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MAXIMAL HOMOTOPY LIE SUBGROUPS OF 
MAXIMAL RANK 

JOHN A. FROHLIGER 

Introduction. Let G be a compact connected Lie group with H a. 
connected subgroup of maximal rank. Suppose there exists a com
pact connected Lie subgroup K with H c K c G. Then there exists a 
smooth fiber bundle G/H —> G/K with K/H as the fiber. (See for example 
[13].) This can be incorporated into a diagram involving the classifying 
spaces as follows: 

K/H K/H 

(1) 

Here IT, <j>, <f>l9 and 4>2 denote fibrations. We also know that the 
homogeneous spaces and the Lie groups, which are homotopy equivalent 
to the loop spaces of their respective classifying spaces, are homotopy 
equivalent to connected finite complexes. 

Now suppose H is a maximal subgroup. Can there still exist spaces, 
which we will call BK, K/H, and G/K, and fibrations so that diagram (1) is 
still valid? This paper will show that in many cases either G/K or K/H will 
be homo topically trivial. 

For some cases an answer has already been found. It has been shown 
for some instances of G and H that there are no nontrivial fibrations 
F —> E —> B with E homotopy equivalent to G/H and F and B homotopy 
equivalent to finite complexes. See for example [1, 7, 12]. This suggests the 
following hypothesis. 

CONJECTURE. Let G be a compact connected Lie group with H a connected 
maximal subgroup of maximal rank. Consider the fibration BH —» BG 
corresponding to the inclusion H c G. Suppose there exists a space BK such 
that the following hold: 
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770 JOHN A. FROHLIGER 

1) QtBK is homotopy equivalent to a finite connected CW complex K. 
2) There exists a sequence of fibrations 

<j>l <j>2 

BH-^ BK-> BG 

with 4>2§\ homotopic to <$>. 
3) The fibrations above all have fibers which are homotopy equivalent to 

connected finite complexes. 
Then K is homotopy equivalent to either H or G. 

In this paper it will be shown that the conjecture is true for a large 
number of cases. 

Let Ta H be a maximal torus and let 

BT ^ BH 

denote the fibration corresponding to the inclusion. Then, given the 
conditions of the conjecture, we can conclude that the fiber of BT —» BK is 
also homotopy equivalent to a finite complex. (See [11].) 

For the sake of convenience, the fibers of BT —> BK, BH —* BK, and 
BK -» BG will be denoted KIT, KIH, and GIK respectively. 

If a space BK satisfies the conditions of the conjecture, then we can 
construct a diagram similar to (1) and thus we get the expected fibration 
of the "homogeneous spaces". In this paper we will use the following 
strategy which was set down in [12]. 

a) Since GIT is a simply connected Poincaré-Wall complex with positive 
Euler characteristic, then we know from [10, 12] that KIT, GIK, and KIH 
also have these properties. (See also [11].) 

b) To prove the conjecture, we will try to show that H^(KIH, k) = 0 
(respectively H^(GIK, k) = 0) for some field k. Then it follows from (a) 
above and [16] that KIH (resp. GIK) is contractible and the conjecture 
follows from the homotopy exact sequence of 

H — > K -> KIH 

(resp. K — > G -> GIK). 

1. The main theorem. It might be prudent to recall here some proper
ties of Lie groups and Weyl groups. Let G be a compact connected Lie 
group of rank n and let T denote a maximal torus of G. Then the 
Weyl group of G is WG = N(T)IT where N(T) is the normalizer of T. WG 

can be represented as a group of symmetries of R/7 generated by 
reflections. (See for example [6].) WG also acts on H*(BT, Z ) as a 
pseudo-reflection group, the pseudo-reflections corresponding to the 
reflections in R". Here Z denotes the integers modulo a prime p. 
Furthermore, given the fibration 
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G/T-> BT^* BG, 

if G has no p torsion we know (see [5] ) 

i*:H*(BG, Zp) « H*(BT, Zp)
w^. 

Let BKbe a space which satisfies the conditions of the conjecture. Since 
K is homotopy equivalent to an //-space H*(K, Zp) is a Hopf algebra. 
Hence there exists an m such that, for p large enough, 

H*(K, Zp) = A(X2ri_u x2ri_x,..., x2rm_x) 

where dim x2r.-\ = 2r- — 1. Consequently, 

H*(BK,Zp) = Zp[y2ri,y2r2,...,y2rJ 

where, without loss of generality, y2r is the image of x2r.-\ by 
transgression. A similar statement is true for cohomology with rational 
coefficients. Here m is called the rank of K. By [11] we have 

rank H ^ rank K ^ rank G. 

Therefore, m = n where n is the dimension of the maximal torus T. This 
enables us to use Theorem 2.2 of [11] to see that, for all p large enough (at 
least rxr2 . . . rm\ 

H*(BK, k) -> H*(BT, k) 

is monic for k = Z or Q and H*(K/T, k) is evenly graded. From [17] we 
have 

(<j>^)*H%BK, Zp) « H*(BT, Zp)
WKP 

where WRP is a pseudo-reflection group acting on H2(BT, Z ). Call WKP 
the (mod p) "formal Weyl group" of K. 

Consider the sequence of fibrations 

BT-* BH -» BK. 

