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Abstract

The Kubic FLOTAC microscope (KFM) is a compact, low-cost, versatile and portable digital
microscope designed to analyse fecal specimens prepared with Mini-FLOTAC or FLOTAC, in
both field and laboratory settings. In this paper, we present the characteristics of the KFM
along with its first validation for fecal egg count (FEC) of gastrointestinal nematodes
(GINs) in cattle. For this latter purpose, a study was performed on 30 fecal samples from cattle
experimentally infected by GINs to compare the performance of Mini-FLOTAC either using a
traditional optical microscope (OM) or the KFM. The results of the comparison showed a
substantial agreement (concordance correlation coefficient = 0.999), with a very low discrep-
ancy (−0.425 ± 7.370) between the two microscopes. Moreover, the KFM captured images
comparable with the view provided by the traditional OM. Therefore, the combination of
sensitive, accurate, precise and standardized FEC techniques, as the Mini-FLOTAC, with a
reliable automated system, will permit the real-time observation and quantification of parasitic
structures, thanks also to artificial intelligence software, that is under development. For these
reasons, the KFM is a promising tool for an accurate and efficient FEC to improve parasite
diagnosis and to assist new generations of operators in veterinary and public health.

Introduction

Currently, the most widely used methods for diagnosis of intestinal parasites in both field and
laboratory settings are fecal egg count (FEC) techniques, based on the microscopic identifica-
tion and count of parasitic structures (eggs, larvae, oocysts and cysts) in fecal specimens, e.g.
McMaster, Kato-Katz, FLOTAC, FECPAK, Mini-FLOTAC (MAFF, 1986; Cringoli et al., 2010,
2017; Levecke et al., 2011, 2012; WHO, 2019). Also, the availability of a reliable, low-cost,
easy-to-use and quantitative test to perform the fecal egg count reduction test (FECRT) is
of pivotal importance to facilitate the monitoring of deworming programmes in endemic
countries (Cools et al., 2019) and to determine anthelmintic efficacy/resistance in consider-
ation of the growing concern of the emergence of anthelmintic resistance in humans
(Vlaminck et al., 2019), livestock (Vercruysse et al., 2018; Kaplan, 2020) and pet animals
(Jimenez Castro et al., 2019; Kitchen et al., 2019).

Among the above mentioned techniques, Mini-FLOTAC, in particular, is considered a good
candidate for a standardized FEC/FECRT either in lab or in field setting (Nikolay et al., 2014;
Dias de Castro et al., 2017; George et al., 2017; Paras et al., 2018; Cools et al., 2019; Rinaldi
et al., 2019; Amadesi et al., 2020). However, the Mini-FLOTAC, as all the other FEC techni-
ques, requires specialized personnel and is time-consuming, especially when a large number of
specimens are examined like in case of large epidemiological surveys (Cringoli et al., 2017;
Vercruysse et al., 2018; Sukas et al., 2019).

Recently, the use of new technologies is beginning to offer potential solutions to overcome
gaps and limitations of FEC techniques (i.e. human errors and time for analysis). Recent stud-
ies have evaluated different smartphone-based technologies to magnify objects, to capture
images or to perform an automated identification of endoparasites (i.e. protozoa and hel-
minths), showing a good potential for wider application. Saeed and Jabbar (2018) reviewed
the applications of various smartphone-based methods and devices developed from 1990 to
2017 for the diagnosis of different parasites of public health relevance (e.g. soil-transmitted
helminths, Schistosoma spp., protozoa, etc.). Moreover, several studies, reported in Table 1,
focused on the development of semi-automated and automated systems for assessing FEC
in the veterinary field. However, these systems have shown difficulties in commercialization,
mainly due to their low sensitivity and accuracy, high costs and/or the limited data on valida-
tions in the lab and/or in the field. For these reasons, we consider that there is still the need for
a reliable automated system that improves the efficiency of parasitological diagnosis in veter-
inary medicine and public health at an affordable cost.
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Table 1. Semi-automated and automated systems for parasite detection in humans and animals (principle, the hosts from which fecal samples were collected, the parasites detected, the advantages, limits and references)

