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1. Introduction. Let f(x) be an irreducible polynomial of degree n with coefficients
in a field L and r be an integer prime to the characteristic of L. The object of this paper is
to describe the galois group "§ of f(xr) over L when the galois group G of f(x) itself over
L is either the full symmetric group Sn or the alternating group An. We shall call /
standard if G = Sn or An with |G |>2 .

Denote! by x = {x , , . . . , x,,} the zeros of / (in a splitting field) and put y = {yu . . . , yn},
where, for each i = 1 , . . . , n, y, is any solution of y\= xt. Then the splitting field of f{xr)
can be obtained by adjoining to L the set y along with all rth roots of unity. Henceforth,
we assume that L already contains £„ a primitive rth root of unity, so that this splitting
field is L(y) itself. Also put

m (-1)7(0) ,
v=v(f) = -— — — — 7 7 (=X, •••*„)

leading coefficient of f

and note that L(y) always contains llv.
Let H(r) be the galois group of f(xr) over L(x). As part of an earlier investigation,

the first author [2, Lemma 5] showed that, if G = Sn, then there are essentially only two
possibilities for H(r). In the simplest case (when r is prime) we have either

(I) Hr = C?-*xCt, where

{ 1

r,

1, if </veL or if r = 2 and v = (discriminant of /) (square in L),

otherwise,

or
(II) H(r) = Cr, which occurs when L(y) = L(x, y,).

We refer to these as type I (the "generic" case) and type II even when r is composite.
In [2], no specific occurrence of a polynomial of type II was provided, but, in fact,

there is an obvious potential source. Define SF{r) by

Sf(r) = {f(x) e L[x]; f(x) \ (xlF\ (x) - aF<2 (x)),

for some i prime to r, co-prime polynomials

F[ and F2 over L and a ( / 0)eL}.

(Actually, in this definition, we can assume i = 1; see §2.) Here evidently L(y) = L(x, ^a)
and so f-T(r) c Cr.

In §2 we describe H(r) precisely when / is a standard polynomial in S (̂r) and exhibit
examples of arbitrary degree. In particular, H(r) may occasionally be slightly smaller than

tNote that except in two obvious places at the beginning of §2, x and (later) y are indeterminates over L;
subscripted symbols x,, xt, y^ etc., are specialisations of them in an algebraic extension of L.
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is immediately apparent. An instance occurring when L is the function field C(w), w an
indeterminate, is the polynomial

(x-2)3(x + 2)-16w3(x + l)3

(actually in S?(3)) for which G = A4 yet H(3) is trivial.
In general, the reduction into polynomials of types I or II remains valid for all

standard polynomials (even those with G = An); see §3. However, if G = S2, a polynomial
of type I with t = 1 can have formally the same group H(r) as one of type II. Moreover, if
G = A3, the basic argument of [2] actually breaks down and a third properly distinct
possibility for H(r) arises, namely H(r) = CrxCt (when r is prime, 1 = 1 or r) although
H(r) is then formally indistinguishable from that of either a type I or a type II polynomial
(see §5). For the sake of tidiness, we usually exclude these cases and assume that |G|>3.

The fact that, normally, a standard polynomial for which H(r) £ Cr must be in Sf(r) is
the core of the paper (§4). However, there are some interesting exceptions when n = 4
and r = 2 and, in general, when n = 4 and r is even we can prove only that / always
belongs to Sf{rl2). We illustrate with two examples in which again L=C(w). The
polynomial

V V
has G = S4 yet H(2) = C2. Further, the galois group of

(x - l)3(x + 3) - 16wx( £ 5?(2))
is A4 while H(2) = C2.

In §5, we synthesise the preceding discussion and classify H(r) in general. We
summarise the conclusions as follows.

THEOREM 1. Let rbe a positive integer and L a field containing £r whose characteristic is
prime to r. Let fbe a standard polynomial of degree n over L with |G| > 3 and suppose that s
is the greatest divisor of r for which fe£f(s). Then there exist integers q, t with q \ s, t \ r/s for
which H(r) is an extension of C"/^1 x C, by Cq. Alternatively, if n = 4 and r/s is even, H(r) is
an extension of C3

/(2s) x Ct/2 by C2q.

The full significance of the integers q, t will emerge later but certainly, if /(x) divides
xiFs

1(x)-aFl(x) and a = |3d (0eL), then q | s/d.
Because they were inspired by Riemann surface considerations, the examples con-

structed generally have L =C(w). Of course C could be replaced by any suitable field such
as an algebraic number field or even a field of non-zero characteristic. Indeed, by
specialising using Hilbert's irreducibility theorem, one could demonstrate the existence of
similar examples with L an algebraic number field, often <Q>(4) itself.

2. The group H(r) when f<=Sf{r). Note first that, if (i, r) = l and u and v are
integers for which ui + vr = 1, then
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implies that

and so
ST(r) = {f(x): f(x) \ (xF[(x) -aF2(x)), a( + 0) e L, F,, F2 co-prime}. (1)

Next, it is obvious that, if r11 r, then 5^(r)c5^(rj).

