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1. Introduction

Nevile [2] has shown that if Rt is a certain measure of the rate of
growth of the national income in Harrod's growth model of an economy,
then Rt satisfies the non-linear recurrence relation

(1) k Rt+iRt+1-RU+Rt+cRt+1 = 0, t = 0, 1, 2, • • •,

where 0 < k < 1 and — 1 < c < 1. The definition of Rt ([2] p. 369) is
such that Rt > 0 for all t. Nevile has pointed out features of the model
that indicate that it may be unstable. In this paper I propose to show
that the model is, in general, unstable, but that proper choice of the initial
values i?0, i?! apparently leads to stability. In order to do this, we require
the conditions (if any) under which Rt converges.

By writing (1) as

(2) Rt-Rt+i = Ri+1{Rt+1-kRt+2- (c+1)},

it follows that the only possible limits for {Rt} are zero and (c+l)/(l— k).
In the economic setting the latter limit is the one of practical interest,
and I propose to concentrate attention upon this case.

Chaundy and Phillips [1] have discussed the sequence that is defined
by a certain two-term quadratic recurrence relation —their example shows
that the behaviour of such a sequence is dependent on the initial value
(as well as the parameters) being suitably restricted. I will show that a
similar property holds for the recurrence relation (1), in particular, the
sequence so defined converges if and only if the initial point (Rlt Ro) lies
on a curve in the i?!—Ro plane. In such cases the convergence is monotonic.
(Cf. [6].)

If we describe (1) by St = </>(St+2, St+1), where the function <£ is
subjected to the conditions (4), (5), (9) and Lemma 5 (below), then the
conclusion of the previous paragraph remains valid for this more general
case; and, as a by-product, it follows that there exists a continuous,
monotonic solution of the functional equation
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(i) if Rt < Rt+1 and Rt+1 > (c+l)/(l-ft) , then Rt+1 < i?
(ii) if Rt > Rt+1 and RM < ( c + l ) / ( l -£) , then Rt+l > R
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/(/(*)) = *(/(*). *)•

Similar results have been obtained in [3], [4], [5] and [7] for this functional
equation under conditions upon the function <f> that are essentially different
to those employed in this paper. The condition imposed in Lemma 5 is
not "natural", but I have not been able to deduce it from the other con-
ditions, nor have I been able to avoid its use.

2. Preliminaries

By writing equation (1) as

(3)

we see that

An equality in either of the premises of (i) or (ii) would not affect the
conclusions. If Ro < Rt and Rx > (e+l)/(l— k), the sequence is mono-
tonically increasing, and, as each term exceeds the greatest possible limit,
the sequence diverges to infinity. If Ro > Rx and R± < (c+l)/(l— k), the
sequence decreases monotonically away from (c+l)/(l—k). If we suppose
that the sequence approaches the only possible limit, viz. Rt -*• 0, then
for Rt ^ Rf+1 and for Rt+1 sufficiently small, it follows from (3) that Rt+2

is negative, contradicting the assumption that Rt is positive for all t.
Statements (i) and (ii) imply that {Rt} cannot oscillate about (c+l)/(l—k),
and there remain for consideration the cases of monotonic convergence.

For definiteness consider the case of monotonic decrease to the limit.
If we put St = Rt(l-k)l{c+l), then (1) has the form St = </>{St+1, St+i),
where

the function <f>(z, y) is of class C3 and

(i) ^ ( 1 , 1) = 1, <f>{x, x) > x if x > 1, <f>{x, x) < x if x < 1;

(ii) </>v < 0 for x > 0, y > 0.

(Note that if St+1 > 1, then by (4) (i),

<l>{St+1, St+1) > St+l,

and if St+1 > St then

<l>(St+1, St+1) > < £ ( S m , S m ) ,

so that St+2 > S m by (4) (ii). Likewise, if St > St+1 and S(+1 < 1, then
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[3] The stability of Harrod's growth model of an economy 209

St+2 < 5(+1, and thus the sequence {St} cannot oscillate about the limit.)
Assume that, in addition to (4), <f>{x, y) satisfies

,5) (i) * .+* , > 1 for 1 ^ y ^ *;
(ii) <l>Xv+Hvv < 0 for x ^ 1, y ^ 1, 0 ^ X ^ 1.

It follows from (4) (ii) that there is region H formed by the union of (1, 1)
with the points (x, y) for which

cf>(x, x) < y < <f>{x, 1), x > 1;

and the sequence {S,} converges monotonically to one if and only if, for
t = 0, 1, 2, • • •, the point (St+1, St) belongs to H. Let T be the transfor-
mation such that T[(x, y)]=(x, ft) where

« = V, P = HV. x).

If (x, y) is ( S m , S m ) , (a, P) is ( S m , St) and {SJ converges if and only
if (Si+1, St) belongs to T[H] for t = 0, 1, 2, • • • .

3. Some Lemmas

LEMMA 1. / / we write T[T'[H]] = T'+^ff],

i l D r[ff] D T»[H] D • • •.

