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2Laboratoire de radioastronomie, École Normale Supérieure et Observatoire de Paris,

24 rue Lhomond, F-75231 Paris Cedex 05, France
3Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot,
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Abstract. Radiative feedback and magnetic field are understood to have a strong impact on
the protostellar collapse. We present high resolution numerical calculations of the collapse of a
1 M� dense core in solid body rotation, including both radiative transfer and magnetic field.
Using typical parameters for low-mass cores, we study thoroughly the effect of radiative transfer
and magnetic field on the first core formation and fragmentation. We show that including the
two aforementioned physical processes does not correspond to the simple picture of adding them
separately. The interplay between the two is extremely strong, via the magnetic braking and
the radiation from the accretion shock.

1. Introduction
The protostellar collapse of low mass dense cores follows a well-defined sequence of

different stages, down to the formation of a protostar. In the first collapse phase (Larson
1969), the compressed gas cools efficiently thanks to the coupling between gas and dust.
At higher densities (ρ > 10−13 g cm−3), the radiation is trapped and the first hydro-
static core (the first Larson core) is formed. At this stage, the grain opacities and the
radiation transport play a major role. In the recent past few years, a lot of progress in
the computational star formation field has be done. For instance, a lot of radiation hy-
drodynamics (RHD) methods have been developed for grid based codes (e.g., Krumholz
et al. 2007, Kuiper et al. 2010) and for smoothed particles hydrodynamics (SPH) codes
(Whitehouse & Bate 2006, Stamatellos et al. 2007). Applying these methods to star
formation, it turns out that a barotropic EOS cannot account for realistic cooling and
heating of the gas (e.g., Commerçon et al. 2010). On larger scales, radiative transfer has
been found to efficiently reduce the fragmentation thanks to radiative feedback due to
the accretion and the protostellar evolution (Bate 2009, Offner et al. 2009). Regarding
magnetic field in the star formation context, a gradually improved expertise has been
developed for magnetohydrodynamical (MHD) flows (e.g., Hennebelle & Teyssier 2008,
Machida et al. 2008). All these studies showed that magnetic fields reduce efficiently the
fragmentation of prestellar cores. Recently, it has been shown that both radiative transfer
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and ideal MHD are important and cannot be neglected in the collapse and fragmentation
of protostellar cores (Price & Bate 2009, Commerçon et al. 2010, Tomida et al. 2010).

In this study, we present radiation magnetohydrodynamics (RMHD) calculations of
prestellar dense core collapse, using the adaptive mesh refinement (AMR) code RAMSES
(Teyssier 2002). The paper is organized as follows: in section 2, we briefly introduce the
RMHD solver we designed and present our initial conditions. In section 3, we present our
results of dense core collapse calculations using the RMHD solver with various numerical
resolutions. Finally, we draw our conclusion in section 4.

2. Numerical method and initial conditions
We use the RAMSES code (Teyssier 2002), in which we have implemented a RHD solver

using the grey flux-limited diffusion (FLD, e.g. Minerbo 1978) approximation. We use
the comoving frame, which is valid to leading order in v/c in the static diffusion and
streaming limits. The solver we designed is coupled to the ideal magneto hydrodynamics
one developed by Fromang et al. (2006). The coupled RMHD equations read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∇ [ρu] = 0
∂tρu + ∇ [ρu ⊗ u − B ⊗ B + P I] = −ρ∇Φ − λ∇Er
∂tET + ∇ [u (ET + Ptot) − B(B.u)] = −ρu · ∇Φ − Pr∇ : u − λu∇Er

+∇ ·
(

cλ
ρκR

∇Er

)

∂tEr + ∇ [uEr ] = −Pr∇ : u + ∇ ·
(

cλ
ρκR

∇Er

)

+κPρc(aRT 4 − Er)
∂tB − ∇× (u × B) = 0,

(2.1)

where ρ is the density, u is the velocity vector, B is the magnetic field vector, Ptot is the
total pressure, sum of the thermal and magnetic pressures, Ptot = P + B.B

2 , Er is the
radiative energy, λ is the flux limiter (Minerbo 1978), ET is the total fluid energy per
unit volume, ET = ρ(ε + u.u

2 ) + Er + B.B
2 , Φ is the gravitational potential, Pr is the

radiative pressure, and κR and κP are the Rosseland and Planck mean opacities. This
system of equations is closed by the perfect gas equation of state P/ρ = (γ − 1)ε, where
γ = 5/3 is the adiabatic exponent. An additional constraint comes from the divergence of
the magnetic field, which has to vanish everywhere at all times (∇.B = 0). Note that the
radiation diffusion and coupling terms are integrated implicitly in time, since it involves
very short timescale processes, compared to the hydrodynamical evolution.