LEMMA 2. // (r1; r2) = 1, then ^(r^ n if{r2) = ^(r!r2).

Proof. Let urx + ur2 = 1. Suppose / divides both xFi'(x) - aFr
2'(x) and xGi2(x) -

Then a zero x of / satisfies

£)"(£)•}"•<»-"•<-•
and the result follows.

For a given / let s (as in Theorem 1) be the largest divisor of r for which fe.Sf(s). A
particular consequence of Lemma 2 is that when d \ r, f e Sf{d) if and only if d \ s.

Suppose now that / is a standard polynomial in Sf{r) and that, in fact, f(x) divides
xFJ(x)-aF2(x). Certainly the splitting field of f{x') over L is L(x, </a). Let r* be the
divisor of r such that, as an rth power residue, a is at most an r/r*th power in L. Then
obviously H(r) s Cr* but the containment may be proper. For this purpose, define
q=qr(a,L) as follows. If Gj=A3 or A4, q is the least divisor of r for which a can be
written in one of the forms j3r/q or OVD)r/q, where |3 e L and D is the discriminant of / (in
L). If G = A3 or A4, / possesses an invariant C in L with the property that L0C) is a
cubic extension of L contained in L(x), see e.g. [5, §§7,10]. In these cases, define q as the
minimal divisor of r for which a can be written in one of the forms

r/q, j3eL, j = 0,1,2.
It follows that q = r* unless G = Sn and r* is even when q = r* or r*/2, or G = A 3 or A4

and 3 | r* when q = r* or r*/3. Of course, xF[(x) - aF2(x) is not uniquely determined by /
and r. However, it follows from our results that qr(a,L) is and we write qr(f) for this
number.

THEOREM 3. Suppose f is a standard polynomial in 5^(r). Then H(r) - Cq, where
q = qr(f).

Proof. Suppose f(x) divides xF[(x) — aF^ix) so that the splitting field of f(xr) over L
is L(x, \/a). By the theorem of natural irrationalities, if K = L(x)C\L(</a), then H(r)s
gal(L(*(/a)/K). Of course, K/L is a cyclic extension of order dividing r* and

G/gal(L(x)/K) =

Since G = Sn or An, this implies that, if KfL, then either G = Sn and K = L{-JD) or
G = A3 or A4 and K = L(^C) [4, §5]. Now, by definition, a = yrlr\ where yeL. If
K = L(-JD), then obviously y = D x (square in L), while, if K = L(v/C), then
7 = Cs x (cube in L), i = 1 or 2. The result follows.
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78 S. D. COHEN AND W. W. STOTHERS

To indicate the scope of Theorem 3, we show that for any r there are indeed standard
polynomials of any degree in Sf{r) including some with q = r*/2 or r*/3 as permitted by
Theorem 3. We take L to be a function field L0(w) and consider in the first place
polynomials in £f(r) of the form

fw(x) = a(w)(xiF\(x)-AwF2(x)), F2(0)^0,

calling then genus zero polynomials (because L(x1) = L0(x1), where /w(x,) = 0, has genus
zero over L). For a genus zero polynomial, either r \ n or (n, r) = 1. Of course, if n > 3 and
/ is a standard polynomial over L then /(x)/(x -x , ) is a standard polynomial over L(x,) and
thus our construction will establish the existence (for appropriate L) of standard polyno-
mials in if{r) of any degree. We use the fact [2, Lemma 7], that, if Lo is algebraically
closed, then to any a eL0U{°°} for which /a(x) is not square-free, there is an element of G
(a permutation of the zeros xu ... ,xn) which corresponds to the factorisation of /a(x).
Indeed, G is generated by such elements if Lo has characteristic zero.

We remark here that it is a straightforward exercise to show that the genus zero
polynomial /w(x)^S^(r,) for any rv>r, unless Fx = hr'lrF2, say.

EXAMPLE 1. Let L =C(w). For any m > 1 , put n = mr and

f(x) = (xm + rm - l)r - (rm)rwx.

Considering the singularity at w = °° we see that G contains an (n — l)-cycle. Now

x2-

whose zero at any mth root of unity £ gives rise to a simple singularity at w = l/£. Hence
G certainly contains transpositions and so G = Sn. Further, the discriminant is
bwm(r"1)(wr-l) (beZ) so that H(r) = Cr. Actually, since / is rationally defined we can
take L = Q(£r, w) and still have G = Sn and H(r) = Q.

EXAMPLE 2. For any m, i with (i, r) = 1 put n = mr + i and define

/w(x) = xiFr(x)-Aw,
where

V
= Li=0\7 J jr + i

and

A = (-iyF'(-l) = (-1)'(—— - — - .
r)... (i + mr)

We then have

In particular, f{(x) = (x + l)m+1g(x), where g is square-free. Hence G contains an (m + 1)-
cycle. A straightforward, though messy, argument (which works for any F not of the form
ex") shows that x'Fr(x) is functionally indecomposable and so by [3, Lemma 2] G is
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primitive. Thus [6, Theorem 13.8] G is certainly (n — m)-transitive. Hence, if G is not
standard, then by [1, p. 150]

n — m ^ 5

which (for r >2) can only happen if i = 1, r = 2, m = 1 and n = 3 in which case G contains
a transposition and so must be S3. Taking account of the remaining ramification at 0 and
oo, we see that D = c[w'~\w-l)]m (ceZ). Thus, if L=C(w), then

f S,,, if m is odd,
G = i .