Let WH be the Weyl group of H. Since WH acting on H*(BT9 Zp) leaves the 
image of \p* fixed, it leaves the image of H*(BK, Z ) invariant. Define W 
in Aut H2(BT, Z ) as the group generated by the pseudo-reflections of WH 

and WKP. Then 

(^)*H*(BK9 Zp) = H*(BT, Zp)
w 

and clearly WH and Ŵ /> are subgroups of W. But, by [8], we have 

\W\ =rxr2...rn = \WKP\. 

Therefore, W = WKP and WH Q WKp. UWH= WKp then <$>\* would be an 
isomorphism and 

H*(K/H, Z ) = i / ° (^ /H, Zp) « Z 
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So WH ¥= WKP and, similarly, WKP ¥* WG. Thus, we have proven the 
following: 

THEOREM 1.1. Let H, G, and K satisfy the conditions of the conjecture. 
Then the rank of K equals the rank of G. Furthermore, if K is not homotopy 
equivalent to H or G then, forp large enough, the formal Weyl group ofK is a 
proper subgroup of the Weyl group of G and contains the Weyl group of H as 
a proper subgroup. 

2. Applications of the main theorem. All of the pairs of H and G 
satisfying the hypotheses of the conjecture are listed in [6]. We can use the 
results of the previous chapter to prove the conjecture for most of those 
pairs. Specifically, we will show that the conjecture is true for the 
following sublist of cases. 

Weyl groups of Lie groups and their subgroups 
for which the conjecture is true 

wG wh r 

a) An A, XA„-,-x 
b) B„ Dn 

c) C„ c, X C„_j 
d) D„ Di X D„-i 
e) Dn Dn - 1 

0 D„ K - 1 
g) E6 A: X A5 

h) E6 »5 
i) E6 A2 

X A2X A2 

j) E7 Ax X D6 

k) E7 A, 
1) E7 A2 

XA5 

m) E8 Dg 

n) E% Ax X £ 7 

o) £ 8 A, 
P) E% A2 X E6 

q) £ 8 A4 X A4 

r) F4 A2 
XA2 

s) F4 B4 

t) G2 Ax X Ax 

u) G2 A2 

Note. Cases (s) and (u) were covered in [12] with stronger results; 
therefore, the arguments for these will be omitted here. 

The representations of the Weyl groups used here are taken from [2]. 
For the rest of the chapter the superscript "/?" in WRP is unnecessary and 
will be suppressed. 
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Classical cases. 

z)WG = An,WH = AiXAn_i_x. 
Let R" have the orthonormal basis [e0, el9. . ., en). Then An has a 

representation such that the reflections correspond to transpositions of 
pairs of the e/s. Therefore, the representation of WK is also generated by 
such transpositions; hence, WK is isomorphic to a product of Ajs. 
Consequently, if At X An_i_x = WK we get WH = WK or WK = WG. 

b) WG = Bn9 WH = Dn. 
With Rn having the orthonormal basis {eh e2, . . . , en) the roots of a 

representation of 2?w are {àze.-, ±ej ± e^}; those of Z)n are { ± ^ ± ^ } , 
y ¥^ k. If Dn =£ WK then another root of 2?w is a root of W .̂ Without loss 
of generality let ex be such a root. Since reflections in Coxeter groups 
send roots to roots then 

ex - 2[ (e,, ej - ej)/\\e{ - ^ H 2 ] ^ - ej) = ey-

is also a root of W .̂ So the roots of WK are {±ei9 ei ± £y} and WK = Bn. 

c) ^ c = Cn, WH=CIX C„_, 
Since Cn is isomorphic to B„, the representation in (b) above will be 

used. Cj X Cn_i then has roots {±e-, ±<?y ± e^}, 7 T̂  k, with y ^ 1 if 
and only if k Ss /. So any root r0 in Ŵ - not in WH must be of the form 
±(-ej0

 + ek<) ° r ±(-eJo ~ ek) w i t h 70 = ' a n d k0 > '• 

Case 1). r0 = ± ( e + ^ ). Let Sr denote the reflection along the root r. 
Then other roots of WK are, for all j ^ /', k > i 

= S(ereJ(ejo + ek) - (ek - % , eJg + ek)(ek - ek)\ 

= S(ereJ(eJo + eko) + (ek- ek)] 

= s(nteJo + e*> 
= (eJo + ek) - {ej - eJo, eJo + ek){e} - eJo) 

= (eJ0 + ek) + (ej - ej) 

= ej + ek 

and 

S(ereJo)
S(ek + eko)(

ej0 + ek) 

= s(ej-eJ^j0 + %) ~ <ek + eko, eJo + eko)(ek + ek) ] 

= S(e..eJ (eJo + ek) - (ek - ek)} 

= Siej-ejo)(eJo - ek) 

= (.% - ek) - (ej - ej eJo - ek){e} - e}) 
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= (ek - ek) + (ej - eJo) 

= ej - ek-

Hence WK = WG. 
Case 2). r0 = ±(e. — ek ). As in Case 1) above, other roots for WK 

are, for all j = i, k > /' 

S(ere]i)
S(ek-eK)(% ~ ek) 

= S(ej-eJ (% ~ %) - (ek - eko, ek - eko)(ek - ek) ] 

= S(ereJ(eJo- eko) - (ek - eko)} 

= S(ereJtjQ - ek) 

= (% ~ ek)- (ej ~ eJo, ek - ek){ej - eJo) 

= (eJo - ek) + (ej - eJQ) 

= ej - ek 

and 

S(ej-eJo)
S(ek + eki))(

ej0 ~ ek) 

= ^ - ^ 1 ( ^ 0 - ek) - <ek + %- % - eko)(ek + ek) ] 

= S(e. _ eJeJo + ek) 

= ej ~ ek-

Hence WK = WG once again. 

d)WG = Dn9 WH = Dt X Dn_, 
Recall that Dn has roots {±ej ± ek}, 1 ^ j < k ^ n and Dt X Dn_i has 

roots {±ej ± ek) with 1 ^ j < k ^ i or i + 1 ^ j < k ^ n. From the 
calculations in (c) above we see that there is no intermediate Coxeter 
subgroup between WH and WG. 