Method Principle Hosts Parasites Advantages Limitations References

FECPAKG2 High-throughput technological
system for on-field sample
processing

Ruminants;
humans

GINs;
soil-transmitted
helminths (STH)

Automated detection and
count; remote parasite
detection and data online
management

Low sensitivity and accuracy Mirams, (2016); Rashid et al. (2018);
Moser et al. (2018); Vlaminck et al.
(2018); Cools et al. (2019); Vlaminck
et al. (2019)

Parasight system Based on a fluorescent egg
staining and a smartphone to
capture images

Horses Strongyles and
Parascaris equorum

2.5 min test time, less
variables and more
accurate than McMaster
technique

Validated only on horses Slusarewicz et al. (2016); Scare et al.
(2017); Cain et al. (2020)

Lab-on-disk
platform

Based on a combined
gravitational and centrifugal
flotation and the use of a
converging collection chamber
to create a monolayer of eggs

Humans; pigs STH, Schistosoma
mansoni; Ascaris suum

High-quality of images,
permitting a good
identification and count

High cost; potentially limited use in
field, due to: (i) the need for a
minicentrifuge; (ii) the need for
electricity and (iii) relatively large
size/difficult to carry over distance

Sukas et al. (2019)

Automated
robotic system

Based on an automated X–Y
stage; the autofocusing and
scanning function are based on
LabVIEW GUI

Monkey; dogs;
sheep; cattle

Trichuris spp., Toxocara
spp., strongyle,
Isospora spp., Eimeria
spp.

Inexpensive (∼US$350),
compact, possibility to
use fluorescence

The system can be used only with
McMaster chamber; not validated

Lu et al. (2018); Li et al. (2019)

Automated
diagnosis of
intestinal
parasites (DAPI)

Based on a motorized system to
read slides, using a digital
camera and machine learning
software

Dogs Ancylostoma spp.,
Toxocara spp., Trichuris
spp., and Giardia spp.

Automated detection of
eggs through machine
learning software

High cost; not portable; not
validated

Inácio et al. (2020)

Telenostic
system

Automated digital microscope
with a 10× lens using machine
learning software

Cattle GINs High level of agreement
between the prototype
and manual systems of
FEC (i.e. McMaster and
Mini-FLOTAC)

Validated only on cattle; it requires
long time to acquire and analyse
the images (approximately 42 min)

Elghryani et al. (2020)

VETSCAN
IMAGYST

Composed of a digital slide
scanner and machine learning
software

Dogs and cats Ancylostomidae,
Toxocara spp., Trichuris
spp., Taeniidae

The system allows
identification and count
of eggs within 15 min

High cost; not portable; validated
only on dogs and cats

Nagamori et al. (2020)
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In this paper, we present the characteristics of the Kubic
FLOTAC microscope (KFM), a new compact, cubic in shape
(20 × 20 × 20 cm), low-cost (∼600 euros), versatile and portable
digital microscope capable of scanning fecal specimens prepared
with Mini-FLOTAC or FLOTAC (Mini-FLOTAC/FLOTAC)
(Fig. 1A and B). The KFM can be used also directly in field,
because it does not need any additional special requirement
(e.g. centrifuge or any electricity source), being provided of a lith-
ium battery with an autonomy up to 20 h. Moreover, we report
the findings of the first validation of the KFM to perform FEC
of gastrointestinal nematodes (GINs) in cattle using the
Mini-FLOTAC technique and compare the results obtained by
KFM with those obtained by a traditional optical microscope
(OM).

Materials and methods

The Kubic FLOTAC microscope (KFM) description

The KFM is composed of an electromechanical part that allows a
three-dimensional (3D) scan of the Mini-FLOTAC/FLOTAC
(reading discs) and software that allows remote interactions and
digital image processing supported by artificial intelligence (AI)
for the recognition of helminth eggs and other parasitic struc-
tures. FreeCAD (open source, LGPL license) and Design Spark
Mechanical (RS-components, Corby, UK) software were used to
perform the 3D mechanical of the KFM (Fig. 2A and B). Once
opportunely prepared, you can insert the Mini-FLOTAC or
FLOTAC devices into a specific slide-out tray of the KFM (simi-
larly to inserting a DVD into a player). Then, the tray is with-
drawn inside and specific 3D landmarks corresponding to the
corners of the two flotation chambers of the Mini-FLOTAC/
FLOTAC are automatically located. The KFM scanning device is
equivalent to a XYZ motorized stage for microscopy.