IA,,, if m is even,
while clearly H(r) = Cr. Again fw is rationally defined and so, if L=Q(£r) w), the above
still holds at least if m is odd; the only modification when m is even being that G = Sn

unless c is a square in Q(£r).
Actually, if i is negative (when we are really considering Fr(x) — Ax'w, (j,r) = l, so

that n = max(mr, /)), then the above description is still essentially valid; in particular, G
possesses an (m + l)-cycle and so is (n — m)-transitive, whence G = Sn or An.

As another variation, consider /w-+,(x) over C(w) with m odd and r even. The
discriminant becomes c[(wr + l)r~' wr]'n and still G = Sn but now qr(f) = r/2 since wr +1 =
(/3VD)2, where

Hence H(r) = Cr/2. A genus zero occurrence of this phenomenon with r = 2 is provided in
the next example.

EXAMPLE 3. For any m > 2 and appropriate A ( ^ 0)eC put n = 2m and

over C(w). There is, of course, ramification at w = 0 and w =°°. The remaining ramifica-
tion arises from the zeros of x2 + ( 2 m - l ) ( l - A)x- A. Choose A so that this quadratic is
a square, e.g. put

2 + W(m-m2)
A = l — (2m-I) 2

If B is the corresponding value of w, the ramification at w = B indicates that G possesses
a 3-cycle (and so An^G) while D = cw2m~3(w-B)2. Thus, in fact, G = Sn yet H(2) is
trivial.

EXAMPLE 4. With n = 4 and r = 3 put

/w(x) = x(x + 4)3-16vv(x + l)3.

Then D = -3[48w(w-l)]2. Solving explicitly, one finds that G = A4 over Q(£r,w) =
Q(V(-3), w) with a splitting field containing -3/(4w(w-l)). Thus H(3) = C3. On the other
hand, if g = / W J + I , then still G = A4 but q3(g) = 1 and so H(3) is trivial. This provides an
example of a standard polynomial in Theorem 2 with q = r*/3. In an alternative form,
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80 S. D. COHEN AND W. W. STOTHERS

noted in the introduction, namely

/W3+I(x) = (x - 2)3(x + 2) - 1 6 w3(x +1)3

the triviality of H{3) is particularly well-disguised.

3. The basic result. In this section we examine and modify the argument of Lemma
5 of [2].

Let / be a standard polynomial over L such that /(xr) has splitting field L(y) as
described in §1. It was noted there that certainly </veL(y). Further, given r, define u as
the least divisor of r for which L(y") = L(x, y"), where yu ={y", . . . , y"}. (Since G is
transitive any yh l < i < n , can take the place of yt.) Then certainly H{r/u)^Cr/u.

LEMMA 4. Suppose that f is a standard polynomial with Gj= A3. Then

Proof. Obviously, we can assume u > l . Fix m as the largest integer with
0 :£ m :£ n — 1 such that

gal(L(yu,y1,...,ym)/L(y")) = C"u
1.

It suffices to prove that m = n-\ so assume that 0 ^ m < n - 2 . For some divisor d of u
with d<u, we have

u, yu...,ym).

The argument now proceeds as in [2]. If m s i , the monomials

form a basis of L(yu, y 1 ; . . . , ym) over L(y"). Thus y^+1 has a unique expansion in the
form

= a,eL(y").
i

Suppose that as and ay, are both non-zero, where j i= ]', say with /, j=j[. By the definition
of m, there exist creG = gal(L(y)/L) and a primitive uth root of unity £ such that
<r(yi) = fyi, o-Cyj) = y, ( K i s m ) while cr(yr) = y?, l < i < n . Thus o-(ym+1) = ry m + i , say.
The identity

o-(yl+1)-£deym+1=0

now leads to a contradiction of the basis property of the Y as in [2]. Thus

yd
m+l = ayV . . . yfe ( a e L ( y " ) , 0 S j , £ « - l , i = 1 , . . . , m).

We rewrite this as

where the d{ are not all equal (since m < n -1, dm+i >0 and dn = 0). Further, this remains
valid even if m = 0.

s4<u-l , i = 1,..., n), (2)
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The following section of the argument applies to all standard / with n>4 . A simpler
treatment using only transpositions, works for G = Sn (n>2) and is omitted; see [2].