€)WG = Dn,WH = Dn_v 

Dn_ j has all of the roots of Dn except those of the form ±:et ± en. Again 
the calculations in (c) verify the conjecture for this case. 

î)WG = Dn, WH = A„_V 

An_x has { ± ( ^ — ek) } for its roots. The first calculation in part (c), 
Case 2, above shows that if WK has any root in WG not in WH then 
WK = WG. 

Exceptional cases. Unfortunately, the Weyl groups of the exceptional 
Lie groups do not have such "nice" representations. So for the following 
cases, I find it easier to use Poincaré polynomials. 

Note that if H*(BG, Q) has type [2il9 2/2, . . . , 2i J and H*(BK, Q) has 
type [2/!, 2/2, . . . , 2/J then 
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Po(G/K, ,) = ^ _ 
(l - / 2 / l ) . . . (l - f^o 

2M (i - r * ) . . . (l - t*") 

The strategy now will be to determine possible candidates for WK and to 
show that for each candidate P0(K/H, t) or P0(G/K, t) is not a finite 
polynomial. 

For example, consider WG = Ej(j = 6, 7, or 8). If rx and r2 are two 
roots of the representation of Et as a Coxeter group then the value of 
(ri> r2)/HriH IWI is either 0, ± 1 , or ± 1 / 2 . Therefore, WK must be a 
product of ^4/s, Z^-'S, ^ ' S , and the trivial group. 

h ) WG = E69 WH = D 5 . 

H*(BE6, Q) has type [4, 10, 12, 16, 18, 24]. The candidates for ^ are 
listed below along with corresponding types for H*(BK, Q), and the 
appropriate polynomials. 

WK H*(BK, Q) type Poincaré polynomial 

(1 - ;18)(1 - t24) 
Ax X D5 [4, 4, 8, 12, 16, 10] P0(G/K, t) 

[4, 6, 8, 10, 12, 14] P0(G/K, t) 

D6 [4, 8, 12, 16, 20, 12] P0(G/K, t) - 20 
6 (1 - /8)(1 - t20)(\ - tn) 

By substituting / = em/2 in the first and third polynomials and t = eml11 in 
the second we see that none of them are finite polynomials. 

i) WG = E6, WH = A2XA2X A 2 . 
Here H*(BH, Q) has type [4, 4, 4, 6, 6, 6]. Below we list possible 

candidates for WK, the corresponding types of H*(BK, Q), and the 
appropriate Poincaré polynomials. 

(1 - 1 4 ) ( \ - > 8 ) 
(1 - /16)(1 - ' 1 8)0 - z 2 4 ) 
(1 - /6)(1 - *8)0 -t") 

(1 - r10)(l - ' 1 8 )0 - ; 2 4 ) 

WK H*(BK, Q) type Poincaré polynomial 

A2 X A4 [4, 4, 6, 6, 8, 10] 
(1 - t \ \ 

A2 X D4 [4, 4, 6, 8, 8, 12] 
(1 - f8)(l ~ 6(1 -

- 6d " 
- ,10) 

"6 
By substituting t = effj/3 we see that neither is the Poincaré polynomial of 
a finite complex. 

j ) WG = E7, WH = AiX D6. 
It is known that H*(BG, Q) and H*(BH, Q) have respective types 

[4, 12, 16, 20, 24, 28, 36] and [4, 4, 8, 12, 16, 20, 12]. 
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WK H*(BK, Q) type Poincaré polynomial 

A, X E6 [4, 4, 10, 12, 16, 18, 24] 
(1 - tw)(\ 

P0(K/H, t) = - ^ -
(1 - r8)(l 

- ' , 8)<1 

- /20)(1 

~'2 4) 

A7 [4, 6, 8, 10, 12, 14, 16] 
(1 - t6)(\ 

P0(K/H, 0 - - r - w 
- ,10)(1 

- r l 2)( l 

-<14) 
- ,20) 

D7 [4, 8, 12, 16, 20, 24, 14] 
(1 - /28)(1 

(1 - r8)(l 

- r36) 
-r1 4) 

third case P0(G/K, em/4) doesn't exist. 

k) WG = E7, WH = A7. 
For this the only candidate might be WK = Z)7, but this was eliminated 

in part (j) above. 

