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PERMUTATION PROBLEMS AND SPECIAL FUNCTIONS 

RICHARD ASKEY AND MOURAD E. H. ISMAIL 

1. Quasisymmetric events. Suppose we have n events Ai, . . . , An and 
let p(Ajlf . . . , Ajk) be the probability that the events Ah, . . . , Ajk occur 
jointly. The probability P 0 that none of Ai, . . . , An occur is given by 
Poincaré's formula, the probabilistic version of the principle of inclusion and 
exclusion: 

Po = 1 - Z P(A,) + D P(AjAk) - . . . 
3 3>fC 

When these events are symmetric p(Ajlf . . . , Ajk) depends only on k, say it is 
4>k, and P 0 has the symbolic form (1 — E)n<f>o with Z?0O = <j>k. Kaplansky [14] 
introduced the concept of quasisymmetry where p(Atl, . . . , A ik) is either 4>k or 
zero; see also Mendelsohn [18]. For quasisymmetric events we first suppress 
all the vanishing terms in P0 then replace 0A by Ek(j>o to get the symbolic 
formula 

(1.1) P0(») = Po = / (£ )*o , 

where f(E) is a polynomial that we shall call "the fundamental polynomial." 
This symbolic device also gives for Pr, the probability that exactly r of the 
events occur, the symbolic representation 

(1.2) Pr(n) = Pr = f(E)fo, 

where 

(1.3) fc= (-l)'(*)fc. 

Let us write the fundamental polynomial f(E) as 

(1.4) f(x) = É o».***. 
k=0 

By Boas' theorem [5] we can represent 0O, <t>u • • • » <t>n as moments 

(1.5) 0* = I tkda(t), i = 0,l w, 
•/ o 

where <*(/) is of bounded variation on (0, oo ). The substitutions of (1.5) and 
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(1.4) in (1.1) establishes the integral representation 

(1.6) Po(n) = I" f(t)da(t)-
J 0 

Similarly Pr has the integral representation 

(1.7) p, = ( - 1 ) ' / ° { Ê « „ . , ( * ) i ' } < M 0 

Hence 

These integral representations have, in our opinion, some advantages over the 
symbolic representations. They seem to be easier to work with and part icularly 
useful for finding asymptot ic formulas for the above probabilities. We hope, in 
the near future, to derive complete asymptot ic expansions for some of the 
combinatorial numbers treated in the present paper. We also hope t ha t these 
integral representations might actually settle the Wyman-Moser conjecture 
[27, p. 476] concerning Latin rectangles. In the problems treated in the subse
quent sections, the resulting integral representations involve Tchebichefr, 
Laguerre and Jacobi polynomials. These polynomials satisfy several recur
rences; see [9; 25]. Using these recurrences one can derive several recursion 
relations for the corresponding combinatorial numbers and probabilities. 

Recently, Roselle [22] discovered the relationship between quasi-symmetric 
events and labelled digraphs G so t ha t the problems of counting pa ths and 
cycles in the complement of G is reduced to calculating the coefficients of the 
fundamental polynomial associated with these events. This association es
tablishes integral representations for the corresponding graph theoretic 
problem. 

2. Card m a t c h i n g p r o b l e m s . Suppose we permute n objects in such a 
way t ha t certain positions are prohibited for certain objects. In a card matching 
problem one is asked to evaluate the probabil i ty tha t these conditions are 
violated precisely r t imes and also to compute the number of such ways. 
Before proceeding to t rea t specific problems let us introduce some hyper-
geometric notat ions. 

T h e shifted factorials (a)n are denned by 

(2.1) (a)0 = 1 and (a)n = a (a + 1) . . . (a + n - 1) for n > 0. 

A generalized hypergeometric function vFq is defined as 

(2.2) vFh > ) • £ i ; t ' i ' ! i 
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The Laguerre polynomials Ln
(a) (x) are given by 

(2.3) L n (x) = -—{— iF\a + x ; x j . 

These polynomials are also called "Rook Polynomials" (see [21, pp. 168-174]) 
because they arise in rectangular chessboard problems involving rooks. We now 
proceed to t reat several card matching problems. 

i) The problème des recontres, where no object remains in its original place. 
This problem is also known as the classical derangement problem and Mont-
mort ' s problem. Kaplansky [13; 14] showed tha t <j>k = (n — k)\/n\ and 
f(E) = (1 — E)n. These 0's have the integral representation 

-r. 
—x 

and we get 

p.(»)=/; {£ (;) (-1) v - j ç dX=/; ^ ^ e-*dx, 
while the number of ways of the event, Nn, is given by 

Nn = I ^ e~x(x - l)ndx. 
J 0 

Integrat ion by par ts or writing (x — l)n as S/c=o( — 1)W_A:( , \xk leads to the 

classical expression 

Similarly we obtain 

Pr(n) = (n) f-^zjr:-^.^-!, 
\r J Jo n\ r\ 

as expected. 