Suppose that the df's in (2) are pairwise distinct. Then the integers 2d;, i = 2, 3, 4 are
not all congruent (mod u) and so 2(d1 + dj)# dt + d2 + d3 + d4 (mod u) for some i = 2, 3, 4.
Renumbering if necessary, we may assume that dl + d2^d3 + d4 (mod u). Let T be any
extension to "S of the element (12) (34) of G, where the action is on the subscripts of
xu ... ,xn. Then certainly r is an automorphism of L(y"). Applying T to (2) we see that

and hence
y? ̂ y^yi^.yi^yl*, . . . ŷ <= L(y«) (3)

Now since dx + d2^d3 + d4 (mod M), on reducing the indices in (3) modulo u and
renumbering, we see that, in any case, we can assume (2) holds with dli=d2-d3. Now, to
(2) apply an extension of (123)(eG) to "§ and conclude that

Along with (2) itself, this yields

where 0 < | d , - d 2 | < « - P u t u* = (d1-d2,u) so that u*\u but u*<u. Then certainly
y2*eL(x, yV*). Since G is at least 2-transitive, this implies that L(y"*) = L(x, y"*) which
contradicts the definition of u. Thus m = n — 1 and the result is proved.

A consequence of Lemma 4 is that, provided G i= S2, then type II polynomials are
characterised by H(r)^Cr without specifying that necessarily L(y) = L(x, yO-

COROLLARY 5. Suppose that f is a standard polynomial with |G |>3 and such that

Proof. The group C""1 in Lemma 4 is a subgroup of H(r) and, since n — 1 > 1, cannot
be cyclic unless u = 1.

4. Type II polynomials. We begin with a weak version of Theorem 3 for general
polynomials of type II. For any /, define r* to be the degree of the cyclic extension
L(y,)/L(x!). This is consistent with the usage in §2 for f&'ir). Of course r* | r.

LEMMA 6. Let f be a standard polynomial with |G |>3 and suppose that / f ( r )cQ.
Then

(i) either (a) H(r) = Cr*, or (b) G = Sm r* is even and H(r) = CrV2, or (c) n =4 or 5,
G = An, 3|r* andH(r) = C./3;

(ii) y2/y,eL(x).

Proof, (i) Observe first that gai(L(x)IL(xi)) = Sn_! or An_v By Corollary 5 L(y) =
L(x, yi). Hence, since L(y) is normal over I^Xj), the theorem of natural irrationalities
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implies that
H(r) = gal(L(y O/LCy!) n L(x)) s Cr..

Of course, if L(y1)nL(x) = L(x1), then H{r) = CT*. On the other hand, if L(x)cL(y,),
then L(y) = L{yx) and

Cr./H(r)sgal(L(x)/L(x1)) = Sn_] or An_,

from which it follows that either G = S3 and H(r) = Cr*/2 (r* even) or G = A4 and
H(r) = Cr*/3 (3 | r*). The remaining possibility is that gal(L(x)/L(xi))/gal(L(x)/L(x) n L(yJ)
is a non-trivial cyclic quotient of Sn-V or An_! which (cf. Proof of Theorem 3) forces
G = Sn and H(r) = CrV2 or G = A5 and H(r) = Cr*/3.

(ii) Let H(r) = Q, where q \ r. Actually, by (i), q = r*, r*/2 or r*/3. By Corollary 5,
{1, y , , . . . , yi-1} is a basis for L(y) over L(x). Thus y2 has a unique expansion in the form

q - l

y 2
= I ai(x)y{,aj(x)eL(x).

i=0

A simpler version of the argument used in Lemma 4 now implies that, for some m with
(m, q) = l

y2 = a(x)yT, a(x)eL(x).
Consequently,

x2 = ar(x)x7, (m,q) = l. (4)

Certainly G is doubly transitive and n > 3 . It follows that we may apply to (4) any
member of G which fixes Xj and maps x2 onto x3 to obtain

x3 = fer(x)xT, b(x)eL(x),
whence

/a(x)V

Again using the fact that G is doubly transitive, we deduce (ii).
It is easy to see that Lemma 6(ii) can be reformulated as "<§ is a central extension of

H(r)" (i.e. H(r) is contained in the centre of (S). This feature characterises type II
polynomials. What follows is an attempt to show that, in general, a standard type II
polynomial is actually in 5^(r). This would be equivalent to the group-theoretical fact that
the above central extension splits with complement Sn or An. Relevant here is the Schur
multiplier or multiplicator of Sn or An which is known (see [4, §25]) and which indicates
by how much an abstract extension <& by Sn or An may fail to split. Indeed, this approach
does throw some light on the nature of our results. However, we do not pursue it here
because, in our specialised situation, it turns out that the worst does not usually occur and
it seems one makes only partial progress towards a classification using group theory alone.
Suffice it to remark that, if G = S3, then the Schur multiplier of G is trivial and so the
extension splits. An elementary proof of this is incorporated in the discussion which
follows.
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We concentrate now on the relationship between type II polynomials and those in
Sfir). As a final preliminary, we consider two easy special cases.

LEMMA 7. Suppose n = 3 or 4 and f is a polynomial with G = S3 or A4 and (n, r) = 1.
Suppose also that H(r)^Cr. Then feSf(r).

Proof. Both cases go the same way. We therefore illustrate by considering only
G = A4. Let o" = (234)eG. Then a generates the stabiliser of xx. By Lemma 6(ii),
x2

 = arxl, where aeL(x) and hence

where b = acr(a)a2(a) is fixed by a and so b = b(xi)eL(xi). Accordingly, x^ satisfies an
equation of the form

br(x)x4=v, (5)

where v e L. Since r is odd, (5) cannot be an identity and so by (1) the result holds.