1) wG = E7, WH = A2 X A5. 
As we have seen, D7 cannot be a candidate for WK. A7 can't be used 

either since this would give 

VK/H,,) _ (• - > y + -;> 
0 (i - ?4)(i - t6) 

liich is undefined for t = ev'n. 

m) WG = £g , ^ = Z>8. 
If WK = yi8 then 

p r r ' 7 / n (1 " ?6)(1 " ' ' ° ) ( 1 " /14)d -- ?
1 8 ) 

W ' ' > - ( 1 _ ,20)(1 _ / 24 ) (1 - ?28)(1 - ? 1 6 ) 

which is obviously not finite. 
For the next four cases the only candidate for WK is Z>8, which would 

give H*(BK, Q) a type [4, 8, 12, 16, 20, 24, 28, 16]. But in each instance 
P0(K/H, t) is undefined for some value of /, hence is incompatible with a 
finite complex. 

n) WG = ES9 WH = AlX E7. 
For this 

P(Km t, 0 ~ '"XI - ' '6) 
Po(K/H' ° (1 - ,4)(1 - P*) 

which is undefined for t = e771'3. 

o) WG = £ 8 W H = A,. 
Here t = e1"73 shows that 

P(VI„ „ _ (1 ~ ?20)(1 ~ t 2 \ \ - t2S)(\ - tn) 
F0(K/H, 0 - /6 _ r , 0 ) ( 1 _ / 1 4 ) ( 1 _ , .8 ) 
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isn't a finite polynomial. 

p) WG = E%, WH = A2X E6. 
Here 

prtr/ff A - (1 ~ ^8X1 ~ ' 1 6 )0 ~ ^2°)(1 ~ t2%) 
o( ' ° ~ (1 - t4)(l - t6)(l - /10)(1 - ?

18) 

which is also undefined for t = en,n. 

q) WG = E%, WH = A4X A4. 
For this case t = e7"75 doesn't return a value for 

PdLK/H, t) 

_ (1 - fl2)(l - f16)(l - t20)(\ - t24)(l - f28)(l - ?16) 

~ (1 - /6)(1 - ?10)(1 - /4)(1 - t6)(l - /8)(1 - /10) 

r) WG = F4, WH = A2X A2. 
The only possible candidate for WK here might be D4 but a quick scan of 

the root system shows that this doesn't contain WH as a subgroup. 

t) WG = G2, WH = AXX Ax. 
This case yields stronger results. Since H*(BG2, Q) has type [4, 12] and 

H*(BH, Q) has type [4, 4] then 

(1 - tn) 
P0(G/H, t) = - jA 

Let F —> G/7/ —> 5 be a compact fibering of G/H with F connected. Then 
since 

Po(G/H, 0 = w * )W 0 
we get 

P0(B, t) (1 

(1 

- r 1 2 ) 

and 

w o (1 

(1 - ' 4 ) 

for some a. This implies 4\a and #|12; hence, a is equal to 4 or 12. 
Therefore, G/H is connectedwise prime. 

3. Other cases. Unfortunately, it is possible for H to be a maximal sub
group of G of maximal rank without WH being a proper reflection 
subgroup of WG. These cases include, among others, WG = Cn with 
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4) 

WH = An_x and WG = Bn with WH = Bn_x or Bx X Dn_x. However, the 
conjecture still remains valid here for some specific cases of G or H. 

a) G = Sp{n\ H = U(n). 
Here WG = Cn and WH = An_x. If ^Tis not homotopy equivalent to H 

or G then WK = Dn. So, in cohomology with rational coefficients, we have 
H*(BT) generated by xx, . . . , xn with dim xx = 2 and 

H*(BSp(n) ) maps isomorphically onto S(xx,.. . , xn); 
H*(BU(n) ) maps isomorphically onto S(xx,. . . , xn)\ and 
H*(BK) maps isomorphically onto the ring generated by S(x\9 

and xxx2 . . . xn. 
(Here S(tfi> . . . , an) denotes the ring of symmetric functions on 

(ax, . . . , an).) 
But Sp(n) and U(n) are torsion free which means that the statements 

above concerning H*(BT), H*(BSp(n)), and H*(BU(n)) are true even 
with integer coefficients. Therefore, there must be classes sx, . . . ,sn, s' 
in H*(BK, Z) which map onto the symmetric functions ox(x

2
x, . . ., x2), 

o2(xx, . . . , x^)9. . . , on(xx, . . . , x2) and kxxx2 . . . xn respectively in 
H*(BT, Z). 

LEMMA 3.1. If k 1 (mod 2) then the conjecture holds for G = Sp(n), 
H U(n). 

Proof If k = 1 (mod 2) then in cohomology with mod 2 coefficients the 
image of (4>\^)* contains the ring generated by S(xx, . . . , x%) and 
xxx2 . . . xn (reduced modulo 2) in H*(BT). Let f be the mod 2 reduction 
of s' and let cx,. . . , cn be the mod 2 Chern classes of H*(BU(n) ). Then 
(f)*t' = cn and 6* maps H*(BSp(n)) isomorphically onto the ring 
generated by q , c2, . . . , c .̂ 

Since J ^ C„ and WK 

P0(G/K, t) (1 /4)(1 

Dn then 

/8) . . . (1 /4 (n- l ) ) ( 1 _ ,4*) 

(1 - /4)(1 - / 8 ) . . . ( 1 - ^ - ] > ) ( 1 /2") 

1 2» 

So dim G/K = In. 
Now consider the diagram 

K/U(n) 

Sp(n)/U(n) 

K/U(n) 

t 
BU(n). 