PROOF. Call y = G0(x) and y = go{%) the upper and lower boundaries
of H respectively *. From (5)(i) g'0(x) > 1, so that go[x) has a single-valued
inverse, g^ix) (say), satisfying 1 < g^fa) < x for x > 1, and ^ ( 1 ) = 1.
Let T[x, go(x)] = gl(x), then

gl(x) =+(x, go1^)),
> ^(x, x) = go(a;),

by (4)(ii). Similarly, if T\x, G0(x)] = Gx(x),

with gx(l) = Gx{\) = 1. It follows from (4)(ii) that an interior point of
H transforms into a point (a, /S) satisfying gt (a) < f} < Gx(a); thus H D

Since g-̂ a;) > 1,

Jg'o(y)> y = s o 1 ^ ) .

by (4)(ii); and it then follows from (5) (ii) that

• viz. G0(x) = <f>(x, 1) and g,,(x) = <j>(x, x).
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Ei(x) ><f>x+<t>v. y = *>
= &(*)>!•

This argument can be rephrased to show formally by induction that
H D T[H] D T2[H] D • • •, and the sequence {SJ will then converge if and
only if (Sj, So) is restricted to the limit set L of this nest of sets.

Call y = G(x), y = g(x), (G(l) = g(l) = 1), the upper and lower
boundaries of L respectively. I propose to show that G(x) = g(x) for
x > 1 — to do this let us suppose that G (x) >g (x) fora; > 1.* CaR.y = Gn(x),
y = gn(x) the upper and lower boundaries of r"[H] respectively, and let
the Taylor expansion of <j>(x, y) about (1, 1) be \-\-a[x— 1)—b(y— 1)+ • • •,
where, from (5)(i), a—b > 1.

LEMMA 2. The sequence {g'n(l)} increases monotonically to

(6) £ = #«+(«•_«)*},

whilst \G'n{\)} decreases monotonically to the same limit.

PROOF. The last paragraph in the proof of Lemma 1 shows that
G'n(x) > 1 for x 2g 1, so that we can write

(7) Gn+1(x) = t(x, y), y = G-1{x),

giving

Q i U ) = a-6/GKl).

From (4) and (5) a > 0, b > 0, and it follows by induction that
G'n+1(l) < G'n(l); likewise, (i) {^(1)} is monotonically increasing, and
(ii) G'n(l) > g'n{l). Thus the two sequences are convergent — the possible
limits being the roots of the equation

(8) pz^ap-\-b = 0.

Since a—b > 1 there are two roots of this equation — the larger root
satisfies G'0(l) > p > g'0(l), whilst the smaller root, being less than g'0(l),
does not provide a possible limit. Thus both {g'n{l)} and {&„(!)} converge
to the expression (6).

The smaller root of (8) is

and as a—b—\ > 0, we then have the

COROLLARY. The larger root of (8) is greater than b.

* If we suppose the other alternative, viz. g{x) = G(x) for 1 g i i x* and g{x) < G(x)
for a;* < x, the argument then moves to the second last paragraph of § 4.
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[5] The stability of Harrod's growth model of an economy 211

LEMMA 3. Let Q be the triangle 1 ^ y ^ x ^ £1; and suppose that, for
all (x, y) in Q, there is a constant Kx such that

(9) Kx > <f>xx+2<f,miX+<l>mX* > 0, 0 ^ X ^ 1;

x) >0,f(x) >0.If
then there are fixed numbers d, K2 such that for 1 ^ x ^ l+(5

where Xn = \jG'n{\).

PROOF. From (7) there follows

(10) G'^ix) = ^

The last paragraph of the proof of Lemma 1 shows that 0 ^ X <£ 1, and
as G'0'(x) = <(,„, it follows by induction from (9) and (4)(ii) that G'^(x) > 0;
similarly & , » > 0. Let K = max ( | ^ J , | ^ . | , |^vv|) for all (a;, y) in Q,
then

as G~1(x) < a;.
As 6 < >̂, we choose a fixed number d > 0, less than \{p—b)jK; then,

whenever 1 ^ a; ^ 1 + 5,

(11) I6,|# < (b+2Kd)/p < 1.

Now G;'(a;) > 0, so that A ^ l//>, and it follows from (10) and (11) that
G'^(x) is uniformly bounded in 1 < x 52 l + # ; similarly g'^(x) is uniformly
bounded. Now G'0'(x) = ^>xx, and as ^ is of class C3,

where K3 is some constant. Since X and G'n(x) are uniformly bounded in
1 ^ x sS 1+5, (10) gives

where the constant Kt is independent of n. As y < x and An < \\p, the
Lemma follows by use of (5) (ii) if we choose^ — (max {K3,K^))\{\—b\p%).

LEMMA 4. For a chosen glt G'n{x), g'n(x) are uniformly bounded, and
G(x), g{x) are continuous in 1 ^ x ^ | x .

PROOF. It follows from (7) and (4)(ii) that

£ ( * ) < * . ( * , y), y = G-\x)
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and so by (5)(ii) G'n(x) < <f>x(x, 1). But G'n(x) > 1 and thus the sequence
{Gn{x)} is equicontinuous in 1 ^ x 5£ Si', so that, as it converges mono-
tonically, it converges uniformly. Gn(x) is continuous, and so G(x) is con-
tinuous; similarly for g(x).

