0 � span

{
ψ1 + eiθ

√
λa

σa
ψ2, ψ3

}
, θ ∈ {0, π},

if ψ1, ψ2, ψ3 ∈ D̃ mod D0 or

D1 (θ ) = D0 � span

{
ψ2, ψ3 + eiθ

√
λa

σa
ψ4

}
, θ ∈ {0, π},

if ψ2, ψ3, ψ4 ∈ D̃ mod D0.
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(3) If δ = 0 then
(a) Type I domains with separated boundary condition (16) form a two-parameter

family given by

D1(θ1, θ2) = D0 � span

{
ψ1 +eiθ1

√
λa

σa
ψ2, ψ3 +eiθ2

√
λb

σb
ψ4

}
, θ1, θ2 ∈ {0, π} .

(b) Type I domains with coupled boundary condition (17), form a three-parameter
family given by

D1(t, θ1, θ2) = D0 � span{ψ1 + α1ψ3 + α2ψ4, ψ2 + β1ψ3 + β2ψ4},
where

α1 = eiθ1

√
λa
λb

cosh t, α2 = eiθ2

√
λa
σb

sinh t,

β1 = 1√
λaσb

e−iθ2 sinh t, β2 = 1√
λaλb

e−iθ1 cosh t,
(19)

t ≥ 0, θ1, θ2 ∈ {0, π}.
Proof. Part 1 is shown in the same way as in Theorem 14 with minor modifications.
To prove Part 2, assume δ = 1 and that ψ1, ψ2, ψ3 ∈ D̃ mod D0. Let D1 be a Type I

domain and choose η1, η2 ∈ D1 mod D0. By Proposition 16, D1 has separated boundary
condition (16). Then by Lemma 4 we can write

η1 = α1ψ1 + α2ψ2,

η2 = ψ3.

The condition {η1, η1} (a) = 0 gives

λa |α1|2 + 2i Im (α1ᾱ2) − σa |α2|2 = 0,

from which we get the one-parameter family of solutions

α2 = eiθ

√
λa

σa
α1, θ ∈ {0, π}.

Part 3(a) can be shown in exactly the same way as Part 2.
To show Part 3(b), assume δ = 0. Let D1 be a Type I domain and choose ϕ1, ϕ2 ∈

D1 mod D0. Then by Lemma 4 we can write

ϕ1 = ψ1 + α1ψ3 + α2ψ4,

ϕ2 = ψ2 + β1ψ3 + β2ψ4.

We proceed as in the proof of Proposition 16 to obtain the system of equations

λb |α1|2 + 2i Im (α1ᾱ2) − σb |α2|2 = λa,

β1 = σb
λa

α2, β2 = λb
λa

α1.

It is straightforward to see that the solutions of this system are given by
equations (19). �
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The following simple examples illustrate the various situations of Theorems 14
and 18.

(1) Let I = (0,∞) , w (x) = 1, p (x) = x and g (x) = 0. In this case

θ (x) = 1,

ϕ (x) = − ln x.

The end point 0 is LC and the end point ∞ is LP. Forming the functions ψ1, ψ2

as in Lemma 3, we see that ψ1 ∈ D̃, ψ2 /∈ D̃. Therefore, δ = 1 and by Part 1 of
Theorem 14 there is only one Type I domain D1. Any u ∈ D1 has the form

u = u0 + cψ1, u0 ∈ D0, c ∈ �.

Since 0 is a regular point, we know (see [6]) that u0(0) = u′
0(0) = 0. Since ψ1 ≡ 1

near 0 we see that u(0) is finite and u′(0) = 0. Near ∞ we have u = u0, hence
the behaviour of u at ∞ is completely determined by the behaviour of u0 there.
The condition u0u′

0 → 0 at infinity implies that (u2
0)′ → 0 at ∞. Hence, u2

0(∞)
exists (which could be infinite). Together with the requirement that u0 ∈ L2(I),
we must have u0(∞) = 0. Therefore, u(∞) = 0 for any u ∈ D1. (This is also true
for any u ∈ D.) Nothing can be asserted about u′

0(∞) since, for example, any
function u0 ∈ D0 which is identical with sin x2

x near ∞ does not have a derivative
limit at ∞. Thus, D1 is described by the boundary condition u′(0) = 0.

(2) Let I = (0,∞), w(x) = 1, p(x) = 1 and g(x) = 1. In this case

θ (x) = cosh x,

ϕ (x) = − sinh x.

The end point 0 is regular and the end point ∞ is LP. Forming the functions
ψ1 and ψ2 as the ψ̃-versions of those in Lemma 3, we see that ψ1, ψ2 ∈ D̃.