THEOREM 8.t Suppose that f is a standard polynomial with |G |>3 and H(r)cCr,
Then either feif{r) or n=4, r is even and f&Sf{rl2).

Proof. By Lemma 6(ii), x2/x, is an rth power in L(x). We consider two cases.

Case (a). x2/X( is an rth power in L(xl5 x2).
Observe that, if G = S3 or A4, then L(x) = L(x1; x2) and so case (a) always applies.

Actually, by Lemmas 2 and 7, we may even assume that

f if G = S3, then r is a power of 3,
lif G = A4, then r is a power of 2.

We return to the general case. Pick any rth root of x2lx1 and denote it by
w(2)6 L(x,, x2). Then L(x,, w(2)) = L(xt, x2), a field having degree n — 1 over L(X|)
(because gal(L(x)/L(x1)) = Sn_i(nS:3) or An_,(n>4)) with conjugate fields L(x,,x,), j =
3 , . . . , n, over L(x,). The element co{2) has conjugates w(3),. . . , w(n), say, over L(x,)
with the property that <or(J) = Xj/x1; j = 3, . . . , n.

The next step fails if G = A4 so we exclude this case meantime. (But note that G = S3

is included; in which case some of the details are unnecessary.) For each /, fc>3, there
exists o-jk e G fixing x, and x2 and such that cr|k(xj) = xk. It follows that w(3),. . . , a)(n) are
conjugate over L(x!,x2). Hence o>(3)/w(2),..., <o(n)/w(2) are conjugate over L(x,,x2)
and so a fortiori conjugate over L(x2). Now,

M3)V x3 / <o(3)
1 =— a n d s o L[xo)(2)/ x2

a field having degree n — 1 over L(x2). Clearly, the missing conjugate of a>(3)/&)(2) must
be an rth root of X!/x2 and so has the form £(2>/co(2), where £<2) is an rth root of unity.

t In corrections to earlier work, essential use of Theorem 8 (and Lemma 4) has been made by Cohen on p.
485 of Pacific Journal of Mathematics 97 (1981), 482-486.
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Similarly, for each / = 2 , . . . , n, there are rth roots of unity £0) such that

—-2<fc(^ j ) ^ « f U | - ^ T [ is a set of conjugates over L(x-). (7)
(/) J Lw(j)J

Since a>(2),..., a>(n) is a full set of conjugates over L(x{) and evidently L(x) =
L(xl7ft)(2),... ,o)(n)), then the group gal(L(x)/L(x1)) also acts as Sn_! or An_, when
represented on <o(2),..., w(n) and, as such, is certainly doubly transitive (recall that
Gj=A4). Consequently, for any 2 < / < k < n there exists a in G fixing xi for which
a>(j) ** <o(k) and, automatically, x,-«->xfc. Because a)(k)/w(j) and £0)/w(j) a r e conjugate
over L(Xj), by applying a we see that o)(j)lo)(k) and £0)/w(k) are conjugate over L(xk).
But, by (7), the unique rth root of xjxk which is conjugate over L(xfc) to co(j)jw{k) is
£(k)/w(k). Hence £0) = £(k). We conclude that, for all /, 2 < / < n , £0> takes the same value
C, say.

Now pick any rth root of x, and call it y! but fix y 2 , . . . , yn by defining

Then the import of the preceding discussion is that, for each ; = 1 , . . . , n, the polynomial
n

II (y - yic) is fixed by any member of gal(L(y)/L(y,)). Hence, if g(y) = (y - y , ) . . . (y - yn),

n

then g(y)eK[y], where K= f]L(yj). Thus g(y) is divisible by the minimal polynomial of

y, over K. Hence [LCyO : K] = d, say, where clearly d \ n. The next step is to prove that, in
fact, d = n.

The splitting field L(y) of g(y) over K is an extension of degree less than or equal to
(d!)"/d while

nr*

:Kf d'
where, as before, r* = [L(y!): Lix^], a divisor of r. We deduce that

But [L(x):L] = |G| = n! or n!/2 and, by Lemma 6(i), \H(r)\ = [L(y):L(x)] = r*/k, where
k = 1,2 or 3 as indicated there. Hence, certainly,

r*n\ Jd\)nldnr*
6 ~ d '

which yields

n! 6n
rj<f (8)

Suppose d<n. Then (8) implies that n s 4 . However, if G = S4, then |H(r)| is at least
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r*/2 and we can replace (8) by the stronger inequality

4! 8
(d!)4/d d'

(9)

which is false as d<n =4. Moreover, if G = S3, then by assumption (6), we must have
\H(r)\ = r* so that (8) can be improved to yield

3! 3
(d!)3/d d'

which fails since d must be 1.
(For later use, we give a partial result for G = A4. If it happens that [L(y{): K] = d £