LEMMA 5. Let

A = -tf+yM-bfrHl-blJfiWPlp+ylpW,
then there is a fixed number x* > 0 such that, for 1 5S x ^ x* and n ^N(e),
G'n(x)-g'n(x) > 0 if A > 0.

PROOF. If we put y = g^i
1{x) and Y = (^(a;), use of (7) leads to

G'n+i(x)-g'n+1(x) = A(x)(y-Y)-b(x, y){G'n{y)-gn{y)}l{G'n{Y)g'n{y)},

with

where x, yx, y2 are some numbers in (Y, y). As </> is of class C3 and as (8 < 0,
y < 0, we use Lemma 3 and G^(l) > p > g^(l) to give

A{x)>A1^K(x-l), l ^ z ^

where K > 0 is a constant independent of n and

For any prescribed e we may, by Lemma 2, choose an iV(e) such that

p-e < g'n(l) < G'n{l) < G^l) < p+e;
thus

where Kx > 0 is independent of e.
However G^(l) > g'N(l), and, by Lemma 3, there is a fixed number

(5X > 0 such that G'N(x)—g'N(x) > 0 for 1 ^ x ^ 1 + V If 4 > 0 we choose
e < /̂(2JPC1) and x* = 1+min (<5, dx, AJ2K), then yl (a;) > 0 and the Lemma
follows by induction.

4. The Main Theorem

THEOREM. If <f>(x, y) satisfies the conditions (4), (5), (9) and * A > 0,
Were e»'sfe a curve L : y = /(a;), | 0 5g a; g ^1( SMCA Wa< tt^ sequence generated

* A is defined in lemma 5 with £ = J{a+(aa—46)i}, « = ^,(1, 1), 6 = ^,(1, 1),
a = &»(1, 1), p = ^ ( 1 , 1), y = ^ ( 1 , 1).
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[7] The stability of Harrod's growth model of an economy 213

by St = <j>(St+2, S m ) converges to 1 if and only if the initial terms (Slt So)
lie on L. The function f(x) provides, at the same time, a continuous and strictly
increasing solution of the functional equation

such that (i) /(I) = 1, and (ii) f(x) > 0.

PROOF. I propose to show that lim {Gn(x)— gn(x)} = 0. Let the line
y = x0 intersect the curves y = G „_!(#), y =.gn-1{x) at xx, x2 respectively.
Then xt < x2 < x0 and

for some number 0 in xt < 0 < x%. From Lemmas 2 and 3, Gi_x(fl) > p,
and as x2 < x0

(12) gii(*b)-G^:i(«b) < {Gn-iM-gn

providing x0 ^ x* and n ^iV(e). Using (7) and (12) we have

for some number r) in G^^XQ) < rj < g^ii{x0); and it then follows from
(11) that {Gn(x0)-gn(x0)}^0, uniformly for l^xo^x*. AsGn(x), gn(x)
are strictly increasing, the limit set L defined in the last paragraph of the
proof of Lemma 1 is a curve i.e. G(x) = g(a;) for 1 5S x ^ a;*.

Now G{x), g(x) possess inverses and satisfy the functional equation

whence, by (4) (ii), G(x) = g{x) if and only if G^ix) == g-^x). Let P be the
point on L for which x = x*, and let P' be the reflection of P in y = x.
Since g{x) > p(x—l) + l, it follows that, at P', x> l+p{x*—l), i.e.
g-i(x) = G'1{x) for 1 ^ CB £ i+p(x* — l), and the set L is then a curve
for 1 5S a; ^ l+p(x* — 1). By repetition of the argument, it follows that
L is a curve for 1 ^ x ^ ^.

The region 0 < x ^ 1 corresponds to monotonic increase to the limit,
and a similar argument holds for this case. It is necessary to restrict x so
that g(x) > 0, and for this it is sufficient to require x^£a, where f0 is
the largest root of (f>(x, 1) = 0 in [0, 1]. Lemma 4 then shows that, in
lo ^ x ^ fi< there exists a strictly increasing continuous solution of the
functional equation
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214 P. E. Lush [8]

or, what is equivalent, f(f(x)) — </>(f(x), x), such that (i) /(I) = 1, and
(ii) /(*) > 0.

Conclusion

For the difference equation (1)

<£(*• y) = {c+l)(x*-kxy)l(l-k)-cx;

so that (4), (5), and (9) are satisfied with fx = oo. The condition A > 0
of Lemma 5 is satisfied for all points (k, c) of the rectangle — 1 < c < 1,
0 < k < 1 which are exterior to the closed curve A = 0 shown in Fig. 1.
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As the points in the interior of the curve A = 0 are not realised in
practice, the significance of the result is that the model of an economy
represented by (1) is unstable, in the sense that, with the inaccuracies that
are inherent in the measurement of economic quantities, the probability
that any given "initial" point (R1, R9) should lie on L is zero.
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