4> 
-*»BSp(n) 

Sp(n)/K-

N>1 
Y 

BK-
02 

-**BSp(n) 
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Since U(n) and Sp(n) have no 2 torsion we have H*(SP(n)/U(n), Z2) 
generated by p*cx, p*c2,. . . , p*cn, none of which is zero, with the relation 
(p*C/)

2 = 0. (See for example [5].) So 

p*4>*/' = p*cn ¥= 0. 

Since cn maps to xxx2 . . . xn in H*(BT), Sq2cn maps to (xj . . . x j 
X (xx + x2 + . . . + x j , i.e., S^ 2 ^ = cwCj. Therefore 

0 *= ( p * ^ ) ^ ! ) = p*Stf2c„ = p*<f>*Sq2t' = 7T*(p'*Sq2t'). 

But this gives a contradiction since 

dim (p'*Sq2f) = In + 2 

which is greater than the dimension of Sp(n)/K. 

Now we can use this lemma to prove the conjecture for a few cases. 

THEOREM 3.2. If G = £/?(«) and H = U(n) then the conjecture is true for 
n = \, 2, or 3. 

Proof The proof for n = 1 follows from the fact that there are no 
intermediate subgroups between the trivial group and Cx. 

Suppose n = 2. Then we see, say by using Poincaré polynomials, that 
K/U(2) and Sp(2)/K are simply connected Poincaré-Wall complexes of 
dimension 2 and 4 respectively. Furthermore, the polynomials show us 
that H*(Sp(2)/K) contains only torsion submodules for * = 1,2, or 3. We 
can use duality and the universal coefficient theorem to show that 

H*(Sp(2)/K) = 0 

in these dimensions. We can sum this up, using mod 2 coefficients as 

= 0,2 
Hl(K/U(2),Z2) 

otherwise 

[Z2 i 
lo oi 

Hl(Sp(2)/K, Z2) = 
fZ2 / = 0, 4 

0 otherwise. 

In the spectral sequence of 

Sp(2)/K -> BK^ BSp(2) 

we see E2 is evenly graded. Thus E2 = E^ and H*(BK, Z2) is evenly 
graded. Consequently, from the spectral sequence of 

K/U(2)^> BU(2)->BK, 

since everything is evenly graded, we find that </>* is a monomorphism. 
Hence k = 1 (mod 2) and the lemma applies. 

Suppose now n = 3. Then we have 
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Pi^MK A (1 - t4)(\ - t*)(\ - r12) 
rn{Sp(3)/A, t) = T s 7— 

° (1 - ?4)(1 - /8)(1 - t6) 
= 1 + t6 

p°(*/t/(3)> ° - (1 - ,2)(i - t\\ - à 
= l + t2 + t4 + t6 

IW»(3VI/(3X 0 - " " ? ' " ? ' " ' . ' ' 
0 ^ ( l - ; 2 ) ( l - /4)(l - /6) 

- 1 + t2 + t4 + 2/6 + f8 + /10 + Z12. 

Consider the mod 2 Serre spectral sequence of 

K/U(3) -> S^(3) / t / (3 ) -> Sp(3)/K. 

Suppose Sp(3)/K has no 2 torsion. Then the differential dr on £"r is the 
zero homomorphism for 2 ^ r ^ 6. Therefore, we see that E2 = E^ and 
K/U(3) has no 2 torsion. Suppose Sp(3)/K has 2 torsion. By duality 
and the universal coefficient theorem, we see that 

H{(Sp(3)/K) « H4(Sp(3)/K) « H5(Sp(3)/K) = 0 

and 

H2(Sp(3)/K) « H3(Sp(3)/K). 

Therefore, Sp(3)/K has 2 torsion if and only if 

H2(Sp(3)/K, Z2) ^ 0. 

Since the image of H2(Sp(3)/K, Z2) does not vanish in E^, 

H2(Sp(3)/K, Z2) = = Z2. 

We( ̂ an then deduce that 

H3(Sp(3)/K, Z2) = = z2 © z2 

and 

H\K/U(3\Z2) = z2 © z2. 

So K/ U(3) has 2 torsion and, as for Sp(3)/K, 

H\K/U(3\Z2) = Z 2 © Z 2 . 

Consequently, E2 = Z2 © Z 2 © Z 2 © Z2. 

But since the "homogeneous spaces" are 1-connected and satisfy Poincaré 
y, the classes in E2 '3 remain thr< 

H6(Sp(3)/U(3l Z2) = Z2 © Z2. 

duality, the classes in E2 '3 remain through E^. This contradicts 
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So Kl U(3) and Sp(3)/K must have no 2 torsion and hence, as in the n = 2 
case, k = 1 (mod 2). 

b) G = SO(2n + 1), H = SO(2«) X SO(2(« - w) + 1). 
Here ^ = 2?„ and WH = J „ _ 1 (for m = 1) or 2?m X Dn_m (for 

m > 1). Recall that a representation of Bn has roots {±^-, ±ez-, ± ^ } with 
1 ^ /, j ^ n. Bm X Dn_m has roots {±ei9 ±ep ±ek} for \ ^ i ^ m and 
1 ^ j < k ^ m or m < j < k ^ n. U WK has a root of the form 
±et±ej with / ^ m and j > m then, by applying reflections, we see 
that WK and WG have the same roots, hence are isomorphic. However, if 
we add to the roots of WH the vector e with p > m, we get the root 
system of Bm X Bn_m. So if there is a K, not homotopy equivalent 
to G or / / , which satisfies the assumptions of the conjecture then 
WK = Bm X Bn_m. Nevertheless, there are still instances where the 
conjecture is valid. 