4 then, by (6), we have \H(r)\ = r* so that (9) holds. Then d = 4.)
Summarising, we have shown that, if G£ AA, then [L(y^ : K]= n so that [K : L] =

r* = [L(yl):L(xl)]. Now the theorem of natural irrationalities implies that, anyway,
gal(L(y,)/L(x1)) is a subgroup of gal(K/L) from which it follows that K/L is a cyclic
extension of degree r*. Since L{£r) = L, a standard result [5, Theorem 34] shows that
K = L{0), where 0'* = y&L. Now, L(y,) = L(x,, 0) and so we have a unique representa-
tion

r * - l

yi= Z OiOOfl'. OiUi)eL(x1).
i=0

Apply to this a generator of gal(L(y1)/L(x1)). This sends yx to £y,, say, where £ is a
primitive r*th root of unity, and, for some k, 0 to £k0. As in Lemmas 4 or 6, we conclude
that, in fact,

whence
a(x1)eL(x1).

The desired conclusion, namely that /(x) £ S (̂r), now follows at last.
We finish case (a) with a discussion of the situation in which G = A4. Let <r, = (234),

CT2
 = (134) e G, where, as usual, the action is on the subscripts of x1;. . ., x4. As before, let

co(2) be an rth root of x2/x1; then its conjugates to(3) and co(4) over L(xO are

to(3) = a1(to(2)), o)(4) = or1(o)(3)).

Clearly, for some rth roots of unity £, £, a2 acts on w(3)/to(2) (producing a set of
conjugates over L(x2)) by

o>(3) M 4 ) T to(3)
(2)" l jCT2 ' <o(2) * to(2) * <u(2) * <u(2)"

However, cr1a2 = (14)(23) has order 2 and so, by considering the identity

(a1a2)
2(o>(2)) = to(2),

we obtain £ 2 =1 . Application of cr, and a\ to the members of (10) yields (since
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co(4) fr>(2) C . Tf .
~T^> ~^> ~~7^ a r e conjugate over L(x3);co(3) co(3) w(3)

——-, ——-, —— are conjugate over L(x4).co (4) to (4) o>(4)

If £ = 1, complete the proof that fe£f(r) as before; in particular, recall the remark
concerning A4 following (9). If £ = —1, then squaring each of the above quantities and
arguing as before, we get feSf(r/2).

This completes the discussion of case (a).
Case (b). x2/x! is not an rth power in L(x,, x2).
Here |G|>24. Also, if (<o(2))r = x2/x,eL(x,, x2), then L(x1; x2, <o(2))/L(x1; x2) is

cyclic of order r', say, where r' \ r, yet r ' > l . Moreover,

gal(L(x)/L(x1, x2))/gal(L(x)/L(x,, x2, a>(2)) = Cr:

But gal(L(x)/L(x!, x2)) = Sn_2 or An_2. Accordingly, a familiar argument now yields that
either r' = 1 and G = Sn or r' = 3 and G = A5 or A6.

Suppose first that r' = 2 and G = Sn (n>4). Necessarily, 6co(2)eL(x,, x2), where
82 = D. This follows since D is the discriminant of /(x)/(x-x1)(x-x2) multiplied by a
square in L(x1; x2).

Now, of course, L(xu x2) = L(xl5 Sco(2)) and so 5<o(2) has altogether n — 1 conjugates
over L(x,) (including itself). Define them by putting

where cri = (23 . . . n). Since r is even a/0) = Vxi> J = 1, • • • «•
Suppose now n > 5 and put a = (45). Since o- fixes x1; then a permutes the Sw(j),

j = 2,...,n. Also, since a is odd, then cr(S) = -8. Further, a fixes x1; x2 and x3 and so
fixes 8a>(2) and So>(3). Hence

cr(a>(2)) = -<o(2), a(

Obtain a contradiction as follows. On the one hand, since

M3)V x3I-77:1 =—,W(2)/ x2

&o(3)
then —— eL(x2,x3)

o)(2)77:1 , then
(2)/ x2 o)(2)

and so is fixed by a. On the other hand

/&D(3)\ g

\6»(2)/

Next, suppose G = S4 necessarily with r even. Then w2(2)eL(x,, x2). Replacing r by
r/2 and to(2) by o>2(2) we obtain feSf(rl2), by case (a).

It remains to consider G = A5 or A6 with r divisible by 3. Here L(x) possesses a
normal cubic subfield over L(xu x2) and, by a familiar type of argument, eto(2) e L{xu x2),
where e3eL(x1,x2).
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Let a = (12)(34)e G. Then, of course, a(eco(2))eL(x1, x2). However, CT(e) = ^ e ,
where £, is a cube root of unity and, since

a/(2)=—, then a(a>(2)) = -^2

Xx ft) (2)

where £2 is an rth root of unity. It follows that <r(sco(2)) = £e/o)(2), where £ = £if2, an rth
root of unity. Accordingly, e/o)(2)eL(x1, x2) as well as e&)(2)eL(x1, x2). Thus e2 and so
e e L(x,, x2), a contradiction.