ii) Kaplansky's generalization of the derangement problem. In the present 
problem (see [13]) we have k\ + . . . + kn cards of which kr are marked ' V , 
r = 1, 2, . . . , n. The cards marked r, or r-cards, are not to appear in any of pr 

specified places with no place forbidden simultaneously to both r-cards and 
5-cards. In [13] Kaplansky proved tha t <f>k = kl = J o5 tke~ldt and tha t the number 

of these arrangements , say C\ 1 ' ' ' ' n I , is Yln
j=iH(kj1 pj, £)</>o, where 

\Pl, • • • ,Pn/ 

H(k,p,x)=^iF,( k'_ P; - i ) . 
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If p Û k, H(k, p, x) can be written as 

R\ j=o J'. 

k\U (p-j)i{ p)v~A x) 

ki l *>'U -(k-p + Ujf. 

that is, 

nib A v\ = r * - » / _ n ! 
(2.3) H(k,p,x) = * * " * ( - î y ^ V * - ^ * ) , £ g *. 

Similarly, if & g £ we get 

(2.4) H(k,p,x) = ( - l ) % ( p - w ( x ) , ^ i . 

Therefore 

(2.5) q J 1 ' ' • • ' * " ) = I œH(khphx)H(k2,p2,x) ...H(kn,pn,x)e-Xdx, 

where the iJ's are related to the Laguerre (Rook) polynomials by (2.3) and 
(2.4). Even and Gillis [10] proved (2.5) for kj = pj,j = 1, • . . , n by showing 
that both sides satisfy the same recurrence. Their argument, however, is both 
very long and quite complicated. In [4], Askey, Ismail and Rashed gave two 
short proofs of Even and Gillis' representation. The first proof uses Mac-
Mahon's Master Theorem [17, pp. 93-123] and the second is along the above 
lines. Furthermore, they obtained the asymptotic formula 

(k\r Jk, k k\ _ __* 
n->co \Kfl) . \K, K, . . . , KI 

w-times 

or, equivalently, 

l i m " ~ ! ) ^ i i r fœ e-x{Lk(x)}ndx = e'*. 
n->œ Kkn)\ Jo 

In fact they proved the more general result 

(h\y(—Y\nh r°° 
l i m r r l l i n e-xxa{Lk

a(x)}ndx = e-*-". 
n^œ 1 (nk -f- a + 1) J 0 

The numbers 

G(a;klt...,kn) = , . I e~xxaLk°(x) . . . Lkn
a(x)dx, 

I (a + 1 ) Jo 
a = 0, 1, 2, . . . , 
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also have a combinatorial interpretation. They have the generating function 

r ( a + l ) £ G(a;ki W n h . . . r„*" 

= f " « - V n { (1 + r,)-—1 exp r ^ - } ^ , 

since the generalized Laguerre polynomials {Ln
a(x)}n=o have the generating 

function (see [25, (5.1.9)]) 

(2.7) g Ln
a{x)tn = (1 - / ) — 1 e x p ( ï = ^ ) . 

The evaluation of the integral on the right hand side of (2.6) shows tha t 

( É G(«;*I hW1 ...rn
k-

hi *»=o 
/ l n J —a—1 w 

-V-Srfr> na + ^r-; 
V = {1 — (T2 — 2(T3 — . . . — (» — l)o-„} " \ 

(2.8) 

where o-;- = aj(r1, . . . , rn) is the elementary symmetric function of degree 
j , j = 1, . . . , n in the variables r\, . . . , rw. Explicitly, 

(2.9) *,= £ ^ . . . r , , . 
û < . . . < i y 

Note t ha t 

G(0, *!,... .in) = C f j 1 " " - ' ^ ) 

The generating function (2.7) and 

£ GCO;*!, . . . ,*,)^1 
• 'n 

= {1 — (72 — 2(73 — - . . — fa — l)0-n} 

show tha t G (a; ki, . . . , kv) is the a-fold convolution of 

~,| /ci, . . . , # n j 

\ / c i , . . . , Kn/ 

and leads to the following combinatorial interpretat ion. Assume tha t we have 
n boxes and the j t h box contains kj distinguishable objects, j = 1, 2, . . . , n. 
T h e number of ways of redistributing these objects such t ha t a t the end the 
7*th box still has kj objects and no object remains in its original box is 

/-i j # 1 , . . . , Kn | 

\ki, . . . , kj 
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Instead of doing tha t we randomly divide the objects in each box to a + 1 sets 
or bundles, (some might be e m p t y ) , then take a bundle from each box and 
redistr ibute the objects in these bundles in such a way t ha t each bundle ends up 
with the same number of objects it s tar ted with and no object remains in its 
original bundle. The number of ways of doing so is simply G (a; ki, . . . , kn) 
because it is the a-fold convolution of 