THEOREM 3.3. If 

G = SO(2n + 1) and H = SO(2m) X SO(2(n - m) + 1) 

the conjecture holds for n = 2; m = I or 2. 

Proof The proof for the m = 1 case will be given here. The proof for 
m = 2 is very similar. See [9] for details. Suppose the theorem were not 
true for m = 1. From their Weyl groups we see that 

H*(BG, Q) has type [4, 8, 1 2 , . . . , 4»]; 
H*(BH, Q) has type [4, 8, 1 2 , . . . , 4 ( n - 1), 2]; and 
H*(BK, Q) has type [4, 8, . . . , 4(n- 1), 4]. 

Therefore 

i - ;4 

P0(K/H, t) = — p . 

From the 1-connectedness of A7i/ and the Poincaré polynomials of BH 
and BK we have 

(Z j = 0, 2 
HJ(K/H, Z) = I 

[0 otherwise. 

See also [11]. 
For the remainder of this proof, we will be using mod 2 coefficients. 
From [5] we have 

H*(BG) = Z2[W2, W3,...9 Wln+X] with dim Wj = j ; 

H*(BH) = Z2[H>2, W2, w 3 , . . . , w2„_i] with dim w'2 = 2 and 

dim Wj = j ; and 

(1) <j>*Wj = Wj + Wj_2w'2 
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where w0 = 1; w- = 0 for j £ {0, 2, 3 , . . . , In — 1}. 
We will now show that i* is not surjective. Consider now the Serre 

spectral sequence of 

K/H -^ BH -> BK 

Suppose /* is surjective. Then E2 = E^ and we get 

P2(BK, t) = P2(BH, t)/P2(K/H, t) 

= 1/[(1 - t2)(l - t2)(\ - t3)(\ - â) 

X (1 - /5) . . . (1 - t2n"l)(l + t2)] 

= 1/[(1 - t2)(\ - t3)(\ - t \ \ - t4) 

X (1 - *5) . . . (1 - t2n~])]. 

From (1) we know H*(BK) has classes v2, ¥3» • • • > ^ - 1 w n e f e 

From P2(BK, t) above we see that there exists a nontrivial class 
v4 G H*{BK) not generated by v4 and v2. Since v4 is not in the span of v4 

and v2 we can assume without loss of generality that 

<?>*v4 = aw2w2 + b(w2) 

with a or b nonzero. It is now straightforward to show that v4, 
v2, • • • » V2«-i a r e algebraically independent since their images under <j>f 
are algebraically independent. Hence, 

H*(BK) = Z2[^, v 2 , v 3 , . . . , v 2 „ _ , ] . 

But if /* is surjective then we see that w2n_ xw2 is not in the range of <j>* 
since 

Hi^ln-^l) = (w2n-\ + W2n-3W2)(W2 + w2> 

and <J>f maps no other product of v-'s to an expression with terms of the 
form w2n-\W2 or w2n_xw2. This is a contradiction of 

$*W2n+\ = ^ M ^ + l = W2n_,W^ 

Therefore z* is not surjective. 
Since /'* is not onto then, from the spectral sequence of 

K/H -> BH -» 5AT, 

we see that there are classes v2 and v2 in H*(BK) such that <f>*v2 = vv2 

and <£*v2 = w2. Using this fact, equation (1), and a little induction we find 
that there are classes v3, v4, . . . , v2n_x in H*(BK) with <J>fv, = w,. Hence 
</>f is onto. 

Now consider the following diagram. 
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H « SIBH • ttBK « K 

EH « PBH *> PBK 

t A f 
£ # • BK 

This induces a transformation T* from the cohomology spectral sequence 
of PBK -> £ # to that of £77 -> £ # . We know (for example, see [5] ) that 
there are classes x\9 xl9 x29. . . 9x2n_2 in H*(H) such that w'2, 
w29 . . . , w2„_i are their respective images by transgression and such that 

H*(H) = A [ J C / „ X 1 , . . . , J C 2 W _ 2 ] 

(that is, H*(H) has a simple system of generators [x\, xl9. . ., x2n^2} ). 
Since PZ?AT is contractible we know that there is an element yt_x in 
Er for some r, such that drj>/_i is the nontrivial image of v- from 
H*(BK) -^> E2 —> Er Then r*yi_l "kills" <^\vi = wt in the spectral se
quence of EH —> BH. Therefore, r*yt_x must be the image of xt_x in 
H*(H) —> £2- We may think of yt_x as being in H*(K). So now 
we have classes y\9 yh yl9 . . . , j>2«-2 m H*(K) such that 

(Q*i)Vi = A, W i ) * ^ = *,-, 
and their images by transgression are v2, v2, v3, . . . , v2«-i> respectively. 

Now look at H -» i^ -» ^ / # . We know from above that (£2^)* is 
surjective. So, since K/H is 1-connected, in the cohomology spectral 
sequence of this fibration we have E2 = E^. Hence, if y2 is the image 
the generator of H2(K/H) is H2(K)9 the multiplicative properties of 
spectral sequences show us that 

H*{K) = [y\,y'2,yx,y2,...,y2n_xl 

Suppose, in the spectral sequence of PBK —» BK9 dry2 ¥= 0. (This must be 
true for some r ^ 2.) Then 

r*dry'2 = drr*y'2 = 0. 