This completes the account of case (b) and so the theorem is proved.
We illustrate below the fact that n = 4 is necessarily exceptional in Theorem 8 by

providing examples with r = 2 in which H(2) is C2 without feSf(2).
While we lack a criterion for distinguishing this exceptional possibility (/^ £f{r)) when

n = 4, we do pursue it a little further here showing, in particular, that H(r) cannot, in fact,
be trivial.

COROLLARY 9. Suppose that f is a standard quartic polynomial and r is even with
H(r)^Cr yetf£Sf(r). Then

Proof. Suppose the result is false. Then, since L(y)(=L(x, yO) = L(y2)(ya) is at most a
quadratic extension of L(y2), we have H(r) = H(r/2) and hence

(L(y)=)L(x, y i) = L(x, y2)(=L(y2)). (11)

Now the maximal subfield of L(x, y^ whose degree over L(x) is a power of 2 (call it its
2-field over L(x)) is L(x, yV), where rr is the odd part of r. By (11), this must be the same
as the 2-field of L(x, y2) over L(x), namely, L(x, y2r')- Replacing y by yr', we may assume
that r is a power of 2 and (11) still holds.

Next, (11) is equivalent to

(L(x,, x2, VD, y,)=)L(>/D, y,, x2) = L(VD, y2, x2)(=L(x1, x2, VD, y2). (12)

Since L{-JD, yj, X2)/L{y/D, yj), i = 1, 2, is a cubic extension, equating 2-fields over L in
(12), we obtain

which implies that

Suppose, in fact, that 1 ^ 0 = L(y2) (which necessarily occurs if G = A4). Since, by
Theorem 8, fe$f(rl2) and so L(y2) = L(x!, 6), where 8r eL, a familiar argument yields

y1 = a(x1)0
k, a(x1)eL(x1),

whence /eS^(r), a contradiction.
The remaining possibility is that G = S4 and

(L(y1)=)L(y2)(y1) =
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a quadratic extension of L(y2). Applying an L(y2)-automorphism sending VD to -%/D to
this, we obtain in a routine fashion

But, as before, L(y2) = L(xi, 0), where dr eL and hence

where p is a polynomial with coefficients in L(xj) of degree less than b = [L(xu 6): L(xt)].
If b> 1, apply an LCx^-automorphism a which sends 6 to £b0, where £b is a primitive bth
root of unity. Of course, a(yl) = Ciyu where £[ = 1, and a{\lD) = e-JD, where e = ±l .
This yields

However, 1,8,..., 06"1 are linearly independent over L(xL) and so, for some fc,

y1 = c(x1)6
k^D, c(x1)eL(x1),

which is valid even if £> = 1. It follows that

x1 = cr(x1)y
kD'n,

where y = dr e L and Drl2eL, since r is even, and so / e S (̂r), a contradiction as before.

EXAMPLE 5. Let L =C(w) and put

There is the obvious ramification at w = 0 indicating that G contains a transposition.
There is a 4-cycle in G corresponding to w = oo. The only other ramification occurs at
w = 1, where

/(x) = (x +1 + jV2)3(x + 5 + iV2);

thus G contains a 3-cycle. Hence, certainly G = S4 while, as remarked in §2, f£5f{2). Less
obvious is the fact that here H(2) = C2. We do not have a simple direct proof of this. The
following proof depends on the apparent coincidence that L(x) = C(w, x) turns out to have
genus 0.

We therefore calculate the genus of L(x). This field must contain 12 primes of
ramification index 2 lying over w, 8 primes with index 3 lying over w — 1 and 6 primes
with index 4 lying over the infinite prime. The genus formula ("g = 2N-2-l,(ei -1)")
now implies that L(x) indeed does have genus 0. We conclude that L(x) =C(u) for some
ueC(w, x). In particular, there is a complex rational function JR = RlIR2, where i?, and
R2 are co-prime polynomials for which x1 = R(u).

Now, the discriminant of / is c^wiw -1 ) 2 (c^ eC) and so Vw e L(x), whence w = S2(u)
for some complex rational function S = SJS2- Putting a = 2iV2 and b = 4+ iV2, we have,
identically in C(u),

Since i?j and Rx + aR2 are co-prime, we deduce that Rx is a square in C(u) and R\ = c2S2,
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where c2eC. Similarly, x2
 = R[(u)/R2(u), where -R[ is a square in C(u) and .R2

2 = c2S2-
Thus, in particular R2 = cR2, where c e C Hence x2/xt = cR'JRl is a square in C(u) = L(x)
and consequently H(2) £ C2. We can confirm directly that H(2) is not trivial here. For, by
considering f(x2) at w = °°, we see that *§ contains an 8-cycle T on the zeros {±y,, j =
1,2,3,4} of f(x2) where T4eH(2) so that necessarily T4(y,) = -y,-, j = 1,. . . , 4. Hence
H(2) = C2.

EXAMPLE 6. This example is related to Example 4. Let L =Q(V(-3), w) and put

/(x) = (x-l)3(x + 3)-16wx

= x 4 -6x 2 + 8( l -2w)x~3.