/ki, . . . , kn\ 
\ki, . . . , kj 

iii) The uproblème des ménages1. This problem asks for the number of permu
tat ions of 1, 2, . . . , n so t ha t 1 is not in position 1 or 2, 2 is not in position 2 or 
3, . . . , n is not in position n or 1. Let un be the number of ways of doing so. 
There is another related problem which is also called the problème des 
ménages, namely: find the number of ways of seating a t a circular table n 
married couples, husbands and wives al ternat ing, so t ha t no husband is next to 
his own wife. The number of such ways is 2(n\)un (see Kaplansky and Riordan 
[15]). I t is clear t ha t the probabil i ty Un of the conditions fulfilled is the same in 
both problems. In [14] Kaplansky proved tha t <j>k = (n — k)\/n\ and 
Un = / ( £ ) * o with 

e.») / « o - £ sM3"»-*)(-*>* 
* = 0 

The subst i tut ion of 

dt 

/

' oo t7i—k 

— - e~ ldt 
o n\ 

in (2.10) proves the following integral representat ion 

A 2n (2n-k) t [" ^ -,,. 

_ (-D" f°°,-«/v 2« (n + k\(_,\* 
n\ J o \fa n + k \ n - k ) { ' 

= 2 ( - l ) » f V # {n)k{~tf \dt 
2( 1} J0

 e \h (2k)\(n - ky.rL 

Using the duplication formula (2k) \ = 22lc(k\)(\)k we get Uo = 1 and 

(2.11) tf.«^ / V î / ? 1 ( - » . » ; L)dt, W = 1 > 2  

( „ /yi /yj f \ 

x ' ; - I is a multiple of the Tchebycheff polynomial 
of the first kind, see Szego [25]. Fur thermore the ménages numbers un have the 
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integral representation 

«» = 2 ( - l ) " / o ° Y ' 2 f t ( " * , W ; | ) d / , « = 1 , 2 

Let uniT be the number of permutations with r elements in forbidden positions. 
These numbers have the integral representation 

_ 2 ( W Q ( - l ) r + " f » f o (n ) t ( -Q* \ , . , , . 
r! Jo lifci (2*)!(n - r - jfe)!/e 

that is wWt7. = 0 if n < r and 

(2.12) un+r,r = 2(-iy-{?-^ f \ F 1 ( - n ' l + r; Çje^dt, 

n = 0, 1, . . . , r > 0. 

4 
The polynomials 2^i I ' 1 > Â) a r e multiples of the Jacobi polynomials 

P,(-*^-»)(l - | ) , since 

p («,0) /,.N (1 + ")« p. / - « , n +a + /3 + 1 1 - x \ 
^ ( X ) - ~ »! 2 ^ \ a + 1 ' 2 / * 

For properties of Jacobi polynomials see Szegô [25]. 
Touchard [26] obtained the following generating function for the ménage 

numbers un 

(2.13) £ unIn(2t) = e~u{\ -t)~\ 

where Iv{z) is the modified Bessel function 

T M = V (^ 2 ) y + 2 m
 = (V2)y / - . A 

K } £ o ro!r(v + ro + 1) T(y + 1) ° 1\v+ V 4 / * 

The generating function (2.13) is a Neumann expansion of the function 
e~2t(\ — t)~l in terms of this modified Bessel function. We shall obtain a 
similar expansion for un>r. 
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Srivastava [23] proved 

^»-fc::::;v -) 
(2.15) = F S « " ' £ ~ r " <5 + ">r<3 + »)/-+<(V2) 

I (2d) n = 0 n\ 

r (-n,n + 2d, ah 

In (2.14) we let x = w/4, z = 4J, p = g = 1, ax = ô + è, &i = I, ô = r/2 to get 

(2.15) - i i f ) | . iri_)>/JL±_»_)r(l+.»_) w ( a ) 

„ /— n, n + r u\ 

'2M \ ' V-
Multiply (2.15) by e~u and integrate over u Ç (0, oo). Using (2.12) and the 
difference formula Viz + 1) = zT(z) establishes the following generating 
function for {un+r,r}™=o'> 

W W . ^ + 'f''; ,) 
<2'16) i ( l + ') - i i * 
Touchard ' s generating function (2.13) is the limiting case r —> 0 of (2.16). 
In evaluat ing this limit one has to be careful with the term n = 0 since 
Wo.o = § l im^o Wr.r, where ur,r is given by (2.12) for r > 0 (not necessarily an 
integer) . We now apply the transformation 

/ a , 6 \ , v_& „ (c — a,b z \ 

to the left hand side of (2.16) to derive the equivalent generat ing function 

<2-'7) i ( | i O - 1 + » 
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T h e above formula (2.17) is a Neumann expansion for 

(^i-o-^-;^1;^) 

in terms of the modified Bessel functions and is a proper extension of Touchard ' s 
l—r/2 1 \ 

generating function (2.13). If r is even, then <LF\I , ' ; z I is a polynomial 

of degree r/2 in z and is very easy to compute, especially for small r. 