Since T* is injective for E2'
X then r must be 3. So y2 is also transgressive. 

Call its image in H3(BK) v3. Then (see [4] ) we have 

H*(BK) = Z2[v'29v'39v29v39...9v2n_l) 

with the kernel of 0f being v'3(H*(BK) ). 
Now let us derive some properties of H*(BK) with respect to the 

Steenrod squares. From [3] we have 
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SqlWj= 2 (J t + / l)Wi-tWj+tfoTJ>i 

for Wj = Wj or w-. Therefore 

StfV- = 2 r , k--A-+/ + v3 (other terms). 

(Here, and throughout the remainder of the proof, "other terms" will refer 
to a sum of products of the generators of H*(BK) not including those 
stated explicitly.) 

Since 

tfSqlv'2 = SqXw'2 = 0 

then Sqlv2 = OLV3 for some a. Similarly, Sqlv3 = 0. 

tfSq2v'3 = Sq2<f>*v'3 = 0; 

consequently, there are /? and e such that 

Sq2v'3 = v'3((3v2 + ev'2). 

From the formula above Sqlv2 = v3 + 8v3. 

(v'3)
2 = Sq\>3 

= SqlSq2v'3 

= Sq\v'3(fiv2 + ev'2) 

- v'3(j8(v3 + 8v'3) + aev'3). 

Therefore /? = 0 and a = e = 1 and we have S#'v2 = v3 anc^ ^ 2 y 3 = 

V 2 V 3-

From the Cartan formula and the results above we deduce a useful 
property. 

PROPERTY 1). If v v- . . . v- v3 is a nonzero term of Sq (vz- v- . . . vz v3) 
then m ^ r and, without loss of generality, the vjs are ordered so that 

J\ = J\ = *1> 7*2 = *2> - - - yJr = V 

Now we are ready to finish the proof of the theorem. From equation (1) 
we have 

^2Wi = vz + Vi-2V2 + v3 (°ther terms). 

In particular, 

§*W2n = v2n_2v2 + v3 (other terms). 

Also Sq2W2n = W2W2n. So now apply </>£ and get 

(2) (v2 + V2)(V2«-2V2 + v3 (°ther terms)) 
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= Sq2(v2n_2v2 + v3 (°ther terms)). 

Using the Cartan formula we obtain 

Sq\v2n_2v'2) 

= Sq\v2n_2y2 + Sq\v2n_2){Sq\'2) + v2n_2{Sq2v'2) 

= ^ 2 ( v 2 « - 2 > 2 + v 2 „ - l v 3 + v 2 « - 2 ( v 2 ) 2 

+ v'3 (other terms). 

So, for equation (2) to hold, the v2n_xv'3 on the right-hand side must be 
"cancelled". Clearly, the only way this can be done is if the "cancelling" 
term comes from the Sq2(v3 (other terms) ) part of (2). In particular, v2n_3 

must be among the "other terms". But 

? [In — 4\ 
S9 v2n-3 = v2v2n-3 + [ 2 T 2 "" 1 + V'3 ^ ^ iQXm^' 

So, in order to get the cancelling, we need (2n
 2

 4) to be 1 (mod 2) and 
this can only happen if n is odd. This gives us our first partial conclusion: 
the conjecture is true if n = 0 (mod 2). 

So now we continue, assuming n = \ (mod 2). We must have 

<S>2W2n = V2n-2V2 + V2«-3V3 + v3 ( o t h e r t e r m s ) . 

T h e n 

* ! » £ » + 1 = ^SqlW2n 

= V2n-A + V2n-2V3 + v3 ( o t h e r t e r m s ) . 

Since 

SqlVj = (j + l)vy+1 + V3 (other terms) 

and W2n+i = SqlW2n we get the following. 

PROPERTY 2). For every nonzero term in <j>2W2n^x of the form 
vt v- . . . vz vr

3, m > 1, a* /eos/ /wo of the ijs are odd. {From the formula, we 
see that at least one / is odd. Two must be odd since the total dimension is 
odd.) 

Now consider Sq4W2n+i = W4W2n+l. Again apply </>f to obtain 

(3) Sq\v2n_xv
f
2 + v2„_2v'3 + v'3 (other terms)) 

= (v4 + v2v2)(v2„_1v2 + v2w_2v'3 + v'3 (other terms)). 

Again use the Cartan formula. 

V(v2„-iV2 + v2n_2v
/
3) 
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+ ( S 4 V - 2 K + (Sq3v2n-2)(Sqlv'3) + (Sq2v2n_2){Sq2v'3) 

= V4V2„-1V2 + V3V2«-1V3 + v2v2n-\(v2)2 

+ V4v2n-2V3 + V2V2«-2V2V3 + v 2 « - l ( v 3 > 2 + v3 ( o t h e r t e r m s ) . 

Therefore, in order for equation (3) to be satisfied, we must "cancel" the 
v3v2n_ jV3 term above. This can only be done if one of the "other terms" in 
(3) is of the form vavb and Sq (vavbv3) has v3v2n-\v'3 as a nonzero term. 