The 3D positioning system of the motorized stage is based on a
simple, non-standard Cartesian motor system solution and is pro-
vided with open-loop stepper motors coupled with precision

translation stages to achieve accurate 3D motion control
(Fig. 2C and D). A standard, low-cost stepper motor driver
based on Arduino nano-board 105 (Arduino AG, Ivrea, Italy)
and a free Grbl firmware were adopted to remote control of the
KFM.

The KFM optical part is mainly composed of an LED light
source with a condenser, which provides brightness adjustment,
and a digital camera, which permits adjustable magnification at
100×, 200×, 300×, with a maximum resolution of 8MPixel
(3264 × 2448 pixel) and the size of image of 1024 × 768 (0.8Mp)
(Fig. 3). A Raspberry PI (Raspberry Pi Foundation, Caldecote,
UK) permits the remote control of the optical part. The motorized
stage can automatically move stepwise to entirely scan the two flo-
tation chambers of the Mini-FLOTAC/FLOTAC. For each step, the
KFM camera captures a picture (or a Z-stack). Eventually, you can
photograph the whole surface of the flotation chambers (each 18
mm by 18mm wide) and the software stitches the multiple photos
to obtain only one picture to perform the visual recognizing and
the count of parasitic structures.

The KFM system has various options for external connectivity:
(i) two USB ports to easily transfer the captured images; (ii) an
Ethernet cable connector, a Bluetooth and a Wi-Fi wireless con-
nection, which permit all users to easily transfer, share and
backup the captured images to other devices. In addition, you
can fully control the KFM using software by an external device,
i.e. a smartphone, a tablet or a PC. A web interface permits the
remote control of the KFM (Fig. 4); the internal software works
on Linux operating system. Such an interface can be activated
using any web browser. The remote interface supports Android
4.1, iOS 8.0, Windows 7/8/10 and MacOS X 10.8. We developed
a specific app that allows the remote control of the KFM directly
from mobile phones.

The software has two modalities: ‘Administrator’, password-
protected, for the management of settings and mechanical move-
ments and ‘Viewer’ to allow remote viewing. The images captured
by the KFM can be stored in an Internet cloud and/or transmitted
to a diagnostic hub for telediagnosis or parasitological consultation.

Fig. 1. KFM used with the Mini-FLOTAC (A) and FLOTAC devices (B).

Parasitology 429

https://doi.org/10.1017/S003118202000219X Published online by Cambridge University Press

https://doi.org/10.1017/S003118202000219X


At the moment, for these characteristics, you can use the KFM
as a digital microscope, instead of an OM, remotely controlled to
perform the visual identification and counting of parasitic struc-
tures, as validated in this paper. Moreover, further developments
are ongoing to update a fully automated version of KFM, as
reported in the ‘Discussion’ section.

Study sampling and laboratory activities

From September to December 2019, 30 fecal samples were col-
lected from Belgian Blue and Holstein cattle (6 months old)
experimentally infected with 50 000 third stage larvae (L3)
of Cooperia oncophora (n = 15 calves) or Ostertagia ostertagi
(n = 15 calves) stabled at the experimental farm of the Faculty of

Fig. 2. (A) FreeCAD and Design Spark Mechanical of the KFM (external view); (B) FreeCAD and Design Spark Mechanical of the KFM (internal view); (C) schematic
diagram showing mechanical, electronic and optical systems of the KFM and (D) a particular of the handling motor based on the no-standard Cartesian system.