- Initial conditions: We consider a uniform-density sphere of molecular gas, rotating
about the z-axis with a uniform angular velocity. The prestellar core mass is fixed at
M0 = 1 M� and the temperature at 11 K, which corresponds to an isothermal sound
speed cs0 ∼ 0.19 km s−1 . To promote fragmentation, we add an m = 2 azimuthal density
perturbation with an amplitude of 10%. The magnetic field is initially uniform and
parallel to the rotation axis. The strength of the magnetic field is expressed in terms of
the mass-to-flux to critical mass-to-flux ratio µ = 20 = (M0/Φ)/(M0/Φ)c. The initial
ratio of the thermal to gravitational energies is α = 0.37, and the initial ratio of the
rotational to gravitational energies is β = 0.045.

Calculations were performed using either the rather diffusive Lax Friedrich (LF) Rie-
mann solver or the more accurate HLLD Riemann solver (Miyoshi & Kusano 2005).
Following up on former studies (Commerçon et al. 2008), we impose at least 15 cells per
Jeans length as a grid refinement criterion (parameter NJ). We also use one additional
parameter, Nexp , which indicates the number of cells refined in each direction around a
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Figure 1. Temperature and density maps in the yz-plane at time t = 1.15tff for two
calculations with the FLD and the LF (left) and the HLLD (right) Riemann solvers.

cell violating the Jeans length criterion. The initial resolution of the grid contains 643

cells. We use the low temperature grey opacities of Semenov et al. (2003).

3. Results
- Effect of the solver: Figure 1 shows temperature and density maps in the yz-plane

for two calculations with the FLD and the LF and the HLLD Riemann solvers. Each
calculation has been performed using NJ = 15 and Nexp = 4. The FLD-LF case leads
to spurious fragmentation as it is shown in Commerçon et al. (2010). The bubble (dense
region, ρ > 10−15 g cm−3), driven by magnetic pressure due to the magnetic field line
wrapping, is less extended in the FLD-LF case, and the disc is thus more massive and
more prone to fragmentation. We identify the accretion shock on the first Larson core
as a supercritical radiative shock, i.e. all the infalling kinetic energy is radiated away.
Consequently, the radiative feedback due to the accretion on the first Larson core is
much larger in the FLD-HLLD case, since the magnetic braking and thus the infall
velocity are larger thanks to the less diffusive HLLD Riemann solver (Commerçon et al.
2010).

- Effect of the numerical resolution: Figure 2 shows temperature and density maps
in the xy-plane for three calculations using the FLD and the LF Riemann solver, with
various resolutions: (NJ = 15; Nexp = 2), (NJ = 15; Nexp = 4) and (NJ = 20; Nexp = 4).
We clearly see that increasing the resolution, from left to right, leads to a decrease in the
number of fragments produced. As resolution increases, the diffusivity of the LF solver
is reduced, the disk is then less massive, and the magnetic braking more efficient. Using
the HLLD solver and barotropic calculations, Commerçon et al. (2010) show that the
correct behavior is the case without fragmentation.
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Figure 2. Temperature and density maps in the xy-plane at time t = 1.15tff for three
calculations using the FLD and the LF Riemann solver, with various resolutions.

4. Conclusion
We show that taking into account both radiative transfer and magnetic field is not

a straightforward linear process. We show that the magnetic braking and the magnetic
bubble extent influence: i) the radiative feedback via the infall velocity and ii) the frag-
mentation via the disc mass and the rotational velocity. Last but not least, the results
are extremely sensitive to the numerical resolution and to the numerical diffusivity of the
code used, which readers and authors should be aware of.
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Commerçon, B., Hennebelle, P., Audit, E. and Chabrier, G., & Teyssier, R. 2010, A&A, 510, L3
Fromang, S., Hennebelle, P., & Teyssier, R. 2006, A&A, 457, 371
Hennebelle, P. & Teyssier, R. 2008, A&A, 477, 25
Krumholz, M. R., Klein, R. I., & McKee, C. F. 2007, ApJ, 656, 959
Kuiper, R., Klahr, H., Dullemond, C., Kley, W., & Henning, T. 2010, A&A, 511, A81
Larson, R. B. 1969, MNRAS, 145, 271
Machida, M. N., Tomisaka, K., Matsumoto, T., & Inutsuka, S.-i. 2008, ApJ, 677, 327
Minerbo, G. N. 1978, JQSRT, 20, 541
Miyoshi, T. & Kusano, K. 2005, JCP, 208, 315
Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, ApJ, 703, 131
Price, D. J. & Bate, M. R. 2009, MNRAS, 398, 33
Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr, E. 2003, A&A, 410, 611
Stamatellos, D., Whitworth, A. P., Bisbas, T., & Goodwin, S. 2007, A&A, 475, 37
Teyssier, R. 2002, A&A, 385, 337
Tomida, K., Tomisaka, K., Matsumoto, T., Ohsuga, et al. 2010,ApJ, 714, L58
Whitehouse, S. C. & Bate, M. R. 2006, MNRAS, 367, 32

https://doi.org/10.1017/S1743921311000421 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311000421