From Properties 1 and 2 above we know that a and b are both odd 
and, without loss of generality, a ^ 3 and b ^ 2n—\. Therefore a = 3, 
b = 2n — 5, and V3V2„_! must come from v3(Sq4v2n-s)' But 

5 ? V 2 « - 5 = v 4 v 2 « - 5 + v 3 v 2 « - 4 + ( 2 j V 2 V 2«-3 

4- d )v2n-\ + V3 (other terms). 

Consequently, to "cancel" the v3v2n_1V3 we must have 

(2n ; 6 ) = l (mod 2). 

Hence, In — 6 = 4 (mod 8), i.e., « = 1 (mod 4) and we conclude that the 
conjecture is true for n = 3 (mod 4). 

Now suppose n = 1 (mod 4) and continue. 

<t>2W2n+\ = v2n-\v2 + V2„-2V3 + V3V2«-5V3 + v3 ( o t h e r t e r m s ) 

where v3v2w_5 is not among the "other terms". 

Mv3V2„_5V^) = (^3V3X^1V2«-5>3 + (Sq2V3)(Sq2V2n-S)v'3 

+ (SqXv3)(Sq\2n_5y3 + v3(Sq\2n_5y3 

= 0 + (v2v3)(v2v2„_5)v'3 + 0 

+ v3<>4v2n-5 + v3v2«-4 + v2v2«-3 + v2«-l)v3 

4- (other terms) v2V3 + (other terms) (V3)2. 

Note that Sq (v3v2n_5v3) contains the nonzero term V2V3V2«-3V3- To 
get equation (3) then, <t>2W2n+\ must contain a term other than v3v2tJ-5v3 

such that, when we apply Sq4, we get a "cancelling" v2v3v2„_3V3. 
Case 1). Suppose that the term is of the form vavbv3. Then Properties 1 

and 2 show that a and b are odd, not greater than 3 and 2n — 3 
respectively, and a + b = 2n — 2. So a = 3 and b = 2n — 5, which is 
impossible, and we go to Case 2. 

Case 2). The term is of the form vavbvcv3 with, say a even, b and c odd, 
and b ^ c. Then by Property 1, since Z> and c are at least 3, a ^ 2. So 
0 = 2, ô = 3, and consequently, c = 2n — 7. So the term must be 
V 2 V 3 V 2 H - 7 V 3 -
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The only way v2v3v2n-2^3 can be produced from Sq (v2V3v2„_7V3) is from 
the expression 

v2v3(^4v2n_7)v ,
3. 

But, in Sq4v2n-i
 w e have the coefficient ( n 4 8) for v2w_3 and, if n = 1 

(mod 4) then 2« - 10 = 0 (mod 8); hence, 

(2n ~ 8) = 0 (mod 2). 

Therefore, the conjecture is valid for n = 1 (mod 4) and we are done. 

Remark. For small values of n, classes such as v2n_7 and v2w_5 may not 
exist. In such cases, the proof is finished at the point where such classes 
are required. 

REFERENCES 

1. J. C. Becker and D. H. Gottlieb, Applications of the evaluation map and transfer map 
theorems, Math Ann. 211 (1974), 277-288. 

2. C. T. Benson and L. C. Grove, Finite reflection groups (Bogden and Quigley, Tarry town, 
N.Y., 1971). 

3. A. Borel, La cohomologie mod 2 des certains espaces homogènes, Comm. Math. Helv. 27 
(1953), 165-197. 

4. Sur la cohomologie des espaces fibres principaux et des espaces homogènes des 
groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207. 

5. Topics in the homology theory of fibre bundles (Springer-Verlag, Berlin, 
Heidelberg, New York, 1967). 

6. A. Borel and J. DeSiebenthal, Les sous-group es fermés de rang maximum des groupes de 
Lie clos, Comm. Math. Helv. 23 (1949), 200-221. 

7. A. Casson and D. H. Gottlieb, Fibrations with compact fibres, Amer. J. Math. 99 (1977), 
159-189. 

8. A. Clark and J. Ewing, The realization of polynomial algebras as cohomology rings, Pacific 
J. Math. 50(1974), 425-434. 

9. J. A. Frohliger, Maximal homotopy Lie subgroups of maximal rank, Ph.D. Thesis, Purdue 
University (1983). 

10. F. S. Quinn, Surgery on Poincaré and normal spaces, Bull. Amer. Math. Soc. 78 (1972), 
262-267. 

11. D. L. Rector, Subgroups of finite dimensional topological groups, J. Pure and Appl. Alg. 1 
(1971), 253-273. 

12. R. Schultz, Compact fiberings of homogeneous spaces I, Comp. Math. 43 (1981), 
181-215. 

13. N. Steenrod, The topology of fibre bundles (Princeton University Press, Princeton, N. J., 
1951). 

14. G. C. Shepard and J. A. Todd, Finite unitary and reflection groups, Can. J. Math. 6 (1954), 
274-304. 

15. E. H. Spanier, Algebraic topology (McGraw-Hill, New York, 1967). 
16. C. T. C. Wall, Poincaré complexes, Ann. of Math. 86 (1967), 213-245. 
17. C. Wilkerson, Classifying spaces, Steenrod operations and algebraic closure, Topology 16 

(1977), 227-237. 

St. Norbert College, 
De Père, Wisconsin 

https://doi.org/10.4153/CJM-1988-034-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-034-6