iv) Some related problems. The analysis of the previous sub-section also gives 
an integral representation for the number of permutat ions discordant with two 
given ones, as follows. Consider one of the given permutat ions as a permutat ion 
of the other one and write it as a product of distinct cycles of length 
Si, ^2, . . . , sm. The corresponding fundamental polynomial is then 
USI, US2 . . . USm} where Un is as in subsection (iii) and Ui = 1 — E (see 
Kaplansky [14]), and <pk = in — k)\/n\. Thus when s, > 1, j = 1, . . . , m we 
get 

usl... uSmH = ;7 I < v n 12(-DSJ E 

<yn / i \ s i + . . . + S m /*oo 

n\ Jo 

di 

G •"•('%""= Ï ) * -3=1 X 2 

If some s's are uni ty a similar formula holds. The problème des ménages is the 
case when the two given permutat ions are (1, 2, . . . , n) and (2, 3, . . . , n, 1). 
Similarly one can find integral representations for the three line Latin 
rectangles, see Riordan [20]. 

Another related problem is the following. Divide the integers 1, 2, . . . , n 
into subsets of m each, m\n. We permute these integers so tha t every integer is 
forbidden to appear in any of the places originally occupied by another of its 
subset, with its original position permit ted. The corresponding fundamental 
polynomial is (see Kaplansky [14]) 

m -it®* s(v)(" rW" 
-{5(7)*g(v)(V) 

j n/m 
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so that 
( m ) n/m 

(2.18) / (£) = < £ Cm,kE
n -?m—1c 

with 

^ - § ( 7 ) ( V ' ) ( " ;')«•-•>-»'<-'>-""• 
Expand the right hand side of (2.18) by the multinomial theorem. A typical 
term in this expansion is the multinomial coefficient multiplied by 
n t o M C » , ^ - T S where ZTopi = n/m, that is 

(n/m
 m ) w _ V n / m iPi 

{n a.i)E 2"-° • 
The effect of that term, apart from the multinomial coefficient, on </>0 is 

/n/m \ /n/m \ 

{ZC'.«}(g^)!/»!. 
that is 

J o 

-t X^n/m ip (n/m 

h* ** in a.,}*. 
This proves that 

/

*co —t ( m ) n/m 

o n\ Ifco 

/

'oo — t ( m \ n/m 

-rill (-mU;(0f dt, 
0 WI M'=0 ' where 

(2.19) Lj(x) = Lj\x) = iFi( ~ J ; s ) . 

3. A discrete analogue of Even and Gillis' integral representation. The 
Laguerre polynomials Ln

a(x) are orthogonal on [0, oo ) with respect to the 
weight function xae~~x. The discrete analogues of these polynomials are the 
Meixner polynomials Mn(x, a, c) (see [1]) 

Mn(xta,c) = 2F1y
n,^~X; 1 - c^J , 0 < c < 1, a > 0. 

These polynomials are orthogonal on the discrete set {0, 1, 2, . . . } with respect 

to the weight function w(x) = —- cx, x = 0, 1, 2, . . . . Furthermore they have 
xl 

the generating function (see [1]) 
oo (a) / 1 , / \ x 

(3.i) Ç - ^ M„(*, «, C)«- = (i - <r (^j-rf / • 
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In the present section we give a combinatorial interpretat ion for the numbers 

(3.2) A(kh...,kn) = (l-c)(-l)M-"+kn 

£ Mkl(x, 1, c)Mk2(x, 1, c) . . . Mkn(x, 1, c)c*. 
z=0 

As c —•» 1 these numbers tend to 

ci ~,l Kl, . . . , Kn 1 

\kh . . . , kj 
of Section 2 (see (2.5)). 

Let us first s ta te the Master Theorem of MacMahon [17, pp. 93-98]. 

T H E M A S T E R T H E O R E M . Set 

Vn = ( - l ) 7 * ! . . . Xn 

an — Xi an 

a2i 

ani 

a22 - x2 

an2 

a in 

d2n 

Then the coefficient of Xiklx2
k2 . . . xkn in the expansion of l/Vn is the same as the 

coefficient of the same term in {anXi + . . . + ainxn)
kl. . . {aniXi + . . . + annxn)

kn. 

In order to find a combinatorial interpretat ion for A (ku . . . , kn) of (3.2) we 
will use the Master Theorem; we s tar t by computing a generating function for 
these A's. Using (3.2) we obtain the generating function 

oo 

X A (ki, • • > kn)ril . . . rn
kn 

oo n | oo J 

= (1 - c) E cx FI 1 E (-rtf'M^x, l,c)\ 

n oo n / -j I — 1 \ x 

= (1 - c) PI (1 + r,)"1 E ^ I! ^Txf- - by (3-D. 
Simplifying the above generating function we get 

oo 

= (1 - c ) { l + «r, + . . . + a, - c ( l + ^ + • • . + -I 
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where GJ = aj(rlj . . . , rn) is the e lementary symmetr ic function of degree 
j , j = 1, . . . , n in the variables n , . . . , rw, as denned by (2.9). This establishes 
the generating function 