Therefore, δ = 0 and Part 2 of Theorem 14 applies. In this case

λa = σa = 1
2
,

Ca =
[

0 1
2

1
2 0

]

and

ψ1 ≡ 1√
2

{cosh x − sinh x},

ψ2 ≡ 1√
2

{cosh x + sinh x},

ψ1 +
√

λa

σa
ψ2 ≡ 2√

2
cosh x,

ψ1 −
√

λa

σa
ψ2 ≡ − 2√

2
sinh x
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near 0. Following similar reasoning as in Example 1 we see that the two Type I
domains D1, D2 of Part 2 of Theorem 14 are described by the boundary
conditions u′ (0) = 0 and u (0) = 0, respectively.

(3) Let I = (−1, 1), w(x) = 1, p(x) = (1 − x2) and g(x) = 0. In this case

θ (x) = 1,

ϕ (x) = 1
2

log
1 − x
1 + x

.

Both end points are LC and, forming the functions ψ1, ψ2, ψ3, ψ4 as in
Lemma 3, we see that ψ1, ψ3 ∈ D̃ while ψ2, ψ4 ∈ D mod D̃. Therefore, δ = 2
and by Part 1 of Theorem 18 there is only one Type I domain D1 =
D0 � span{ψ1, ψ3}. For any u ∈ D1, u = u0 + c near −1 for some u0 ∈ D0

and some scalar c. The condition [u0, ψ1]1−1 = 0 yields u[1]
0 (−1) = 0. Therefore,

u[1] (−1) = 0. Similarly we conclude that u[1] (1) = 0. Therefore, D1 is described
by the boundary conditions u[1] (−1) = u[1] (1) = 0.

(4) If in Example 3 we take I = (0, 1) , then (the ψ̃-versions) of ψ1, ψ2, ψ3 ∈ D̃ and
ψ4 /∈ D̃. Therefore, δ = 1 and Part 2 of Theorem 18 applies. Here we have

λa = σa = 1
2

and

ψ1 ≡ 1√
2

{
1 + 1

2
log

1 − x
1 + x

}
,

ψ2 ≡ 1√
2

{
1 − 1

2
log

1 − x
1 + x

}
,

near 0. For u ∈ D(θ ), u = u0 + c(ψ1 + eiθ√λa/σaψ2) for some u0 ∈ D0 and some
scalar c. Using the fact that 0 is a regular point and a straightforward calculation
we can show that

i sin
θ

2
u (0) − cos

θ

2
u[1] (0) = 0.

Also, using the reasoning as in Example 3 we can show that

u[1] (1) = 0.

These are the two boundary conditions determining D (θ ) . Observe that there
are two real Type I domains (corresponding to θ = 0 and θ = π ) described by
the boundary conditions

u[1] (0) = u[1] (1) = 0

and

u (0) = u[1] (1) = 0.
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(5) Let I = (0, 1) , w (x) = 1, p (x) = √
x and g (x) = 0. In this case

θ (x) = 1,

ϕ (x) = 2 − 2
√

x.

Both end points are regular and, forming the functions ψ1, ψ2, ψ3, ψ4 as in
Lemma 3, we see that ψ1, ψ2, ψ3, ψ4 ∈ D̃. Therefore, δ = 0 and Part 3 of
Theorem 18 applies. There are four real Type I operators with separated
boundary conditions corresponding to the values of θ1, θ2 ∈ {0, π} . The
expressions in Part 3(a) of Theorem 18 reduce to the functions 1,

√
x near 0

and 1 in this case. A straightforward computation then shows that the domains
of these operators are described by the boundary conditions

u[j] (0) = 0, u[k] (1) = 0, j, k ∈ {0, 1} .

Observe that the case j = k = 0 gives the Friedrichs extension. To discuss
Part 3(b) we found it more convenient to start with the solutions

θ (x) = 1,

ϕ (x) = 2 − 2
√

x.

Here we have

Ca =
[

0 1
2

1
2 0

]
, Cb =

[
0 1

2
1
2 −2

]
,

λa = σa = 1
2
,

λb = −2 + √
5

2
, σb = 2 + √

5
2

,

and [
ψ1

ψ2

]
= 1√

2

[
1
1

]
− 2√

2

[
1

−1

]√
x,

near 0 and[
ψ3

ψ4

]
= 1√

10 − 4
√

5

[
1

−2 + √
5

]
− 2√

10 + 4
√

5

[
1

2 + √
5

]√
x,

near 1. As an illustration we consider the case θ1 = θ2 = t = 0. In this case

α1 =
√

2 +
√

5, β2 = 2
√

2 +
√

5, α2 = β1 = 0.

A tedious but straightforward calculation gives the following boundary
conditions description of the domain D1 corresponding to this case:[

u (1)

u[1] (1)

]
=

√
3
2

[
−3

√
5 − 6 −5

√
5 − 6

3 + √
5 1 + √

5

] [
u (0)

u[1] (0)

]
.
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