Fig. 3. Digital imaging of GIN eggs (green arrow) and air bubbles (red square) using the KFM with a digital zoom 100× (A), 200× (B) and 300× (C).
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Veterinary Medicine, Ghent University (Belgium). Then, we
transferred the collected samples to the Department of
Virology, Parasitology and Immunology of Ghent University.
In the lab, an operator analysed six sub-samples for each fecal
sample, filling six Fill-FLOTACs with 2 g of feces and homogen-
izing them with 38 mL (dilution ratio 1:20) of a saturated
sodium chloride flotation solution (specific gravity = 1200).
Then, six Mini-FLOTAC devices were filled (one per each sub-
sample), following the SOPs described in Cringoli et al.
(2017). To ensure the quality of parasitological examination,
one operator read the Mini-FLOTACs with an OM (Leica
Microsystems, Wetzlar, Germany), then a second operator ran-
domized the Mini-FLOTACs, before the reading with the KFM
to obtain blinded results. Finally, the total time was evaluated
to perform the Mini-FLOTAC technique either with the reading
under the KFM or under a traditional OM.

Statistical analysis

A Mann–Whitney test was used to compare the readings by both
microscopes. Moreover, we calculated the Lin’s concordance cor-
relation coefficient (CCC) and the corresponding 95% confidence
interval (CI) to quantify the agreement between the analysis using
the OM and the KFM. The agreement was classified as poor,

moderate, substantial or almost perfect for CCC values <0.9,
0.90–0.95, 0.95–0.99 or >0.99, respectively (McBride, 2005).
Finally, the level of agreement was analysed using the Bland–
Altman plot. All the statistical analyses were performed using
GraphPad Prism v.8 (Graph Pad Software, San Diego, CA,
USA) and SPSS Statistics v.23 (IBM, Armonk, NY, USA). All
tests were considered statistically significant at P < 0.05.

Results

In total, 180 counts were performed using the OM and 180 counts
using the KFM. A range of GIN eggs from 1 to 62 was found for
each sample analysed, as depicted in Fig. 5. Based on the counted
eggs, each sample was assigned to one of the three egg count
levels: low (<10), medium (10–25) and high (>25). Table 2
shows the sum and mean egg counts detected by the OM and
the KFM at the different count levels. The correlation and the
agreement between counted eggs by both microscopes for each
level, and total counts are reported in Figs 6 and 7.

The results analysed by the Mann–Whitney test showed that
there was not a statistically significant difference (P > 0.05) between
medians of counted eggs obtained with the two microscopes, for
each egg count level. The CCC between the reading with OM
and KFM was substantial for low (CCC= 0.984; 95% CI = 0.973–
0.990), medium (CCC = 0.981; 95% CI = 0.968–0.988) and high
(CCC = 0.998; 95% CI = 0.996–0.999) egg count levels; similar find-
ings were found when considering total egg counts (CCC = 0.999;

Fig. 4. Image of a part of a Mini-FLOTAC chamber, captured by technological devices
(smartphone, tablet or a PC) connected with the microscope that shows GIN eggs
(green arrows) and air bubbles (red squares).

Fig. 5. Comparison of the mean of counted eggs between the readings by the OM and the KFM for each sample.

Table 2. Number of counted eggs (sum and mean) for the analysis performed
by the Mini-FLOTAC using a traditional OM and the KFM at low (<10), medium
(10–25), high (>25) egg count levels and total counts

OM KFM

Egg level Sum Mean Sum Mean

Low 296 4.93 291 4.85

Medium 834 13.90 827 13.78

High 1761 29.35 1771 29.52

Total counts 2891 16.06 2889 16.05
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95% CI = 0.998–0.999) (Fig. 6). Furthermore, the Bland–Altman
plot (Fig. 7) demonstrated an excellent agreement between the
two reading approaches (bias =−0.425 ± 7.370, with 95% limits

of agreement from −14.872 to 14.021). Finally, the time required
to perform the Mini-FLOTAC technique with the KFM and the
traditional OM is reported in Table 3.

Discussion

The KFM presented for the first time in this paper has proven a
promising system for an accurate assessment of GIN egg counts in

Fig. 6. Correlation between the number of counted eggs based on the examination of Mini-FLOTAC using the OM and KFM for each level of egg counts and total counts.

Fig. 7. Bland–Altman plot of number of counted GIN eggs based on the examination
of Mini-FLOTAC using OM and KFM.