(3.3) Z A (*x kn)n
kl . . . rn

k" 
ki,...,kn=0 

a-c){o-«)-Mn-(i^)« 
(1 - cn~l) \~l 

Now consider the n X n de te rminan t Tn, 

(3.4) Tn(d) = 

—yi d 
1 —yi 

d 
d 

-Jn-l 
1 

d 
d 

~Jn 

t ha t is the (j,j) ent ry is —yjf the entries above the main diagonal are all equal 
to d while the entries below the main diagonal are all equal to uni ty . Let 
ai , . . . , <rn' be the elementary symmetr ic functions of the n symbols yu . . . , yn. 
I t is clear t ha t Tn is a symmetr ic function of yi, . . . , yn of degree w. T h u s Tn can 
be expressed in terms of the e lementary symmetr ic function oV, . . . , <rn'. 
Obviously the coefficient of an' in Tn(d) is (— l)n. Let 

(3.5) Tn(d) = ( - l ) V + £ ( - l ) V ^ W ) . 

From the definition (3.4) of Tn it is quite obvious t h a t Bj(d) is the j Xj 
dete rminant with zeros along the main diagonal, d in all the entries above the 
main diagonal and 1 in all the places below the main diagonal, t ha t is, 

B,{d) = 

0 d 
1 0 

d d 
d d 

0 d 
1 0 

1, b — d of Exercise 8, 

{-l)j+l{d + d2 + . . . + d'"1) j > 1. 

T h e de te rminant Bj{d) is the special case c = 0, a 
page 441 in Muir [19]. Therefore 

Bj(d) 
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-<-»•{*'-s ( T ^ W -

It is clear that Bi(d) = 0. Therefore (3.5) reduces to 

(3.6) Tn(d) 

Setting yj = 1/V;-, j = 1, . . . , n and d = 1/c in (3.11) we have 

(3.7) (- lrn . . . rnTn(l/c) = 1 - ± (^fzÇ)^ • 

From the Master Theorem, (3.3), and (3.7), we see that A(ki, . . . , kn) is the 
coefficient of rkxr2

k2 • • • rn
kn in RiklR2

k2 . . . Rn
kn, where 

r\ 

r2 

Ri 0 - 1 c - 1 c - i . . c 
- i c 

1 0 - i c - 1 . . c c'1 

i?2 
_ 

1 1 1 . . 0 - 1 c 
Rn 1 1 1 . . 1 0 

Consider the following combinatorial problem. We have n boxes, where the j th 
box contains kj objects of type j,j = 1, . . . , n. We redistribute these objects in 
such a way that each box ends up with the same number of objects it originally 
contained and no object remains in its original container. Moreover we assign 
weights to the above derangements. A derangement has the weight c~e where 6 
is the number of objects that ended up in a box of lower index than the box it 
originally occupied; that is, 6 is the number of objects that "retreated." It is 
clear there is a one to one correspondence between these weighted derange
ments and the contribution of different factors of RiklR2

k2 . . . Rn
kn to the 

coefficient of r*1 . . . rkn in RiklR2
k2 . . . Rn

kn- This proves the following 
theorem. 

THEOREM 3.1. The numbers A(ki, 
mentioned weighted derangements. 

• » K) of (3.2) are the sum of the above 

4. Further integrals of products of Laguerre polynomials. Mac-
Mahon's Master Theorem can be combined with some work on rational 
functions with positive power series coefficients to obtain some results which 
are far from obvious. One example is the following. 

The coefficient of rklr2
2rkz in the expansion of 

(4.1) (f! - r2 - r,)k^(-r1 + r2 - r,)k2(-rx - r2 + rz)
k 

is a positive integer. 
The first problem which leads to a result of this type is an old conjecture of 
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Friedrichs and Lewy. They conjectured that 

(4-2) F^yâ~T+lT^7(T^ 0 + (r-"7)~(T 7̂ 
oo 

= 2—i J^k,m,'nX $ * 
k, m, n=0 

has positive power series coefficients. Szego [24] proved this and also gave a 
couple of extensions. Other proofs were given by Kaluza [12], and Askey and 
Gasper [2]. Askey and Gasper [3] proved the stronger result that 

(4.3) * 
(I - r)(l - s)(2 +1) + (1 - r)(2 + s)(l - t) + (2 + r)(l - s)(l - t) 

oo 

E TJ k m,n 

-^k,m,n^ s l > 
k,m,n=0 

has positive power series coefficients. Stated in this form it is impossible (at 
least at present) to see that (4.3) implies (4.2). The clue to the ' 'right" way to 
consider (4.2) was given by Szegô [24] when he stated that 

(4.4) Ak,m,n = I Lk(x)Lm(x)Ln(x)e~Zxdx. 
J o 

Similarly 

.if 
3 Jn 

(4.5) Bk,m,n = - J Lk(x)Lm(x)Ln(x)e xdx. 