The discriminant is -3[48w(w-l)]2 and clearly G = A4. Let e be a cube root of
4w(w-l) and r\ a primitive cube root of unity (in Q(\/(-3)). Solving explicitly, we find
that two zeros of / can be expressed in the form

x2 = 7(1 + e) - V(l + rje) - V(l + T)2e),

where the square roots are chosen in such a way that

7(1 + e)7(l + Tje)V(l + Tj2e) = 8(2w - 1).

From this, we derive

= 2 e - l - 2 V ( l - e + e2)

Hence H(2) = C2.
Observe also that, if L =Q(w), then this / gives G = S4 and H(2) = C2.
We state without proof one further genus zero polynomial / over C(w) not in

for which G = A4 and H(2) = C2. It is (x + a)3(x + j3) - w, where a, /3 (+ 0) satisfy

It may be that the above examples essentially exhaust the genus zero standard quartic
polynomials with H(2) = C2. We do not know of any standard quartics for which H(r) c Cr

but f e Sf(r/2)\Sf(r) with r>2 . An interesting possibility permitted by group theory has
r = 6, G = A4 = PSL(2, 3) and H(6) = C2. G would be the non-split extension of C2 by A4

(namely SL(2, 3)) as in Example 6. In fact, we have been able neither to realise this
possibility for some / (necessarily in 5 (̂3)) nor to discount it.

5. Conclusions. We bring together the results of §§2-4. Let s be as in Theorem 1
and u as in §3.

By Lemma 4, H(r) is an extension of C2~*xC, by H(r/u), where t is
deg[L(y", </v) : L(y")]. Since </(vu)eL(yu), then certainly t \ u.

The crucial consequence of Theorem 8 is that usually (indeed, inevitably, if n 5:5), we
have u = r/s. Moreover, suppose that, in fact, f(x) divides x'FJ(x)-aF|(x). Then, by
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Theorem 3, when u = r/s, t is given in the notation of §2 by qr(v, L{\/a)) and H(s) = Q,
where q=qs(f).

Exceptionally, when n = 4, it is possible, by Theorem 8 and Corollary 9, that u = r/2s
and H(r/u) = C2q where q = qs(f). This completes the detailed explanation of Theorem 1.

Finally, we give a brief survey of the excluded cases G = S2 or A3, observing that
here the assumptions on / are too weak to have very meaningful consequences for H(r).

If G = S2, then Lemma 4 still applies and we derive the fact that H(r) is an extension
of Cu~l*Ct by H(s*), where t\u and s* = r/u. For simplicity in describing the pos-
sibilities for H(s*), suppose s* is prime. By (4),

and hence

v = x1x2=as*(x1)x'T+1

If m ^ l or s* - l , then, as in Lemma 7, feSf(s*) so that s = s*. If m = s* - l , then
v = b"*(b e L) and / is of type I. If m = 1 and s* is odd, then fe 5 (̂s*) (and s = s*) as in
Lemma 7, while if s* = 2, then, of course, / is of type / as before.

Turning to the case in which G = A3, we observe that here even Lemma 4 fails
because A3 is not doubly transitive. In fact, the extension <& by G may fail to be central in
yet another way. We content ourselves by exhibiting an example of a polynomial f£ Sf(7)
for which G = A3 and H(l) = C7.

Start with the polynomial

where w is an indeterminate. Then gal(g, C(w)) is generated by transpositions and so is S7.
Since geC[w], is monic and has no singularities with w = 0, each of the seven zeros of g

can be expressed as a power series of the form X CjW'Cc; eC) (in
i=0

the w-adic completion of C(w)). Indeed, since g(u) = u7-u (mod w), then one zero (u1;

say) has zero constant term, while the remaining 6 zeros u2,. . . , u7 have constant terms
Tte. • • • > Vi (respectively) equal to the six 6th roots of unity. Further, M!=0(mod w) and
u] = ux-w (mod w2) implies that actually ux = w (mod w2).

Put L = C(w, VD, U4, U5, U6, U7), where D is the discriminant of g. Let u ={uu u2, u3}.
Then gal(L(u)/L) = A3. Write x = {x1; x2, x3}, where
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»ate over L and distinct. Thu

/(x) = (x - x,)(x - x2)(x - x3).

'Then x1; x2 and x3 are conjugate over L and distinct. Thus L(x) = L(u). Define

Then gal(/, L) = A3.
Now

V2

x 2 7
— = "l,

a 7th power in L(x) and so H(7)sC7. Suppose that, in fact, ff(7) is trivial. Then X! is a
7th power in L(x) and so certainly a 7th power in C{w}. But recall that, in C{w}, u2 and u3

are units congruent (mod w) to T)2 and TJ3, respectively, while u^w (mod w2). Hence

which cannot be a 7th power in C{w}, a contradiction. Thus H(7) = C7.
Finally, if / e 5^(7), then x2/xi is a 7th power in L(x) and so certainly in C{w}. Now, in

C{w}, we have, for example,

1 1 , J 2
— = — + diW + d2w +. • •
U2 T)2

and so
x2 u? 1 , A

= 4 = w 3 + evv4 +
which again is not a 7th power in C{w}. Thus /^5^(7) (although / is related to g(u + w) in
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