Table 3. Time of analysis to perform the Mini-FLOTAC technique with the
traditional OM and the KFM for each step of the protocol used

Step OM KFM

Preparation of the sample using
Fill-FLOTAC and Mini-FLOTAC

11 min 11 min

Reading of the Mini-FLOTAC 1–5 min 3–8 min

Analysis of results 5 s 5 s

Total 12–16 min
and 5 s

14–19 min
and 5 s
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cattle. The results showed that there were not statistically signifi-
cant differences between medians of counted eggs obtained with
OM and KFM. Moreover, a substantial agreement (CCC =
0.999) and a low (−0.425 ± 7.370) discrepancy were found
between the two microscopes. These findings were confirmed
also by the Bland–Altman plot that was very useful to compare
the egg counts obtained with the two microscopes. The Bland–
Altman plot showed a very low bias (−0.425) and the absence
of a systematic error, in fact points of the graph corresponding
to the differences between the readings with the two systems
are all around the line zero, showing a dispersion of the points
only for the low egg count level (<10 eggs), without outliers.

The time taken to scan and count the GIN eggs in the
Mini-FLOTAC chambers under the KFM was ∼3–8 min com-
pared to ∼1–5 min taken to read the Mini-FLOTAC under the
traditional OM by the same skilled operator. However, the
KFM system used in this comparison study was only a prototype,
but we are developing an App that will allow us to improve the
speed of scanning of the Mini-FLOTAC apparatus, thus reducing
the time for analysis.

There are many advantages of the KFM compared to the OM,
e.g.: (i) it can be used without requiring electricity in both labora-
tory and field settings; (ii) it is cheap (∼€600) and (iii) it is able to
transfer via internet the captured pictures to other laboratories or
can be used by remote from another country. Therefore, it could
be very useful to create a network of laboratories or to support
operators directly in the field as expected by Tele-Medicine and
Tele-Parasitology (Di Cerbo et al., 2015; Scheild et al., 2007;
Zaffarano et al., 2018).

Moreover, this system is very easy to be performed by any
operator without a specific training (it will be possible to use
the KFM just following the manufacturer’s instructions).

One of the future improvements of the KFM, actually under
development, is the tuning of a predictive model, for the auto-
mated identification and counting of helminth eggs, based on
AI (machine learning) using a single deep neural network,
named Single Shot Multibox Detector (SSD) (Liu et al., 2016).
For this aim, the use of high-quality images, as well as those cap-
tured by the KFM in our study, is fundamental. To date, to per-
form the first ground-truth phase of the training software a
dataset with 11 136 images of GIN eggs (confirmed by experts)
from large and small ruminant feces was used. The acquired
images are first elaborated to separate the parasitic structures
from the background, which can be either impurities or pseudo-
parasites, through the use of ImageJ (National Institute of Health)
with the main goal of being able to characterize the parasite spe-
cies and to automatically count eggs (Grishagin, 2015).

In future, this software will be available also for other parasitic
structures of veterinary and public health importance.

Therefore, KFM permits the combination of a sensitive, accur-
ate, precise and standardized FEC techniques, as the
Mini-FLOTAC/FLOTAC (Cringoli et al., 2010, 2017), with a reli-
able system to capture and analyse pictures. Moreover, thanks to
the development of AI software for automated identification and
counts, this system will allow a reduction in human errors and
time of reading, increasing its diagnostic efficiency.

Conclusions

In conclusion, the KFM is a promising system that may, upon
successful validation studies performed in different settings and
laboratories of medical and veterinary parasitology, allow progres-
sion in overcoming the numerous limitations of traditional egg
counting techniques.

The development of the AI predictive model will be very useful
for an easy-to-use, low cost and precise automated system for

identification and counting of parasitic structures allowing a
rapid assessment of FEC/FECR to assist a new generation of
operators (i.e. technicians, physicians, veterinarians and farmers)
in veterinary and human parasitology and diagnostics. In prin-
ciple, the KFM could also be adapted to read other fecal prepar-
ation slides such as the Kato-Katz or McMaster.

Data

All data generated or analysed during this study are included in
this published paper. The datasets used and/or analysed during
the current study are available from the corresponding author
upon reasonable request.
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