Since we have earlier seen that 

(4.6) (_!)*+'»+'' f°°Lk(x)Lm(x)Ln(x)e~xdx ^ 0, 
J o 

this naturally raises the question of what is the sign behavior of 

J o 
(4.7) I Lni(x) . . .Lnk(x)e *xdx. 

J o 

When k = 1 or 2 it is possible to answer this question completely, but the 
answer is not totally typical of the more general case. 

THEOREM 4.1. The following inequalities hold. 

(4.8) I Ln(x)e-*xdx ^ 0, ^ 1 
J o 

(4.9) ( - l ) n I Ln(x)e-"xdx ^ 0, 0 < M ^ 1 
J o 

(4.10) I œ Lm(x)Ln(x)e-"xdx ^ 0, /i â 1 
J o 

(4.11) (-l)m+n I " Lm(x)Ln(x)e->xdx à 0, 0 < ^ 1 . 
J 0 
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Since L0(x) = 1, it will be sufficient to prove (4.10) and (4.11). The second 
of these holds in general, and so will be given below. The other one is an 
instance of an impor tan t result of Karlin and McGregor [16]. If {pn{x)}^ is a 
set of polynomials orthogonal on [0, co ) with respect to a positive measure 
da(x), if the polynomials are normalized by pn(0) = 1, and if e > 0 then 

/ . 
(4.12) I pm(x)pn(x)e exda(x) > 0, ra, n = 0, 1, 

J o 

If pn(x) = Ln(x), da(x) = e~xdx and e = n — 1 > 0 then (4.12) reduces to 
(4.10), and when /x = 1 (4.10) is jus t the orthogonality relation 

J Lm(x)Ln(x)e xdx = j 
m y£ n 

m = n 

The case k = 3 is quite interesting and complete results are unknown. T h e 
s ta te of present knowledge is summarized in 

T H E O R E M 4.2. Define A(k, m, n\ /x) by 

Cœ 

(4.13) A(k,m,n; /JL) = I Lk(x)Lm(x)Ln(x)e *xdx, n > 0. 
J o 

Then 

(4.14) 
£ A(k,m,n;n)rksmtn 

k,m,n=0 

= [pi + (1 - n)(r + s + t) + (ji- 2)(rs + st + tr) + (3 - M ) ^ ] " 1 . 

The sign behavior of these integrals is given by 

(4.15) A (k, m, n; n) > 0 /x ^ 2, i , w , » = 0 , l 

(4.16) ( - l ) " + m + " y l ( ^ , m , » ; M ) è 0 0 < /x ^ 1, i , w , n = 0 , l 

(4.17) ( - l ) * i 4 ( * , » , » ; § ) è 0, * = 0, 1, . . . , » . 

The generating function follows easily from (2.7). Inequal i ty (4.16) for /JL = 1 
is quite old, having been given by Erdélyi [8]. Other proofs and references are 
given in [6]. 

T h e remaining results in (4.16) follow from 

(4.18) Ln(»x) = ê \l)yr\\ - n)kLn„k(x) [25, problem 67]. 

This was pointed out by Gillis [11]. The inequality (4.15) for /i = 2 was proved 
by Askey and Gasper [3], and this inequality for JLX > 2 also follows from (4.18) 
and the case /x = 2. The details are given in Askey and Gasper [3]. The case 
jit = 3 is equivalent to the Friedrichs and Lewy conjecture. Finally the in
equali ty (4.17) was proved by Debbi and Gillis [7]. 
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Next we see what MacMahon ' s Master Theorem implies when used in 
connection with Theorem 4.2. 

The generating function (4.14) is 

1 
1 - (1 - 1/M)(r + s + t) + (1 - 2/n)(rs + st + tr) - (1 - 3/n)rst 

oo 

= ^ /xi (k, m, n; n)rksmtn. 
k,m,n=0 

A simple calculation shows t h a t 

1 - (1 - l//x)(r + s + /) + (1 - 2/n)(rs + st + tr) - (1 - W/^rst 

I -\/r + (1 - 1/M) « ~ ^ M ! 

= -rst l/^a -1/s + (1 - 1/M) /> 

(4.19) I - 1 / / / W ; 1//X-/; - 1 / 7 + (1 - l.V) 

; 1 — (1 — \/n)r —(is db lit 

= | —r/ii~(i 1 — (1 — 1/IJL)S —bt 

I r/n\ib -s/u.% 1 - (I - 1/M)/ 

MacMahon ' s Master Theorem says t ha t if 

[(1 - l//x)r + as - abnt]k[(l/n2a)r + (1 - 1//*)* + bt]m[(l-l/^ab)r 

( 4 * 2 0 ) + ( I / M ' Ô ) * + (1 - 1/nW = £ c(jl9J2,jz)r'lsjn» 

then 

c(&, w, w) = jn̂ 4 (k, mj n\ IJL). 

T h u s if IJL ^ 2 the coefficient of rksmtn in the expansion (4.20) is positive. The 
special case /x = 2, a = b = — J is equivalent to the first result mentioned a t 
the beginning of this section (see (4.1)). T h e special case pt = 3, a = b = — J 
is equivalent to 

(4.21) (2r / ) * ( - ' + 2 * - 0 w ( r + * - » ) " = X * 0 ' i , j 2 , i B ) r V V ' 

with c(&, m, w) > 0. These two results are far from obvious. If/x = 2, a = fr=f 
then the result is equivalent to the posit ivity of the coefficient of rksmtn in the 
expansion of 

(4.22) (r + s - t)k(r + s + t)m(-r + 5 + t)n. 

This seems much more reasonable, bu t it is still far from obvious. Another fact 
which is not obvious is t ha t c(k, m, n) in (4.20) is independent of a and b. 
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When 0 < \x S 1 then 

(-l)k+m+nc(k,rn,n) ^ 0. 

For jit = 1 this is equivalent to the nonnegativity of the coefficient of rksmtn in 
the expansion of 

(4.23) (-as + abt)k(-r/a - bt)m(r/ab - s/b)n. 

This is obvious when a — b = — 1, bu t is not obvious when a = b = 1. 
Finally (4.17) implies the nonnegativi ty of the coefficient of rk(st)n in 

(4.24) (-r - as + (ab/2)t)k(±r/a + s + bt)n((-S/ab)r + (A/b)s + t)n, 

k = 0, 1, . . . , n. 

Again this does not seem to be obvious for any choice of a and b. 
Similar results can be obtained for k variables. One consequence of (4.15) and 

(4.16) in Theorem 4.2 is the following. 

T H E O R E M 4.3. If 0 < M ^ 1 then 

(4.25) ( - ! ) « + - + » * fœ
 Lni(x) . . . Lnk{x)e-»xdx è 0. 

If M ^ k — 1 then 

(4.26) I Lni(tf) . . . Lnk(x)e~(iXdx è 0. 
•J o 

The combinatorial interpretat ion of (4.25) when /x = 1 is the result which 
star ted our thinking on these problems, and it has been adequately treated 
above in [4] and in [10]. Another interesting consequence follows from (4.26) 
when jit = k — 1 and JJL = k. We will t reat only one of many possible interpre
tat ions of it and leave further exploration to the reader or the future. A simple 
a rgument using the generating function (2.7) gives 

E ,ni ...rk
nk J" Lni(x) . . . Lm(x)e-*xdx 

(4.27) " r k ° l - i 

= |_1 + S (-D'a-i/^J • 
T o be able to give an interpretat ion of (4.26) we need to find ai:j so tha t 

1 - CLnTi —a12r2 

— a<i\Y\ 1 — a22^2 -a2krk 

1 

= 1+ Z ( - 1 ) ; ' ( 1 - J / M W 
3=1 

— akiri —ak2Y2 . . . 1 — akkrk\ 

We have not tried to find the general solution to this set of equations bu t one 
part icular solution is both reasonably easy to find and interesting. 
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LEMMA 4.4. 

Dk = det |J - Ak\ = 1 + E (-1) ; ' (1 - /x/7>* 

where I is the identity matrix and Ak is given by 

ait = (1 — l/n)rit i = 1, . . • , k 

at5 = (-1/juK-, i9*j, l ^ i , j S k. 

Proof. Factoring out ( — r{) . . . ( — rk) and subtracting the last row from 
every other row gives 

Dk = ( - l ) V . . r , I 

1 - 1/M - 1/ri - 1 / M 

- 1 / M 1 - 1//Z - 1/r, 

• 1 / M •1/M 

- 1 / M 

. . 1 - l//z - l/rft 

If we factor — l//x out of each row then 

1 - /x + MAI 

£>* = ri . . . r^/// 
1 

1 . . . 1 
1 — At + /x/V2 . . . 1 

1 1 . . . 1 - M + M Afc I 

and this determinant is An in Exercise 2, p. 389 of Muir [19] with 
at = /x(—1 + 1A<) = M(̂ Z - 1)A«. 

Dk = (1 - n ) . . . (1 - r ^ o l l - ^ - r j - - Z ^ I I 

= (1 - n ) . . . (1 - rk) - - è rt EI (1 - ry). 

(1 - r,) 

M *= i j=i 

The above sum can be simplified to give 

Dk= 1 + £ ( - l ) J ( l - i / M ) c T ; . 
;=i 

Applying MacMahon's Master Theorem we have the following result. 

COROLLARY 4.5. The coefficient of r"1 . . . rk
nk in the expansion of 

[(fe - c)f! - r2 - . . . rfc]
wi[-ri + (& - c)r2 

- rz - . . . - r*f * . . . [ - n - r2 - . . . - rfc_x + (& - c)r*]n* 

is positive when c S 2. 
When & = 3 and c = 1, Corollary 4.5 is a consequence of the Friedrichs-

Lewy conjecture and the case c = 2 is the result mentioned at the beginning of 
this section. 
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The following combinatorial interpretation of Corollary 4.5 can be given. 
Consider first the case k = 3, c = 2. Take three boxes with ni, n2, n% distin
guishable objects in them. Rearrange these objects so tha t ti\ end up in the 
first box, n2 in the second, w3 in the third. In each box the objects are dis
tinguishable, bu t the order in a given box after the rearrangement does not 
mat ter . Then Corollary 4.5 says tha t the number of such rearrangements in 
which an even number of objects have moved from their original box to a 
different box is larger than the number of arrangements in which an odd 
number of objects have moved. 

For example, consider the case of two objects a\, a2 in the first box, and one 
each in the second and third, say b and c respectively. T h e different rearrange
ments are 

Box 1 Box 2 Box 3 
axa2 b c 

aia2 c b 
aib a2 c 
aib c a2 

d\C a2 b 
d\C b a2 

a2b <2i c 
a2b C ax 

a2c dl b 
a2c b ax 

be di a2 

be a2 a i 

and eight of these have an even number of objects which have moved to a 
different box while only four have an odd number of objects which have moved. 
Actually even more can be obtained, since the difference of these two numbers 
is the coefficient of rnisnHnz in the expansion of (r — s — t)ni( — r -{- s — t)n2( — r 
— s + t)nz, and so by the Master Theorem it is the coefficient of rnisnHH3 in a 
certain power series expansion of a generating function; and then it is an 
appropriate integral of the product of three Laguerre polynomials times e~2x. 
Explicitly it is 

^ni,n2,ri3 — ^ I ^ni\pC)^n2\pC)-L'm\pC)6 ^X, 

which in the case n\ = 2, n2 = 1, n3 = 1 can be computed to give 4. 
The Laguerre polynomials can be expanded using (2.19) to give 

r 
^ t t l ,U2 ,713 

y^ (ni\ (n2\ (nÀ 
kl,k2,k3^0 \kj \k2) \kz) 

V (^1 + k2 + fe3)! {_1,kl+k2+k3 
x www l *j 
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Again the positivity of this sum is not obvious. There is another sum which was 

given in [3] and repeated in [1, pp. 51-54]. A simple calculation from the results 

given there gives 

r - 2 2 w 3(^i + ?*2 - n 3 ) ! y^ (i)nz-j (n2 — ni — nz)2j 
c ™ * " " ( W ~ W3)!Wl! fy (i)n8_, \n2 - n, + l);-j!2

2j 

when n2 ^ n%, and this is obviously positive. When n3 is a small integer this is a 
useful formula. In part icular when TZ3 = 1 it is 

Uifn2,i = ,—; Ifai - n2) + » i + n2J, «i , w2 ^ 1. 

Also when w2 = rt\ + w3 this formula simplifies. In this case it is 

r - i2ni) (2n'\ 

The older result of Szegô on the Friedrichs-Lewy conjecture has a com
binatorial meaning of the same sort. Now the rearrangements are listed in two 
columns, those with an even number of objects which have moved and those 
with an odd number of objects which have moved. Instead of jus t counting the 
number of elements in each column, they are counted with weights. A re
ar rangement is counted 2Z t imes when exactly i objects remain in their original 
boxes. Then Corollary 4.5 with c = 1 says t ha t the weighted sum of those 
rearrangements with an even number of objects t h a t move is greater than the 
weighted sum of those rearrangements with an odd number of objects t ha t 
moved. T h e weighting factor can be a real number a ^ 1, since c = 3 — a and 
Corollary 4.5 holds when k = 3, c g 2. 

When considering more than three boxes it seems to be essential to consider 
weighted sums of the rearrangements . For when k = 5, nY = n2 = nz = w4 = nb = 1 
there are 120 different rearrangements , 64 of which have an odd number of 
elements t ha t move to a different box and only 56 have an even number of 
elements t ha t move to a different box. However with weights there is a correct 
theorem. 

T H E O R E M 4.6. Let k boxes with nt objects in the ith box be given and assume that 
all the objects are distinguishable but the order of the objects in a give?i box does not 
matter. Rearrange these n\ + . . . + nk objects so that box i still has nt objects. 
Form the sum of (k — 2 + M)°(~~ l)ni+---+w^-fl over all such rearrangements, where 
a is the number of objects in a given rearrangement that stay in the same box. Then 
this number is positive if /x ^ 0. 

This is jus t a reinterpretat ion of Corollary 4.5. In the case k = 5, nt = 1 and 
c = 3 + n the sum is 

c5 + 10c3 - 20c2 + 45c - 44, 
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which is —8 (as it should be) when c = 1 and is positive when c ^ 2. 
Theorem 4.6 only gives the positivity for c ^ 3. 

Because of these combinatorial interpretations Theorem 4.3 takes on more 
significance, and the problem of finding further values of M for which it holds 
becomes more interesting. Also the question of finding a direct combinatorial 
proof of the results in this section is clearly of interest. 
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